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Abstract

Background/Objective

The underlying mechanism of fatigue in multiple sclerosis (MS) remains poorly understood.

Our study investigates the involvement of the ascending reticular activating system

(ARAS), originating in the pontine brainstem, in MS patients with symptoms of fatigue.

Methods

Female relapsing-remitting MS patients (n = 17) and controls (n = 15) underwent a magnetic

resonance spectroscopic imaging protocol at 1.5T. Fatigue was assessed in every subject

using the Fatigue Severity Scale (FSS). Using an FSS cut-off of 36, patients were catego-

rized into a low (n = 9, 22 ± 10) or high (n = 10, 52 ± 6) fatigue group. The brain metabolites

N-acetylaspartate (NAA) and total creatine (tCr) were measured from sixteen 5x5x10 mm3

spectroscopic imaging voxels in the rostral pons.

Results

MS patients with high fatigue had lower NAA/tCr concentration in the tegmental pons com-

pared to control subjects. By using NAA and Cr values in the cerebellum for comparison,

these NAA/tCr changes in the pons were driven by higher tCr concentration, and that these

changes were focused in the WM regions.

Discussion/Conclusion

Since there were no changes in NAA concentration, the increase in tCr may be suggestive

of gliosis, or an imbalanced equilibrium of the creatine and phosphocreatine ratio in the

pons of relapsing-remitting MS patients with fatigue.
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Introduction
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, which results
in focal areas of demyelination. It is known to affect the white matter (WM) with axonal injury
or loss as a common pathological feature occurring in the brain of MS patients [1]. This injury
and resulting dysfunction has been observed to affect both normal appearing white matter
(NAWM) and normal appearing grey matter (NAGM) even during the early course of the dis-
ease [2].

Fatigue is the most common and disabling symptom, experienced by 50 to 80% of MS
patients [3]. Considering the significant impact of fatigue in MS patients, and despite the exten-
sive research done to further our understanding of MS, the underlying pathophysiology of this
symptom remains unknown [4].

In efforts to understand fatigue in MS, specific brain structures have been investigated using
conventional magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and posi-
tron emission tomography (PET) to determine whether they are associated with this symptom
[4,5]. One structure suggested to be involved with fatigue in MS is the pontine brainstem [6].
Originating within the pons is a complex network composed of several groups of projecting
neurons, which makes up the ascending reticular activating system (ARAS). These groups of
neurons diffusely project to many brain structures, including the neocortex, hippocampus,
thalamus, hypothalamus and cerebellum [7]. The ARAS is responsible for arousal and sleep-
wake cycle [8] and plays an important role in responding to stress [9], attention and behaviour
[8]. These functions are often impaired in MS patients. It is thought that damage to structures
of the ARAS in MS patients might impair its function in response to arousal and stimuli,
thereby causing fatigue [6,10].

Magnetic resonance spectroscopy (MRS) serves as a complementary tool to MRI, and can
be used to evaluate the neuronal integrity of the brain by examining the metabolite N-acetylas-
partate (NAA). Such observations may infer the presence of disease in advance of anatomic
changes seen when using conventional MR imaging methods. The signal from NAA is readily
observed in proton MR spectra of the brain, and is found primarily in neurons. A decrease in
the concentration of NAA in the pons, for MS patients with attention dysfunction, has been
interpreted as resulting from neuronal damage, loss or dysfunction [11]. NAA signal measures
have often been normalized to that from the total creatine signal (tCr–the sum of signals from
creatine and phosphocreatine) to yield an NAA/tCr ratio. The concentration of tCr in MS
brain tissue (excluding lesions) has been reported to be unaffected by the disease process when
compared to controls [2]. However, the measurement of tCr is highly dependent on the WM:
GM content being sampled due to a significant concentration gradient between these two tissue
regions, due to the different neuron to glial density, where glial cells have a higher tCr concen-
tration. It is also dependent on the experimental timing used for data acquisition. This latter
dependence results from the fact that the tCr signal is derived from 2 metabolites which have
different transverse relaxation times (T2 for Cr ~ 309 ms; and for PCr ~ 117 ms [12]). There-
fore, as the TE for MR spectral acquisition increases, the measured t-Cr peak is more heavily
weighted by the Cr signal, so any fluctuations in the Cr:PCr equilibrium may be observed as a
change in the measured tCr peak relative to the other peaks. Such a fluctuation may be the
result of a lower baseline level of PCr, or from an increase in activity in the brain region reduc-
ing PCr to maintain ATP levels. Clearly, these are important considerations when using the
tCr signal as a reference metabolite when presenting MRS data as a ratio, for example NAA/
tCr, even though this remains a common measure in the MRS literature.

