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Abstract: Natural killer (NK) cells can be widely applied for cancer immunotherapy due to their
ability to lyse tumor targets without prior sensitization or human leukocyte antigens-matching.
Several NK-based therapeutic approaches have been attempted in clinical practice, but their efficacy
is not sufficient to suppress tumor development mainly because of lacking specificity. To this end, the
engineering of NK cells with T cell receptor along with CD3 subunits (TCR-NK) has been developed
to increase the reactivity and recognition specificity of NK cells toward tumor cells. Here, we review
recent advances in redirecting NK cells for cancer immunotherapy and discuss the major challenges
and future explorations for their clinical applications.
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1. Introduction

Natural killer (NK) cells are known as the non-specific immune system that screen
cell surfaces of autologous cells for abnormal expression of MHC class I molecules and
cell stress marker [1]. NK cells were first identified in mice in 1975 as a subgroup of
lymphocytes endowed with the capacity to eliminate cancerous cells without presenting
the MHC class I molecule [2]. Since then, NK cells became a main ideology in terms of
their unspecific killer machines and vital catalyzers of adaptive T-cell responses.

NK cells have been investigated clinically in several immunotherapeutic strategies for
various cancers. Evidence has shown high efficacy of NK cells mediating direct killing of
freshly isolated human tumor cells from hematopoietic and solid tumors [3,4]. Moreover,
adoptive cell therapy (ACT) treatment using alloreactivity NK cells was safe and effective
for patients with metastatic melanoma, colon carcinoma, refractory Hodgkin’s disease,
and recurrent acute myeloid leukemia (AML) [5–8]. However, not all tumors appeared to
respond to this type of ACT therapy. In some cases, tumor cells can evade NK cell clearance
due to lacking antigen specificity. Gene-modified NK cells with chimeric antigen receptor
(CAR) have been shown to enhance the effector cell function and antigen-specificity against
several tumor targets, including anti-CD19 CAR-NK for targeting and chronic lymphocytic
leukemia (CLL) [9] and anti-CD138 CAR-NK for targeting multiple myeloma patients [10].
Although the therapeutic effectiveness and safety of CAR-NK cell therapy have been
reported, the usage of CAR-NK cell-based therapy is still faced with several obstacles,
including low efficiency of CAR-transduction, limited cell expansion, and lack of available
targets [11]. TCR-transduced T cells (TCR-T) have been used in clinical trials against
a wide variety of tumor antigens, particularly the cancer-testis antigens (CTA) [12–14].
Recently, two reports tested the efficacy of TCR in combining with NK cell lines for targeting

Curr. Oncol. 2021, 28, 1077–1093. https://doi.org/10.3390/curroncol28020105 https://www.mdpi.com/journal/curroncol

https://www.mdpi.com/journal/curroncol
https://www.mdpi.com
https://orcid.org/0000-0002-1904-392X
https://doi.org/10.3390/curroncol28020105
https://doi.org/10.3390/curroncol28020105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/curroncol28020105
https://www.mdpi.com/journal/curroncol
https://www.mdpi.com/1718-7729/28/2/105?type=check_update&version=1


Curr. Oncol. 2021, 28 1078

malignant cancer [15,16]. However, a concern of TCR gene transfer redirecting T cells is
the mispairing of introduced TCR chains with endogenous chains [17]. Herein, we discuss
the major challenges and future directions for the clinical application of NK cells.

