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Dystonia is the second most common movement disorder next to tremor,

but its pathophysiology remains unsettled. Its therapeutic measures include

anti-cholingerics and other medications, in addition to botulinum neurotoxin

injections, and stereotaxic surgery including deep brain stimulation (DBS),

but there still remain a number of patients resistant to the therapy. Evidence

has been accumulating suggesting that basal ganglia in association with the

cerebellum are playing a pivotal role in pathogenesis. Clinical observations

such as sensory tricks and the e�ects of muscle a�erent stimulation and

blockage suggest the conflict between the cortical voluntary motor plan

and the subcortical motor program or motor subroutine controlling the

intended action semi-automatically. In this review, the current understanding

of the possible pathways or loops involved in dystonia is presented, and

we review promising new targets for Deep Brain Stimulation (DBS) including

the cerebellum.
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Introduction

Dystonia is a syndrome in which sustained or repetitive muscle contractions result in

twisting and repetitive movements or abnormal fixed postures (1). Usually, those muscle

activities are uncontrollable by the subject and classified as an involuntary movement

(2). Focal dystonias such as writer’s cramp usually affect writing, but not other tasks.

Abnormal contractions of muscles start as soon as the subject intend to write, and occur

both in agonists (e.g., wrist flexor) and antagonists (e.g., wrist extensor), resulting in

freezing of the joint (co-contraction), or reciprocally in those muscles (dystonic tremor),

in an unintendedmanner. Distant muscles unnecessary for the task may also be activated

(motor overflow). There is a discrepancy between the intended motor plan and the

resultant movements.
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Task specificity and sensory trick

Tasks affected by these focal dystonias are usually performed

automatically; writing, playing musical instruments, using

a putter in golfing, and so on. The modalities of these

tasks are obtained by intensive training with or without

psychological stress. Cervical dystonia and blepharospasm are

the most prevalent dystonias, and they can be regarded as

derangement of head control and blinking, which are acquired

after birth (3). These task specificities may be lost as the

disease progresses, and the symptoms may spread over other

parts of the body. Thus, dystonia is a disorder of motor

programs or subroutines to perform semi-automatic or fully

learned motor acts (3). This of course is entirely different

from “supervised” motor learning process of fine control of

the limbs, such as pulling a thread through a pin needle hole,

which usually requires the subject’s highest attention. The latter

is presumably controlled by the cortico-cerebellar system (4).

The pathway activated in fully learned motor tasks affected in

dystonia is classified as “reinforced” learning circuit through

the basal ganglia through dopaminergic system (4). As the

motor skill and efficiency improve, the shift from supervised to

reinforced learning with more involvement of the basal ganglia

occurs (5).

Another peculiar characteristic of dystonia is a phenomenon

of symptomatic improvements with the aid of sensory input

to a particular part of the body when performing the task

(sensory trick) (6, 7). For instance, touching a part of the

face with the subject’s hand may straighten the neck in

cervical dystonia. This raised a question of stimulating the

muscle spindle afferents by a tonic vibration reflex (TVR)

maneuver, or blocking them by intramuscular injection of

diluted lidocaine, which is known to block gamma-efferents to

the spindles selectively in dystonia patients (8). Interestingly

the dystonic movements were reproduced by TVR, and

abated by muscle afferent block [see videos attached to

(8)]. The reflex is spared in extensive cortical lesions in

stroke (9). It is therefore concluded that the neural pathways

involved in dystonia is mainly subcortical, and there seems

to be a conflict between cortical voluntary motor command

and the abnormal output from the subcortical structures.

Compensatory mechanisms may be possible at the cortical

level, as exemplified by the phenomenon of sensory trick,

whereby the subject can find a compromise between the

two systems.

Based upon the above study of TVR and muscle afferent

block, it was proposed that dystonia is a sensory disorder

(10). A number of the subsequent studies have explored

the abnormalities of the tactile sensory discrimination of the

affected or unaffected limbs in dystonia, deciphering the primary

somatosensory cortex as the site of primary lesion, but they failed

to show conclusive evidence whether the changes are primary or

not (11–13). Temporal tactile discrimination, which mirrors the

function of somatosensory cortex, was found abnormal even in

psychogenic dystonia (14).