While previous studies have used MRS to investigate changes in cerebral GM andWM [13],
here we used multi-voxel proton MRS (chemical shift imaging–CSI4) to measure metabolite
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concentration changes for NAA and tCr in the pontine brainstem, which contains the ARAS
nuclei. By carefully accounting for the differences in the tissue composition sampled (segmen-
tation of each CSI voxel into GM:WM), and the partial volume dilution effects of the CSF on
each of the measured MR spectra, we present a refined approach, which allows for estimation
of intra-voxel as well as the standard inter-voxel metabolite concentration ratios. This was con-
trasted with the standard MRI determination of lesion load correlated with the clinical measure
of Fatigue Severity Score (FSS), in order to add further evidence as to whether lesion load is a
relevant factor in fatigue.

Methods

Participants
Nineteen women with relapsing remitting multiple sclerosis (RRMS) and low disability (ages
40 ± 7 years, range 27–56 years) and 18 healthy women (ages 40 ± 7 years, range 26–50 years)
underwent fatigue screening and brain MRI/S (Table 1). Screening of the healthy controls
ensured that none had suffered neurological or psychiatric conditions. This research study pro-
tocol was approved by the University of Alberta Health Research Ethics Board. Written
informed consent was obtained from all participants.

MS patients were selected to have low-disability as measured by the clinical expanded dis-
ability status scale (EDSS) scores (median: 1.5, range: 0 to 2.5). Fatigue was assessed using the
fatigue severity scale (FSS)[14]. The FSS is a self-administered test with nine statements that
rates the severity of fatigue symptoms in the past week from a patient’s perspective; a value of 1
indicates strong disagreement and 7 indicates strong agreement with each statement. MS
Patients were split into low (n = 9, FSS = 22 ± 10, range 11–34) or high (n = 10, FSS = 52 ± 6,
range 42–59) fatigue (Table 1), where FSS scores more than 36 suggest that the patient is suffer-
ing from fatigue [14]. Fatigue and depression are highly associated in MS patients [4], but none
of the patients included in this study had depression as evaluated using the Beck Depression
Inventory (BDI I-II). Clinical assessments were done immediately prior to the MR scan and
patient with clinical involvement of the cerebellum were excluded.

Magnetic resonance image acquisition
MRI was acquired on a 1.5T Siemens Sonata scanner. Three sets of MR images were used to
guide the CSI volume placement (Fig 1). First, a T1-weighted sagittal image was obtained to
identify the brainstem, using the following parameters (slice thickness = 5 mm, TR = 199 ms,
TE = 4.6 ms, flip angle = 90°, scan time = 0:50 min). Then an axial Fluid Attenuated Inversion
Recovery (FLAIR) was placed perpendicular to the sagittal image and brainstem, to identify the
fourth ventricle in the pons (slice thickness = 5 mm, TR = 9000 ms, TE = 106 ms, T1 = 2400
ms, scan time = 3:02 min). Finally, a coronal T2 image was obtained by placing it perpendicular

Table 1. Characteristics of controls, low fatigue and high fatigue RRMS groups, and P-values fromMann-Whitney test between both patient
groups.

Characteristics Controls (n = 15) Low Fatigue (n = 7) High Fatigue (n = 10) P-value

Mean Age (years) 38 ± 7 (26–49) 38 ± 5 (29–43) 42 ± 8 (29–56) > 0.4

Median EDSS - 1.5 (1.0–1.5) 1.8 (1.0–2.5) > 0.2

Range Lesion Load (cm3) - 0.15–16.25 0.44–37.17 > 0.8

Fatigue Severity Scale 18 ± 4 (13–26) 22 ± 9 (11–34) 52 ± 6 (42–59) < 0.0001

doi:10.1371/journal.pone.0149622.t001
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to the previously described sagittal and axial images (slice thickness = 5 mm, TR = 7510,
TE = 113 ms, scan time = 1:17 min).