2. Interplay between NK Cells and Cancer Cells

NK cell population is about 10–15% in a whole of human peripheral blood lympho-
cytes and is regarded as a natural killer as they have cytotoxic properties against tumor
cells without any prior priming (e.g., as required by CD8 T cells) [18]. They have been
considered of great importance in terms of immunosurveillance, as they recognize and kill
different types of target cells, such as virus-infected cells and malignant cells. The majority
(~90%) CD56dim of the total NK cell population in peripheral blood expresses high levels
of FcγRIII (CD16), whereas a small population (~10%) CD56bright of NK cells are mostly
involved in the production of cytokines [18,19]. NK cells do not undergo antigen-specific
receptor rearrangement as T and B lymphocytes, instead of the functional activities of
NK cells to lyse the target process through their germline-encoded immunoreceptors [20].
NK cells protect the host from infectious or cancers by expressing activating and inhibitory
receptors. Activated NK cells can recognize and eliminate the target cells by the balance
of the signaling derived from inhibitory receptors (e.g., KIRS or NKG2A) and activating
receptors (e.g., NCRs or NKG2D) [21,22]. Moreover, NK cells are involved in the regulation
of the immune response by the expression of different chemokines and chemokine recep-
tors such as CCL4, CXCL8, and CXCR3 [23,24]. Klas Karre, the first person, as part of his
doctoral thesis, proposed that NK cytolysis of a target cell could be triggered by a decrease
or absence of host major histocompatibility class I molecules (MHC-I) on the surface of
a target cell [25]. This hypothesis was then confirmed by several other groups [26–28].
NK cells are inactivated when their inhibitory receptors identify the self-MHC class I
molecule, and thus they can protect the cells from host cell attacking [29]. In cancer pa-
tients who are low/deficient of MHC-class I or bear “altered-self” stress-inducible proteins
can be targeted by NK cell killing and cytotoxicity "the missing self-hypothesis" of Klas
Karre [25]. NK cells kill tumor cells through several mechanisms, including the release of
cytoplasmic granules containing perforin and granzyme, secretion of immunoregulatory
cytokines such as nitric oxide (NO), and expression of other TNF-family members such as
Fas-L or TRAIL (Figure 1A). However, tumor cells can evade host immune response via
multiple strategies, including weak immunogenicity of target antigens and the creation of
an immune-suppressive tumor environment (Figure 1B).Curr. Oncol. 2021, 28,  3 

 

 

 
Figure 1. Interactions between NK cells and cancer cells in immunosurveillance. (A) Mechanism of NK cells in tumor 
immunosurveillance. NK cells can identify the tumor cells by stress or danger signals. Upon stimulation, NK cells directly 
killed tumor cells through many tactics, including the release of cytokine productions (e.g., IFN-g, NO), cytoplasmic gran-
ule release (e.g., granzyme B, perforin), death receptor-induced apoptosis (e.g., Fas-L, TRAIL), and ADCC. (B) Mechanism 
of tumor cells invading NK cells. Tumor cells defend themselves from NK cell attack through several techniques, including 
secretion soluble ligand of NK cell receptors (e.g., MICA/B), upregulation of HLA molecules, secretion immunosuppres-
sive factor products (e.g., TGF-β or IL-10), and activation of Treg or phagocyte-derived inhibitory cytokines (ROS). 

3. NK Cells in Cancer Immunotherapy 
The ability to recognize and lyse tumor cells via a variety of recognition receptors 

make NK cells a candidate for cancer immunotherapy. Several strategies of using NK cells 
have been attempted for clinical practice in cancer immunotherapy (Table 1) [30–32]. Some 
of these approaches include isolation of immune cells and expansion cell with cytokines 
(e.g., autologous and allogeneic NK cells, and NK cell lines), and other strategies involved 
genetically modified immune cells with specific-target genes (e.g., CAR-NK and TCR-
NK). Despite some successes, a large proportion of patients failed to respond to NK cell-
based immunotherapy. 

Table 1. Strategies to eliminate tumors and some limitations. 

Therapy Strategies Advantages Disadvantages References 

Autologous NK cells 
Systemic administration cyto-
kines (IL)-2, IL-15, IL-18, IL-

21, and interferon (IFN)α  
Safe and widely used in clinic 

Low efficacy caused by the sup-
pression of recognition MHC 

molecule, cytokine administra-
tion 

[33–37] 

Allogeneic NK cells 
In combing with interleukine 
(IL)-2, IL-12, IL-15, IL-18, IL-

21 and IFN-α 

Highly effective against KIR-ligand mismatch 
malignancies 

Rejection by patient’s immune 
system, lack of antigen specificity, 

insufficient numbers 
[38–44] 

NK cell lines 
Stimulated with cytokine IL-

2, IL-12, IL-15, IL-18 
Unlimited cell expansion, easily manipulated, 

high cytotoxicity, low cost 

Low efficacy (except ha-NK), irra-
diated 

prior to clinical used, 
[45–48] 

Antibody-based NK 
cell therapy 

Combined with mAb (e.g., ce-
tuximab, rituximab, 

alemtuzumab, dinituximab) 

More effective against cancers, higher cyto-
toxicity 

to Ab-coated target cells 
Dose-related safety concerns [49–54] 

Genetic modification of 
NK cells 

CAR-NK 
Highly efficacy, stronger intracellular signals 

for activating NK cell cytotoxicity 

Limited large-scale expansion of 
primary CAR-NK, low transduc-
tion efficiency, loss functional ac-
tivity (freeze-thaw process), lack 

of available targets. 