Pathophsiology of dystonia

The exact pathology involved in dystonia is still an

open question. Traditionally it is regarded as a basal ganglia

disorder, since hemi-dystonia is a consequence of contralateral

basal ganglia lesions (15), and remarkable histopathological

loss of striosome compartment in the striatum is found in

dystonic phase of X-linked dystonia-parkinsonism (XDP) (16,

17). Accumulating evidence on the other hand suggests the

cerebellum in association with the striatum causing dystonia

(18). An autopsy study in a hereditary case of pure dystonia

demonstrated exclusive cerebellar atrophy and loss of Purkinje

cells in the anterior lobe (19). Dystonia is often a presenting

symptom in spinocerebellar atrophies such as SCA6 (20, 21).

Of course, secondary involvement of these structures is possible,

despite the lack of visibility of the primary lesion. Rare autopsy

cases of primary cervical dystonia revealed patchy loss of

Purkinje cells, also pointing to the cerebellum as a site of lesion

(22), whereas most of the cases of idiopathic dystonia lack

such pathology, indicating abnormal synaptic plasticity being

the plausible cause.

Classical model of basal ganglia
circuit

More than 3 decades ago, Alexander and Crutcher

presented a “push-pull” model of basal ganglia circuit which

nicely explains hypokinetic and hyperkinetic disorders such

as Parkinson’s disease and dystonia (23). This model is still

useful in understanding dopamine excess causing hyperkinetic

states such as dopa-induced dyskinesia and dystonia. There

are direct or cortico-striato-GPi pathways that exerts excitatory

feedback to the cortex (mainly premotor area or PM), and

indirect or cortico-striato-GPe(STN)-GPi pathway which

feeds back inhibitory background as a surround inhibition

(Figure 1A). The net result would be focusing the muscles

to be activated for performing tasks. In dopamine deficiency

such as in Parkinson’s disease, there exists more indirect

pathway activity because of the lack of dopamine disinhibits

medium spiny neurons (MSNs) in the striatum through

D2 receptors. MSNs in the direct pathway on the contrary

are inhibited through the D1 receptor. The paucity and

slowness of movements (akinesia and bradykinesia) are

the consequences. Dystonia is explained by the excess of

dopamine, which favors a direct pathway, which activates

muscles unnecessary for performing tasks, as in the case

of co-contractions.
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Revised model of the basal ganglia

If the dopamine excess is the cause of dystonia, there

remain conditions that are unexplained by the classical model;

tardive dystonia and dopa-responsive dystonia. As most of

the anti-psychotic drugs are termed atypical, causing less

tardive syndrome, there still remain a large number of

psychiatric patients who suffer from dystonia while using

dopaminergic antagonists (24). Of course, many of them start

their symptoms after reducing the dose of drugs or even

stopping them, which can be explained by the super-sensitivity

of the receptors after removing the blockage. Another question

is dopa-responsive dystonia, which dramatically benefits from

dopa administrations.

The only known pathological finding of dystonia is probably

that of X-linked dystonia-parkinsonism (XDP) (16). XDP

is a biphasic disease, endemic in the Panai Island of the

Philippines, starting with dystonia, which gradually proceeds

to Parkinsonism. At the dystonic stage, it typically presents

with focal dystonia involving the jaw then generalized to the

trunk and the lower limbs. MRI finding of the brain at this

stage shows spot-like lesions in the putamen (16, 17, 25).

Those afflicted by this condition tend to die by suicide, and

autopsy findings of pure dystonia are a reality (16). The

striatum consists of two compartments immunohistochemically;

striosome and matrix. The lesions seen on MRI turned out

to be exclusively striosome, since all the remaining MSNs

are of matrix. Striosome has inputs from the limbic cortex

and is related to reward-oriented control of movements (26,

27). There are dopaminergic projections from Substantia

Nigra pars compacta (SNc) to the matrix as well as their

axonal collaterals to striosomal MSNs with excitatory D1

receptors, which in turn send its GABAergic inhibitory

axons back to nigral dopaminergic neurons, thus forming a

feed-back control loop of dopamine release to the striatum

(Figure 1B) (16, 25, 28). If striosomal MSNs are depleted,

FIGURE 1

Continued
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FIGURE 1

(A) Classical model of basal ganglia [Alexander and Crutcher (23)]. Left: Normal condition depicting “excitatory” direct and “inhibitory” indirect

pathways. The majority is the inhibitory indirect path, which constitutes “surround inhibition” around the direct path activity of allowing

activation of selected muscles. Open arrows are excitatory glutamatergic, and closed arrows are inhibitory GABAergic projections.