Chemical shift imaging
The 1H-MRS CSI data were acquired from a PRESS [15,16] localized region as a 16x16 matrix
(zero-filled to 32x32). The water signal-suppressed CSI parameters were: slab thickness = 1 cm,
FOV = 16 x 16 cm2, acquired volume = 8 x 8 cm2, CSI voxel dimension = 0.5 x 0.5 x 1 cm3,
TR = 1750 ms, TE = 135 ms, 2 averages, flip angle = 90°, scan time = 15 min 10 sec.

Fig 1. Field of view of the CSI volume (160x160x10 mm3) placement in one subject in sagittal (a), axial (b), and coronal (c) view. Zoomed in axial view of the
pons (d) in one subject, sixteen CSI target voxels in the right (R1–R6) and left (L1–L6) and 4 reference voxels in the cerebellum (C1–C4). Each voxel size is
5x5x10 mm3.

doi:10.1371/journal.pone.0149622.g001
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Structural images
A whole brain 3D T1-weighted MPRAGE was acquired for brain segmentation, with parame-
ters as follows: TR = 1890 ms, TE = 4.89 ms, TI = 1100 ms, slice thickness = 1 mm, flip
angle = 15°, FOV = 256x256 mm2, voxel dimension = 1x1x1 mm3, number of slices = 144, scan
time = 4 min 38 sec. For segmentation analysis, the high-resolution T1-weighted image was
aligned to the CSI volume through systematic visual inspection in MATLAB 7.8.0 (The Math-
Works, Inc., Natick, MA). To quantify the composition of brain tissue in an individual CSI
voxel, the T1-weighted image was segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) using SPM8 (Wellcome Department of Cognitive Neurology, Lon-
don, UK). The percent GM in the brain tissue sampled, and the percent CSF in each CSI voxel,
were calculated using the following eqs (1) and (2):

%GM ¼ ð100 � GMÞ⁄ ðGM þ WMÞ ð1Þ

%CSF ¼ ð100 � CSFÞ⁄ ðGM þWM þ CSFÞ ð2Þ

Determination of Lesion Load. Lesions were identified on the T2-weighted and whole-
brain axial FLAIR images using an in-house semi-automated threshold intensity (MATLAB)
to yield a total lesion volume per MS patient.

CSI data analysis. The CSI data from the 32 subjects were analyzed using LCModel [17].
Sixteen voxels from the CSI matrix were selected for final analyses; six voxels were located in
the right pons, six in the left pons and four in the cerebellum (Fig 1d). An example of a set of
spectra from the sixteen voxels is illustrated in Fig 2.

Following LCModel analysis, spectral peaks with a Cramér-Rao lower bound (CRLB)
of> 20% were excluded from further analyses [17]. Due to excessive patient motion 5 entire
datasets were rejected (3 controls and 2 patients, leading to the final cohort of 17 MS patients
and 15 controls). The tCr signal from a small number of voxels for the remaining 32 subjects
failed to meet the CRLB limit and were rejected. The percentage of voxels, in which tCr data
were rejected, amounted to 2.1% for controls, 4.5% for low fatigue (LF), and 4.4% for high
fatigue (HF). Data included in the final analysis had similar mean CRLB for NAA in the pons
{Control, LF, HF} = {7.4%, 7.8%, 8.0%} and cerebellum {Control, LF, HF} = {7.5%, 7.5%, 7.8%}
for all three groups. Relative to NAA, the CRLB values were higher for tCr in the pons {Con-
trol, LF, HF} = {13.2%, 14.0%, 13.5%} and cerebellum {Control, LF, HF} = {9.0%, 9.5%, 9.8%}.

To correct for partial volume effect, we corrected each metabolite (NAA and tCr) concen-
tration for CSF content in all 16 CSI voxels according to Eq (3) [18] below.

S ¼ ð100 � S0Þ⁄ ð1� ð%CSF ⁄100ÞÞ ð3Þ

where S0 is the uncorrected metabolite concentration in one voxel, CSF is the percentage of
CSF content measured using Eq (2), and S is the corrected metabolite concentration in that
voxel.