[9,11,55–58] 

Figure 1. Interactions between NK cells and cancer cells in immunosurveillance. (A) Mechanism of NK cells in tumor
immunosurveillance. NK cells can identify the tumor cells by stress or danger signals. Upon stimulation, NK cells directly



Curr. Oncol. 2021, 28 1079

killed tumor cells through many tactics, including the release of cytokine productions (e.g., IFN-g, NO), cytoplasmic granule
release (e.g., granzyme B, perforin), death receptor-induced apoptosis (e.g., Fas-L, TRAIL), and ADCC. (B) Mechanism of
tumor cells invading NK cells. Tumor cells defend themselves from NK cell attack through several techniques, including
secretion soluble ligand of NK cell receptors (e.g., MICA/B), upregulation of HLA molecules, secretion immunosuppressive
factor products (e.g., TGF-β or IL-10), and activation of Treg or phagocyte-derived inhibitory cytokines (ROS).

3. NK Cells in Cancer Immunotherapy

The ability to recognize and lyse tumor cells via a variety of recognition receptors
make NK cells a candidate for cancer immunotherapy. Several strategies of using NK
cells have been attempted for clinical practice in cancer immunotherapy (Table 1) [30–
32]. Some of these approaches include isolation of immune cells and expansion cell with
cytokines (e.g., autologous and allogeneic NK cells, and NK cell lines), and other strategies
involved genetically modified immune cells with specific-target genes (e.g., CAR-NK and
TCR-NK). Despite some successes, a large proportion of patients failed to respond to NK
cell-based immunotherapy.

Table 1. Strategies to eliminate tumors and some limitations.

Therapy Strategies Advantages Disadvantages References

Autologous NK
cells

Systemic administration
cytokines (IL)-2, IL-15,

IL-18, IL-21, and
interferon (IFN)α

Safe and widely used in
clinic

Low efficacy caused by the
suppression of recognition
MHC molecule, cytokine

administration

[33–37]

Allogeneic NK cells

In combing with
interleukine (IL)-2, IL-12,

IL-15, IL-18, IL-21
and IFN-α

Highly effective against
KIR-ligand mismatch

malignancies

Rejection by patient’s immune
system, lack of antigen
specificity, insufficient

numbers

[38–44]

NK cell lines Stimulated with cytokine
IL-2, IL-12, IL-15, IL-18

Unlimited cell expansion,
easily manipulated, high

cytotoxicity, low cost

Low efficacy (except ha-NK),
irradiated

prior to clinical used,
[45–48]

Antibody-based NK
cell therapy

Combined with mAb
(e.g., cetuximab,

rituximab, alemtuzumab,
dinituximab)

More effective against
cancers, higher cytotoxicity

to Ab-coated target cells
Dose-related safety concerns [49–54]

Genetic
modification of

NK cells

CAR-NK

Highly efficacy, stronger
intracellular signals

for activating NK cell
cytotoxicity

Limited large-scale expansion
of primary CAR-NK, low

transduction efficiency, loss
functional activity (freeze-thaw

process), lack of
available targets.

[9,11,55–58]

TCR-NK
(NK cell line)

Highly efficacy and safety,
cost-effective, easily

manipulated
MHC restriction [15,16]