Dopaminergic projections terminate on medium spiny neurons (MSNs) with excitatory D1 receptor on the direct, and inhibitory D2 receptor on

the indirect pathways. Right: Suggested model in dystonia. Relative excess of dopamine from SNc produces direct pathway predominance, and

disintegrates surround inhibition. Putative sites of action of DBS are shown with red arrows. SNc, Substantia Nigra pars compacta; GPe, Globus

Pallidus externus; STN, Subthalamic Nucleus; GPi, Globus Pallidus internus; Thal, Thalamus. (B) Pathways proposed in the pathogenesis of

dystonia and TVR-induced dystonic movements. Cerebral Cortex: PM premotor area, M1 primary motor area, S1 primary somatosensory area.

Basal Ganglia: Ch cholinergic interneurons, MSN(D) medium spiny neuron in direct pathway, MSN(ID) medium spiny neuron in indirect pathway.

Thalamus: Vo thalamic ventral-oralis complex, ILN(CL) intralaminar nuclei in primates or centro-lateral nucleus in rodents. Cerebellum: DN

dentate nucleus, Pj Purkinje cells. PN, pontine nuclei. Spinal Cord: α-α motoneuron, γ-γ motoneuron. Broken arrows are putative pathway

mediating TVR-induced movements, and possible targets are shown in red.

the control of dopamine content would be deranged, so

that relative dopamine excess might result in direct pathway

preponderance, causing dystonia. In a model of dopa-responsive

dystonia, it was found that tyrosine hydroxylase (TH) content

was more depleted in the striosome, accounting for the

imbalance between the compartments causing dystonia (29).
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TABLE 1 Key references in exploring pathophysiology of dystonia.

Anatomical basis

Marsden CD, Obeso JA, Zarranz JJ, Lang AE. The anatomical basis of symptomatic hemidystonia. Brain. (1985) 108(Pt

2):463–83. doi: 10.1093/brain/108.2.463

Model of basal ganglia circuits

Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing.

Trends Neurosci. (1990) 13:266–71. doi: 10.1016/0166-2236(90)90107-L

Sensory aspects in dystonia

Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, et al. Tonic vibration reflex and muscle afferent block in

writer’s cramp. Ann Neurol. (1995) 38:155–62. doi: 10.1002/ana.410380206

Hallett M. Is dystonia a sensory disorder? Ann Neurol. (1995) 38:139–40. doi: 10.1002/ana.410380203

Somatosensory cortex

Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C. Abnormal somatosensory homunculus in dystonia of the hand. Ann

Neurol. (1998) 44:828–31. doi: 10.1002/ana.410440520

Deep brain stimulation in dystonia

Vercueil L, Pollak P, Fraix V, Caputo E, Moro E, Benazzouz A, et al. Deep brain stimulation in the treatment of severe

dystonia. J Neurol. (2001) 248:695–700. doi: 10.1007/s004150170116

Dystonia pathology in X-linked dystonia-Parkinsonism

Goto S, Lee LV, Munoz EL, Tooyama I, Tamiya G, Makino S, et al. Functional anatomy of the basal ganglia in X-linked

recessive dystonia-Parkinsonism. Ann Neurol. (2005) 58:7–17. doi: 10.1002/ana.20513

Cerebellar involvement

Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic

movement. Brain. (2008) 131:2499–509. doi: 10.1093/brain/awn168

Direct cerebello-striatal projection in dystonia model

Chen CH, Fremont R, Arteaga-Bracho EE, Khodakhah K. Short latency cerebellar modulation of the basal ganglia. Nat

Neurosci. (2014) 17:1767–75. doi: 10.1038/nn.3868

Subcortical loop

Kaji R, Bhatia K, Graybiel AM. Pathogenesis of dystonia: is it of cerebellar or basal ganglia origin? J Neurol Neurosurg

Psychiatry. (2018) 89:488–92. doi: 10.1136/jnnp-2017-316250

Compartmental imbalance has also been implicated in tardive

dystonia (24).

Direct connections between the
basal ganglia and the cerebellum

Dystonic movements are subconscious since any volitional

efforts to correct them are not possible except for the

sensory trick maneuver. This is in contrast with tic, where

sensory symptoms to urge movements are usually perceived

by the subject, who could volitionally control the movements

albeit momentarily. As mentioned above, activation of muscle

afferents by high-frequency vibratory stimulation (TVR)

could reproduce the dystonic movements, apart from the

subject’s intention. Patients with pure cerebellar pathology

could present with dystonia. It is therefore reasonable

to assume a subcortical circuit mediating TVR-induced

dystonic movements (9), possibly including the cerebellum,

where muscle spindle afferents are utilized as kinesthetic

control (30).