In addition to the NAA/tCr ratio calculated for the 16 voxels selected from the pons and cer-
ebellum, the NAA and tCr values from voxels L1–L6, and R1–R6 were normalized to the aver-
age NAA or tCr that was measured for the 4 voxels in the cerebellum (Cb) (C1–C4). This
yielded NAA/NAACb or tCr/tCrCb ratios, which allowed us to examine whether changes in
pons NAA or tCr were driving changes observed in the NAA/tCr ratio.
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Statistical analysis
Analysis of variance (ANOVA) with %GM as covariate was used to compare NAA/tCr ratio in
the pons between all groups [19]. Only comparisons that reached statistical significance at
p<0.05 after FDR correction are reported. NAA/tCr ratio comparisons that reached statistical
significance underwent a subsequent group analysis of NAA/NAACb and tCr/tCrCb.

The Mann-Whitney test was used to compare lesion load, EDSS and age between high
fatigue and low fatigue groups. Pearson’s correlation analysis was used to correlate MRS data
with age, and fatigue scores (FSS) with disability measures (EDSS) and white matter lesion load
(LL) in both patient groups.

Results
There was no significant difference between MS patients in low and high fatigue groups with
respect to age and clinical EDSS (Table 1). Fatigue score was significantly different between MS
patients in low and high fatigue groups (p< 0.0001) (Table 1); additionally fatigue score was

Fig 2. Spectra from 16 voxels in a 29 year old high fatigue patient. The red lines show the LCModel fit for each spectrum and the black lines are the raw
spectral line.

doi:10.1371/journal.pone.0149622.g002
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not different between the low fatigue group and controls (22 ± 10 and 18 ± 5, respectively).
Lesion load was highly variable between patients and was not significantly different between
the low and high fatigue groups (Fig 3, Table 1). Correlation analysis over both RRMS groups
combined did not reveal any significant association between EDSS, FSS and LL.

Data for the NAA/tCr ratio and percent GM for all 16 voxels in each of the subject groups
are shown in Table 2. In the pons, NAA/tCr was significantly smaller in L4, R5 and R6 in high
fatigue when compared to controls and in L6 which was significantly smaller in low fatigue
patients compared to controls. Further analysis of these data, presented in Fig 4, shows that
when the NAA/t-Cr ratio is plotted against the %WM and projected to a composition of either
100%WM or GM, there is a significant difference in the NAA/t-Cr at 100%WM between the
controls and HF group (Fig 4a, p< 0.02). The NAA/t-Cr curves for controls, LF and HF
groups appear to converge as the %GM increases, illustrated in Fig 4b.

The participants included in the study were only included if they had no cerebellar involve-
ment. This was reflected in the NAA / tCr measures from the cerebellum which showed no sig-
nificant differences between the study groups. However, the voxels located in the pons which
showed a statistically significant difference in the NAA/tCr ratio, Fig 5a, were subsequently
examined for individual metabolite changes relative to the cerebellum. This approach was used
to provide an alternate reference source that was in the same CSI field, and yielded NAA/

Fig 3. Plot of Fatigue Severity Score (FSS) versus Lesion Load in the right panel for MS subjects either with Low Fatigue (blue squares), or High
Fatigue (red triangles). In the left panel the FSS for control subjects (black circles), is shown for comparison.

doi:10.1371/journal.pone.0149622.g003
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NAACb and tCr/tCrCb ratios, shown in Fig 5b and 5c. The tCr/tCrCb ratio increased by 25%
and 26% in L4 (0.75 ± 0.19, 0.60 ± 0.13, p = 0.039), and R6 (0.67 ± 0.20, 0.53 ± 0.10, p = 0.031),
respectively, in HF compared to controls, but was not significantly different in R5 (0.64 ± 0.21,
0.53 ± 0.10, p = 0.11). Additionally, a 26% increase in tCr/tCrCb ratio was observed in L6 in LF
compared to controls (0.63 ± 0.16, 0.50 ± 0.09, p = 0.042). There were no significant differences
in the NAA/NAACb ratio in any voxel when comparing subject groups. The analyses for tCr/
tCrCb ratio were repeated by including subjects’ age as an additional covariate and yielded simi-
lar levels of significance.