3.1. Autologous NK Cell Therapy

Early trials of autologous NK cell therapy from a leukapheresis product have demon-
strated high potency against several advanced metastatic cancers [59,60]. In one clinical
trial (UMIN000007527), autologous NK cell therapy was very effective in patients with
advanced digestive, colon, and lung cancer, and adverse event was not observed [61].
However, some other studies showed that these autologous NK cells failed to demonstrate
clinical responses or efficacy [34,62]. This failure was mainly due to the inhibitory receptors
on autologous NK cells matched self MHC class I presented on cancer cells, which sub-
sequently suppressed the activation of NK cells [63,64]. In addition, autologous NK cells
derived from cancer patients were usually in an immunosuppression state with impaired
functions, making these cells difficult to demonstrate antitumor functionality.
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Previous studies proposed that NK cell antitumor activity could be enhanced by the
systemic administration of cytokines. Systemic cytokine administration in combination
with NK cells was a major strategy for adoptive cancer immunotherapy [65–68]. Optimiza-
tion by using adoptive transfer of ex vivo IL-2 activated NK cells showing better outcomes
than the systemic administration of IL-2 [61]. Although cytokine IL-2-activated autologous
NK cells can boost NK cell activation and exhibit high efficacy against malignant tumors,
existing studies showed that this strategy had limited success [35]. Lymphokine-activated
killer (LAK) cells in combination with IL-2 displayed upregulated adhesion molecules and
activating receptors and secreted inflammatory cytokines to adhere and lyse metastatic
renal cell carcinoma (RCC) [69]. However, after adoptively transferring LAK cells, patients
received toxic side effects of vascular leak syndrome due to a high level of IL-2 [70]. An-
other study demonstrated that transferring of ex vivo expanded autologous NK cells with
IL-15 was potent regression in non-Hodgkin lymphoma (NHL) patients [71]. However,
extremely high doses of IL-15 were associated with cytokine release syndrome in the pa-
tients with advanced acute myeloid leukemia (AML) [72] and dose-limiting toxicities in
the patient malignant melanoma or renal cell cancer [73]. In contrast to autologous NK cell
therapy, stimulation human haploidentical NK cells with IL-15 cytokine showed complete
hematologic remission in poor-prognosis AML patients [5].

3.2. Allogeneic NK Cell Therapy

Unlike T cells, adaptive transferring of NK cells does not promote GVHD, and there-
fore life-threatening toxicity of patients of allogeneic donor NK cell administration is
negligible. KIR-ligand mismatches have been trialed in patients with AML and showed
increasing overall survival, better engraftment, and a reduced incidence of GVHD after
receiving haploidentical T cell-depleted allogeneic stem cell transplantation [74]. Allo-
geneic NK cells with KIR mismatch offer greater cytotoxicity than autologous NK cells
and can be effective at controlling AML relapse [5,75]. Moreover, clinical evidence also
agrees with the therapeutic effect of allogeneic NK cells in controlling human malignancies,
including high-risk leukemia, renal cell carcinoma, and others [5,46,76,77]. Allogeneic
NK cells expanded with IL-15 and hydrocortisone are being tested for the treatment of
non-small cell lung carcinoma in a Phase I safety clinical trial [40]. The result of other Phase
I clinical trials also showed high efficacy and safety of allogeneic NK cells in combing with
interleukin 21 (mbIL-21) expansions for targeting the advanced myeloid malignancies [39].
The advantages of allogeneic NK cell transfusion include that these cells are cultivated
or well-educated in healthy hosts and have high-efficiency killing cancer cells. However,
using KIR mismatched allogeneic NK cells sometimes created immune-mediated rejection
due to MHC mismatch. The study of KIR/HLA genotype has been demonstrated that a
large population of patients was associated with acute rejection after kidney transplanta-
tion because of KIR/HLA polymorphism [42]. In Phase II clinical trials (NCT00703820),
adaptive allogeneic NK cells from KIR–HLA-mismatched donors failed to respond to the
intermediate- or high-risk AML. The failure could be the outcome of insufficient numbers
and limited persistence of alloreactive donor NK cells [44]. The major limitation of using
allogeneic NK cells in therapy is the problem of yielding an adequate cell number. There-
fore, the optimization ex vivo expansion and activation strategies remain a major focus [44].
In addition, allogeneic NK cells from donors may be risky for cancer immunotherapy due
to unpredictable T or B lymphocyte presenting.

3.3. NK Cell Lines

The NK cell lines, such as NK-92 or NK-92MI, NKL, NKG, KHYG-1, and YT, have been
generated from malignant NK cell clones [78]. NK cell lines are purity NK cells, which are
unlimited cell expansion and proliferation, and can obtain a sufficient amount of the cells
in a short period, and hence it can transplant to patients on a regular schedule. Only NK-92
has shown a high antitumor activity in several types of tumor and has worked well in
pre-clinical development [78–80]. NK-92 was generated from a non-Hodgkin Lymphoma
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patient and could kill hematopoietic cancers in vitro [81]. NK-92 cells expressed most
of the activating receptor but rarely expressed inhibitory killer cell immunoglobulin-like
receptors (KIRs) except for KIR2DL4, which can hamper NK cell activation and killing
the target cells [80]. Alternatively, NK-92MI cells have similar characteristics of activated
NK cells as their origin NK-92 cells and obtain the gene expression by transduction with
human IL-2 cDNA [82].