Contributions from the basal ganglia and the cerebellum

to the genesis of dystonia have been discussed in association

with the cerebral cortex as separate loops (Table 1) (17, 18,

31). There has been however ample anatomical evidence

showing direct di-synaptic connections between the cerebellum

and the striatum or the subthalamic nucleus (32–35). Using

the rabies virus as a probe, Hoshi et al. found that the

striatum has a di-synaptic input from the dentate through the

intralaminar nucleus (CL) of the thalamus (32). Conversely,

the subthalamic nucleus (STN) was shown to have di-synaptic

output to the cerebellar cortex via pontine nuclei (34). Chen

et al. confirmed short-latency (∼10ms) cerebellar modulation

of the basal ganglia between the dentate nucleus and the

striatum in normal and dystonia model mouse (36). More

importantly, they found that high-frequency stimulation of the

cortex alone produced long-term depression (LTD), while the

concurrent stimulation of the cerebral cortex and the cerebellum

produced long-term potentiation (LTP) at the cortico-striatal

synapses, providing the direct evidence of cerebellar inputs to

the striatum modulating its neuroplasticity. They also explored

the pathway in a mouse model of dystonia and found that
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the aberrant high-frequency inputs from the cerebellum set

the cortico-striatal synapse to favoring abnormal LTP. Severing

the link from the cerebellum by silencing the thalamic nuclei

abolished the dystonic symptoms. These findings are relevant

to the pathogenesis and treatment of dystonia since abnormal

LTP or its depotentiation at the cortico-striatal synapses have

been shown in a prototypic mouse model of dopa-induced

dyskinesia (37) and humans with DYT1 dystonia (38, 39). The

termination of the cerebelo-thalamo-striatal projection seems to

be cholinergic interneurons, which are located at the border of

striosome and matrix compartments, and upregulate dopamine

release in the striatum via both nicotinic and muscarinic

receptors (40, 41). It follows that dystonia can be treated with

anti-cholinergics, such as trihexyphenidyl (42), and is aggravated

by nicotine (43).

New targets for deep brain
stimulation

Targets for deep brain stimulation (DBS) for dystonia have

been evolving around internal Globus Pallidum (GPi) and the

subthalamic nucleus (STN). The rationale for GPi-DBS is to

inhibit the direct pathway through increasing the GABAergic

output from GPi to Vo thalamus, which in turn decreases the

thalamo-cortical excitatory projections to the premotor area,

which is known to be hyper-excitable in dystonia (44). However,

STN-DBS in dystonia is less clear. In Parkinson’s disease, it is

expected to reduce the hyperactive indirect pathway, since STN

is located in the indirect pathway, where stimulation is supposed

to apply presynaptic inhibition to STN. The stimulation could

reduce the ratio of indirect/direct pathways, thus improving the

akinesia and bradykinesia on its own and, as a consequence,

reduce the doses of anti-Parkinsonian medications. Drug-

induced dystonia or dyskinesia can be improved through

decreased medication.

It is also known that STN-DBS is equally effective in treating

idiopathic and hereditary dystonias compared to GPi-DBS (45–

47), although the stimulation parameters could differ from those

in Parkinson’s disease (48). The rationale for this target is not

clearly explained, asin dystonia direct pathway predominance

must be met with increasing indirect pathway including STN.

It is therefore conceivable that stimulation at STN in dystonia

could be excitatory to STN neurons in contrast to the inhibitory

nature in Parkinson’s. There is also a possibility that STN

modulation could affect the direct di-synaptic STN-cerebellar

pathway (34).

As discussed, the dentate nucleus or thalamic intralaminar

nuclei are promising new targets in the light of their capability

of affecting striatal neuroplasticity. In fact, dentate DBS has been

reported with preliminary results (49–51). Intralaminar nuclei

of the thalamus are also considered as a candidate (52). As in

muscle afferent block using diluted lidocaine, the input to the

cerebellum through the inferior cerebellar peduncles may be

functionally manipulated, although direct evidence is lacking.

The stimulation parameters and the precise location in these

targets are yet to be determined.

Conclusion

The pathways mediating abnormal motor outputs in

dystonia is still undetermined. The classical “push-pull” model

of Alexander-Crutcher is still useful, but many revisions must

be made considering new clinical and therapeutic features of

dystonia or its animal models. More clinical and animal studies

searching new and unexplored targets including subcortical

cerebello-thalamo-striatal or STN-ponto-cerebellar pathways

are needed for better understanding and optimal treatment

of dystonia.
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