Discussion
Our CSI observations of lower NAA/tCr levels, which appears to be focused in theWM, illus-
trated in Fig 4, suggests an involvement of the tegmental pons in RRMS patients with higher lev-
els of fatigue. Our further investigation using the NAA and tCr metabolites as references,
indicated that the reductions in the NAA/tCr ratio were driven by increases in tCr, rather than
reductions in NAA. The rationale for using the cerebellar NAACb and tCrCb peaks as a reference
is a means to establish which metabolite in the pontine NAA/tCr ratio was causing the observed
decreases. While we screened the MS patients to ensure there was no cerebellar involvement,
this does not directly imply that there were metabolic deficits in the volumes in the cerebellum
we examined (C1:C4). However, the clear connection between the NAA/tCr ratio and the
amount of WM (Fig 4), and that the cerebellar regions selected were composed predominantly
of GM (~90%), we determined that the NAACb and tCrCb peaks would indeed be appropriate as
references, and allow us to calculate reliable NAA/NAACb and tCr/tCrCb ratios for the pontine
voxels. We acknowledge that caution is necessary, particularly for studies of MS brain, and that
the percent of WM has to be considered for intra-voxel comparisons such as described here.

These observations may be caused by one of the following, either an increase in the glia:neu-
ron cell ratio, or a disruption to the PCr:Cr equilibrium. The former, gliosis, occurs in MS
lesions and would cause the tCr rich astrocytes and oligodendrocytes to occupy increased vol-
ume relative to the neurons in cerebral NAWM [19–24]. In tandem, the neuronal content
would decrease, and should be accompanied by a decrease in the MRS marker NAA. Our
observation that the NAA in the pons remained unchanged when referenced to cerebellar
NAA possibly puts this hypothesis in doubt. However, glial proliferation in cerebral NAWM
has been observed ex-vivo [20] which is in agreement with observations from histological stud-
ies [21, 25–26]. Absolute quantification of Cr and PCr using concurrent 1H and 31P spectros-
copy in NAWM at the level of centrum semiovale (including parts of the corpus callosum)
showed elevated tCr in MS patients possibly related to glial proliferation [27]. This study sug-
gested an unchanged PCr:Cr ratio and unchanged NAA concentration in non-lesion voxels in
patients compared to controls [27].

On the other hand, a disruption to the PCr:Cr equilibrium is consistent with recent studies
on energy metabolism in MS. In the MR spectrum the PCr and Cr signals co-resonate at
~3.05ppm, and it has been shown that they can be estimated by using the difference in their
transverse (T2) relaxation properties, where creatine’s T2 is significantly longer [12]. In the
context of our observations, where our CSI spectral data are T2-weighted, shifting the equilib-
rium towards Cr would yield an increase in the apparent tCr signal. Such a disruption is sup-
ported by a 31P spectroscopy study, where increased PCr in MS patients was suggested to
represent metabolic dysfunction in the NAWM [22,23]. An alternate metabolite, myo-inositol
(mI), would be useful to resolve whether the changes in tCr result from gliosis or from a disrup-
tion in the PCr:Cr equilibrium. The utility arises from the knowledge that mI is found predom-
inantly in glial cells. However, due to the CSI timing conditions used in our study, the mI
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signal was too low to allow quantification because of the J-coupling evolution effects on signal
yield. This would be an important amendment to a future study protocol.

Many theories and hypotheses have been formulated to understand the underlying patho-
physiology of fatigue. Damage to the ascending reticular activating system (ARAS) has been
proposed to play a role in fatigue [10,24]. The ARAS originates in the brainstem and is con-
nected to the neocortex (projecting frontally), thalamus and hypothalamus [28]. It was sug-
gested that dysfunction from within the originating region of the ARAS, in particular the
tegmentum of the upper pons and midbrain, could influence functions of the down stream
sites [6]. In our study, tCr increase was observed in the upper tegmental pons in high fatigue
MS patients. A previous spectroscopy study suggested axonal damage in the right rostral dorsal
pons in MS patients with selective attention deficit and low disability [29]; fatigue and attention
is also known to be highly associated in MS patients [4], but attention was not measured in our