NK-92 has received US FDA approval for testing in patients with solid tumors, and
the non-modified NK-92 has completed Phase I trials [45–47,83]. For minor risk factors,
cell lines need to irradiate priority before transfusion to patients. Thus, NK-92 cells are
unable to expand severely in vivo, which can decrease their efficacy to target the tumor.
Several Phase I clinical trials data have shown the safety and tolerability of NK-92 cells,
however, the results are still unsatisfied with their clinical benefit [47,48]. For example, no
antitumor response of the adoptive transfer of NK-92 cells was observed in all patients
with refractory/relapsed AML of Phase I clinical trial (NCT00900809) [45].

3.4. Antibody-Based NK Cell Therapy

Antibody-based drugs are widely used in cancer immunotherapy. The activating
type IIIa Fc receptor (FcγRIIIA) or CD16 expression by NK cells enables them to bind to
antibody-coated targets initiating ADCC pathway that eventually results in the elimina-
tion of target cells [84–86]. The roles of ADCC in the efficacy of therapeutic antitumor
monoclonal antibodies have shown in the patients with non-Hodgkin’s lymphoma (NHL)
for rituximab (anti-CD20) and metastatic breast and gastric carcinoma for herceptin (anti-
HER2) [87,88]. Currently, the use of margetuximab (anti-HER2) plus pembrolizumab
(anti-PD1 checkpoint blockade) has been demonstrated highly effective for treating pa-
tients of HER2-positive gastro-oesophageal adenocarcinoma [89]. Moreover, in the clinical
trial (NCT03248492), trastuzumab deruxtecan (antibody-drug conjugate) has been demon-
strated high efficacy, prolong progression-free survival and safety in the patients with Her-2
positive metastatic breast cancer [90]. Alemtuzumab (anti-CD52), which activates NK cell
effectors, has been shown to have high-efficiency in patients with B-CLL, and GVHD
post-HSCT [91,92]. Dinutuximab is a product of human-mouse chimeric mAb (ch14.18
mAb), which can mediate ADCC through NK cell receptors. This product has demon-
strated high efficacy against GD2-positive neuroblastoma cells in vitro and melanoma
cells in vivo [93–95]. Use of cetuximab in combination with irradiated high affinity (ha)
NK cells has shown highly lysed chordoma cancer [53]. Daratumumab (a mAb against
CD38)-induced NK cells via ADCC mechanism have demonstrated effective elimination
of multiple myeloma (MM) in pre-clinical and clinical studies [49,96,97]. In clinical trials
(NCT03158688 and NCT01998971), Daratumumab plus carfilzomib and dexamethasone
have shown effective clinical response and prolong progression-free survival (PFS) in
patients with relapsed or refractory MM [97,98]. Moreover, monoclonal antibodies (za-
lutumumab and necitumumab), anti-EGFR mAb, have been shown efficacy for treating
patients with squamous cell carcinoma of the head and neck and have been approved by
the FDA [99,100]. In MHC-I expressing tumor cells, the effector functions of autologous NK
cells are often inhibited by KIR. Therefore, strategies to block KIR expression using antibod-
ies have been developed to potentiate NK cell cytotoxicity. The anti-KIR (IPH2101) mAb is
being tested in Phase I clinical trial (EUDRACT: 2005-005298-31). Interestingly, IPH2101
mAb can block KIR-mediated inhibition of NK cells to enhance cytotoxicity against AML
blasts [51] and multiple myeloma [52]. Moreover, several clinical trials of using therapeutic
mAb in combination with NK cells for cancer treatments have been reported in elsewhere
reviews [101–107]. Although the therapeutic monoclonal antibodies have shown a promis-
ing therapeutic efficacy for many cancer types, dose optimization and optimal management
of toxicity are still needed to be determined before infusing them into patients [54].
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3.5. Genetic Modification of CAR-NK Cells

The cytokine gene transfer approaches, including interleukins and stem cell factor
(SCF), have been shown to induce NK cell proliferation and increases survival capacity
in vivo functional activity [108,109]. However, these strategies are still limited due to
NK cell specificity. Genetic manipulation of chimeric antigen receptors (CAR) redirecting
NK cells (CAR-NK) could be an effective approach to mediate specific NK cell antitumor
effects against different targets. This technique is based on the transduction of NK cells
to target tumor cells by gene transfer of CAR-specific receptors through recombinant a
single-chain variable fragment receptor (Fv) specific of a tumor-associated specific antigen
to downstream intracellular signaling machinery [110].

The use of primary CAR-NK and CAR-NK lines in pre-clinical and clinical trials
for targeting specific tumor have been reported in elsewhere reviews [56,111,112]. Pre-
clinical studies in hematological tumors showed high specificity and cytotoxicity toward
the target cells [55,113–123]. For example, the transduction of cord blood (CB)-derived
NK cells with a retroviral vector of CAR-CD19 containing IL-15 and suicide caspase-9-
based suicide (iC9/CAR.19/IL-15 CB-NK cells) have demonstrated to be efficient in killing
CD19-expressing cell lines and primary leukemia cells in vitro, xenograft model, and in
the clinical trial (NCT03056339) [9,124]. Moreover, the CAR-NK-based showed a potent
antitumor effect against several solid tumors in pre-clinical studies [125–127].

So far, only a few clinical trial studies of CAR-NK for targeting hematological or solid
tumors have been registered on ClinicalTrials.gov (Table 2). Two clinical trials were the
origin of NK cell lines, including BCMA (NCT03940833) for targeting malignant multi-
ple myeloma (MM) and CD33 (NCT02944162) for targeting AML. The other trials were
the origin from human primary NK cells, including ROBO1 for targeting solid tumor
(NCT03940820), Mesothelin for targeting epithelial ovarian cancer (NCT03692637), PSMA
for targeting prostate cancer (NCT03692663), CD22 for targeting refractory B cell lym-
phoma (NCT03692767), CD19 for targeting refractory B cell lymphoma (NCT03690310),
CD19/CD22 for targeting metastatic solid tumors (NCT03824964), NKG2D for targeting
relapsed and refractory B cell lymphoma (NCT03415100), and CD19/iCasp9/IL15 for
targeting B cell non-Hodgkin lymphoma (NHL) (NCT03579927).

Although CAR-NK therapy has successfully entered into clinical trials, its clinical
application is often associated with some challenges. First, the obstacle of the clinical
application of primary CAR-NK is the limitation of cell expansion for flexible schedule
transfusion [56]. Stimulation of NK cells with feeder cells has been shown to expand the
number of NK cells. However, the final NK cell products are possible containing the feeder
cells, which could be a potential risk in clinical usage [128]. Second, NK cells are hard to
achieve high transduction efficiency than other cells of the hematopoietic system [57]. The
transfection efficiency of peripheral blood (PB) and cord blood (CB) with mRNA showed
low efficacy: less than 10% (PB and CB), while lentiviral transduction showed ~8–16% in
PB and ~12–73% in CB [115]. Although electroporation mRNA transfection has seen better
efficiency in CB, the expression of CAR molecule is unstable and losses expression within a
few days, which are the barrier for ACT [118]. Third, the freeze-thaw process of NK cells
was associated with loss of functional activity [58]. There have been reported the severe
loss of cytolytic function of cryopreservation IL-15-activated NK cells (92–98% reduction),
followed by overnight culturing the cell without cytokine IL-15 [58]. Hence, similar to
CAR-NK immunotherapy, genetically modified NK cells using TCR molecules could be a
better option for cancer treatment.



Curr. Oncol. 2021, 28 1083

Table 2. Clinical study of CAR-NK in hematological and solid tumors.

NCT Number Title Conditions Interventions NK Source Phase Status Locations

NCT03940833
Clinical research of adoptive

BCMA CAR-NK cells on
relapse/refractory MM

Multiple myeloma Biological: BCMA
CAR-NK 92 cells NK-92 Phase 1

Phase 2 Recruiting

Department of Hematology,
Wuxi People’s Hospital,

Nanjing Medical University
Wuxi, Jiangsu, China

NCT03940820
Clinical research of ROBO1
specific CAR-NK cells on

patients with solid tumors
Solid tumor Biological: ROBO1

CAR-NK cells PB NK Phase 1
Phase 2 Recruiting

Radiation Therapy
Department, Suzhou Cancer

Center, Suzhou Hospital
Affiliated to Nanjing
Medical University

Suzhou, Jiangsu, China

NCT03692637
Study of anti-Mesothelin Car
NK cells in epithelial ovarian

cancer

Epithelial
ovarian cancer

Biological:
Anti-mesothelin Car

NK cells
PB NK Early phase 1 Not yet recruiting Unknown

NCT03692663

Study of anti-PSMA CAR
NK cell in

castration-resistant prostate
cancer

Castration-
resistant prostate

cancer

Biological: anti-PSMA
CAR NK cells PB NK Early phase 1 Not yet recruiting Unknown