Fig 4. (a) Bar plots for control (black circle), low fatigue (blue square), and high fatigue (red triangle) subjects versus the NAA/tCr ratio, calculated for 100%
gray matter (GM) and 100% white matter (WM). A statistically significant difference (p < 0.02) was found between the control and high fatigueWM data. (b)
Plot of the mean and standard deviation values for %WM versus NAA/tCr for the 16 selected voxels in the CSI matrix located in the left/right pons (L1 –L6; R1
–R6) and cerebellum (C1 –C4), for control, low fatigue and high fatigue subjects.

doi:10.1371/journal.pone.0149622.g004
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Fig 5. Mean plots showing the (a) NAA/tCr, (b) tCr/tCrCb and (c) NAA/NAACb in voxels with significant
difference group comparisons i.e. R6, R5, L4 and L6. Significant comparisons are marked with an asterisk
(*).

doi:10.1371/journal.pone.0149622.g005
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cohort. In addition, our study shows for the first time an involvement of the tegmental pons in
area ventral and lateral to the location of the locus coeruleus. This area contains the pedunculo-
pontine nucleus. This nucleus has been shown to be associated with significant arousal mecha-
nisms. Hypercativation of the cells within this nucleus can cause insomnia [30]. On the other
hand, neurons from this nucleus seem to be be the site of action for a drug used to treat narco-
lepsy, modafinil [30]. Modafinil is also used to treat fatigue in MS patients [31] and it has been
recently shown to be effective in alleviating post-stroke fatigue [32].

Although there have been some preliminary reports about the correlation of fatigue with
gray matter atrophy and lesion load on MRI [33], it is still not clear whether the location of the
lesions or the regional atrophy play a role. It has been shown that MS fatigue is associated with
the diffuse disruption of pathways within the parietal and frontal lobes [34]. The same pathways
could be disrupted by injury affecting brainstem nuclei with diffuse projections to the cortex
and gray matter nuclei as the one we describe in the current study. It has also been suggested
that the underlying cause of fatigue is the functional and structural disconnection between the
frontal cortex and the deep gray structures including basal ganglia and thalamus [35]. An MRS
study attributed dysfunction of the basal ganglia, specifically of the lentiform nucleus, to the
development of fatigue in MS patients [36]. A significant correlation was found between altered
white matter integrity, as assessed by diffusion imaging, of the frontal cortex with its projections
to the occipital, striatal, frontal and limbic network with fatigue perception in their MS patients
[35]. A functional MRI study observed increased activations in the frontal lobe, thalamus and
caudate [37]. Together, all these observations suggest that the underlying mechanism of fatigue
in MS is not focal, but rather involves many diffuse inter-connected brain regions. The lack of
significant correlation between fatigue and lesion load adds further evidence to diffuse involve-
ment, however, lesion location remains important. For example, injury to nuclei which project
diffusely would likely give rise to a diffuse effect albeit from a focal lesion.

Conclusion
In conclusion, proton MRS was used to study changes in the relative concentrations of metabo-
lites in the upper pontine brainstem in relapsing-remitting MS patients with low disability that
experience a range of levels of fatigue. A lower NAA/tCr ratio was measured in several regions
of the pons, and the change in this ratio was driven by elevation of the tCr levels in high fatigue
patients compared to controls. Moreover, this tCr change was focussed in the WM regions in
particular in an area of the pontine tegmentum containing the pedunculopontine nucleus.
Increased tCr levels possibly reflect increased glial cell numbers in those NAWM regions or
may suggest an energy metabolic dysfunction in patients with fatigue. The study also points to
two methodological issues, which should be considered when performing MR spectroscopy.
First, it adds to the increasing evidence that caution is warranted in the use of tCr as an internal
concentration reference, and this is particularly relevant in the study of MS. Second, that con-
sideration of the proportion of white matter and gray matter in the selected voxels has a pro-
found effect on the metabolite measurements, and when comparing a single metabolite from
different voxel locations the CSF contribution needs to be accounted for. Finally, the estimation
of lesion load using MRI, and its lack of correlation with fatigue, adds further evidence to MS
being the result of a diffuse rather than focal effect.
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