NCT03692767
Study of anti-CD22 CAR NK

cells in relapsed and
refractory B cell lymphoma

Refractory B-cell
lymphoma

Biological: Anti-CD22
CAR NK cells PB NK Early phase 1 Not yet recruiting Unknown

NCT03690310
Study of anti-CD19 CAR NK

cells in relapsed and
refractory B cell lymphoma

Refractory B-cell
lymphoma

Biological: Anti-CD19
CAR NK cells PB NK Early phase 1 Not yet recruiting Unknown

NCT03415100

Pilot study of
NKG2D-ligand targeted
CAR-NK cells in patients

with metastatic solid tumors

Solid tumors
Biological: CAR-NK

cells targeting NKG2D
ligands

PB NK Phase 1 Unknown

Third Affiliated Hospital of
Guangzhou Medical

University
Guangzhou, Guangdong,

China

NCT03824964

Study of anti-CD19/CD22
CAR NK cells in relapsed

and refractory B cell
lymphoma

Refractory B-cell
lymphoma

Biological: Anti-CD19/
CD22 CAR NK cells PB NK Early phase 1 Not yet recruiting Unknown
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Table 2. Cont.

NCT Number Title Conditions Interventions NK Source Phase Status Locations

NCT03579927

CAR.CD19-CD28-zeta-2A-
iCasp9-IL15-transduced cord

blood NK cells, high-dose
chemotherapy, and stem cell

transplant in treating
participants with B-cell

lymphoma

CD19 positive,
B-cell lymphoma

Biological: Autologous
hematopoietic stem cell

transplantation,
high-dose

chemotherapy

CB NK Phase 1
Phase 2 Withdrawn

M D Anderson Cancer
Center Houston, Texas,

United States

NCT02944162

CAR-pNK cell
immunotherapy for

relapsed/refractory CD33+
AML

Leukemia Biological: anti-CD33
CAR-NK cells NK-92 Phase 1

Phase 2 Unknown
PersonGen BioTherapeutics

(Suzhou) Co., Ltd.
Suzhou, Jiangsu, China

NCT04324996

A phase I/II study of
universal off-the-shelf

NKG2D-ACE2 CAR-NK
cells for therapy of

COVID-19

COVID-19

Biological:
NK cells,

IL15-NK cells,
NKG2D CAR-NK cells,
ACE2 CAR-NK cells,

NKG2D-ACE2
CAR-NK cells

PB-NK Phase 1
Phase 2 Recruiting

Chongqing Public Health
Medical Center

Chongqing, China
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3.6. TCR Transduced NK Cells in Cancer Immunotherapy

Recent technology of genetically modified NK cells could be used to study different
pathways involved in NK cell tumor targeting and to improve their tumor cytotoxicity [129].
NK cells lack the expression of the TCR complex subunits (except CD3ζ); however, they
do express all necessary molecules for downstream signaling [130]. The possibility to
apply such gene-transfer strategies to NK cells appears fascinating. It is possible to give
extra tumor-antigen specificity to NK cell, which is already MHC-independent antitumor
activity. TCR, as a natural antigen receptor, is effectively recognizing several proteins of
the tumor. Therefore, it can redirect to cells such as NK cells against the tumors. The wild-
type TCR can generate from the low avidity of T cells, and its affinity can enhance by
using the phage display library [13,131]. Techniques used to transfer the gene redirecting
NK cells, including viral transduction (retroviral/lentiviral) and transfection (DNA/RNA
electroporation) [129]. Lentiviral transduction was a potential approach and safe in the
clinic and showed efficient transduction and stable integration of transgenes [132,133].
Similar to CAR-NK products, TCR-NK products also could be prepared for clinical use.
It has been known that loss or downregulation of HLA Ia in human tumors usually
facilitates immune evasion from CD8+ CTL-mediated killing [134]. However, the absence
or downregulation of HLA class Ia can promote the expression of new tumor peptides
presented by HLA-E, therefore activating unconventional CD8+ T cells through HLA-E–
peptide–specific recognition by TCRs. This feature endows an advantage of TCR-NK in
recognizing tumor cells with HLA I downregulation.

A schematic presents the techniques for the preparation of TCR-NK product is shown
in Figure 2. Tumor-specific TCRs (e.g., NY-ESO-1 gene) and the four subsets of the CD3 gene
were constructed into a lentivirus vector. Lentiviral particles can produce by transfection
of the viral vector containing the TCR/CD3 gene into the package cells (e.g., 293 T cell).
For producing TCR and CD3 stable expression in NK cell line (e.g., NK-92), the NK-92 cells
were transduced with the lentiviral particles of CD3 (NK-92-CD3). NK-92-CD3 clone can
achieve by shorting and seeding in 96 well-plaque. NK-92-CD3 cells were transduced with
lentiviral particles of the tumor-specific TCR (TCR-NK-92-CD3, we called TCR-NK). The
positive TCR-NK were shorted and seeded in 96 well-plaque to obtain the pure products.
The TCR-NK products have tested the effect against the target cells and manufactured
under GMP-compliant conditions. Therefore, the final TCR-products could be frozen and
preserved in a therapeutic biobank, and they would be readily available for transfusion
to patients.

Currently, two independent studies have shown that the transduction of TCRs along
with all CD3 subunits redirected NK cell lines were specifically recognized tumor cells
expressing the relevant antigen [15,16]. Parlar et al. [16] showed that TCR-NK (origin of NK-
92 and YTS cell lines) against the HLA-A2-restricted tyrosinase-derived melanoma epitope
(Tyr368-377) is MHC-restricted with the antigen-specific killing of tumor cells both in vitro
and in vivo. Mensali et al. [15] also have reported the functional activities of TCR-NK
(origin of NK-92 cell) against a TGF-βRII frameshift mutation peptide (TGFβRII131–139)
and the melanoma-associated antigen melan-A peptide (Melan-A26-35) with a similar
approach using all four CD3 chains. TCR-NK demonstrated enhanced antigen-specific
recognition of target cells. The results from these pre-clinical studies showed the potential
therapeutic efficacy of TCR-NK (Table 3).

As compared to other sources of universal T cells, the TCR-NK line can be genetically
modified and expanded in vitro with less effort; furthermore, a pure proportion of TCR-
NK products is much safer for clinical usage. TCR-NK can replace the high-cost TCR-T,
which becomes effectively personalized for cancer immunotherapy. Moreover, without the
expression of endogenous α/β TCR, infusion TCR-NK can be safe from severe toxicities,
poorly immunogenic, or rejected by the host. Therefore, TCR-NK-based therapy might be
more efficient for patients who failed several rounds of therapies, and might not qualify
for autologous treatment conditions due to the poor quality of their immune cells
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Table 3. TCR-NK cell-based therapy in pre-clinical study.

TCRs Used in
the Study

Source of NK
Cells Diseases Antigen-Specific Targets Functional Activities References

Tyr TCR NK-92, YTS Melanoma HLA-A2/Tyr368-377 peptide
(YMDGTMSQV)

Highly cytotoxicity and
cytokine secretion with

antigen-specific
recognition both in vitro

and in vivo

[16]

Radium-1 TCR
and DMF-5

TCR
NK-92

Colorectal
carcinoma and
mantle B cell
lymphoma

HLA-A2/TGFβRII131-139
peptide (RLSSCVPVA) and

HLA-A2/Melan-A26–35
peptide (EAAGIGILTV)

Enhanced antigen-specific
recognition of target cells
both in vitro and in vivo

[15]

4. Conclusions

Despite the promising results of non-genetic- and genetic modified NK cells, NK cell-
based cancer immunotherapy still has several challenges to overcome. Adoptive transfer of
autologous-and allogeneic NK cells is hard to succeed in clinics due to the limitation of the
number of infused cells. The optimization protocols may need to boost the number of the
cell population for clinic usage. Although NK cell lines are unlimited cell expansions, which
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can provide benefit for cancer immunotherapy. The use of NK cell lines in the clinic has
been demonstrated in low efficacy, and the lines needed to be irradiated in prior infusion
to the patients. Even though NK cell-based monoclonal antibodies have been shown
promising antitumor activity in patients with diverse tumor types, dose-limiting toxicities
may need to manage and improve for the patient safety profile. Moreover, it remains some
barriers for CAR-NK to accomplish in clinics, including the efficiency of CAR-transduction,
limitation of cell expansion, lack of available targets, and weak elimination of the solid
tumor. Therefore, some efforts should create to boost the efficiency of CAR-NK products.
For TCR-NK-based therapy, many further studies must be continuing to investigate for the
clinical application of TCR-NK in gene therapy, including engineering TCRs with primary
NK cells or engineering NK cells with a variety range of TCR affinities for clinical benefit.
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