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Abstract

Background—The application of deep learning on medical imaging is growing in prevalence 

in the recent literature. One of the most studied areas is coronary artery disease (CAD). Imaging 

of coronary artery anatomy is fundamental, which has led to a high number of publications 

describing a variety of techniques. The aim of this systematic review is to review the evidence 

behind the accuracy of deep learning applications in coronary anatomy imaging.

Methods—The search for the relevant studies, which applied deep learning on coronary anatomy 

imaging, was performed in a systematic approach on MEDLINE and EMBASE databases, 

followed by reviewing of abstracts and full texts. The data from the final studies was retrieved 

using data extraction forms. A meta-analysis was performed on a subgroup of studies, which 

looked at fractional flow reserve (FFR) prediction. Heterogeneity was tested using tau2, I2 and 

Q tests. Finally, a risk of bias was performed using Quality Assessment of Diagnostic Accuracy 

Studies (QUADAS) approach.

Results—A total of 81 studies met the inclusion criteria. The most common imaging modality 

was coronary computed tomography angiography (CCTA) (58%) and the most common deep 
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learning method was convolutional neural network (CNN) (52%). The majority of studies 

demonstrated good performance metrics. The most common outputs were focused on coronary 

artery segmentation, clinical outcome prediction, coronary calcium quantification and FFR 

prediction, and most studies reported area under the curve (AUC) of ≥80%. The pooled diagnostic 

odds ratio (DOR) derived from 8 studies looking at FFR prediction using CCTA was 12.5 

using the Mantel-Haenszel (MH) method. There was no significant heterogeneity amongst studies 

according to Q test (P=0.2496).

Conclusions—Deep learning has been used in many applications on coronary anatomy imaging, 

most of which are yet to be externally validated and prepared for clinical use. The performance of 

deep learning, especially CNN models, proved to be powerful and some applications have already 

translated into medical practice, such as computed tomography (CT)-FFR. These applications have 

the potential to translate technology into better care of CAD patients.

Keywords

Deep learning; coronary anatomy; atherosclerosis; coronary computed tomography angiography 
(CCTA); coronary artery disease (CAD)

Introduction

Background

Coronary artery disease (CAD) is considered a leading cause of death and hospitalisation 

in high-income countries, and worldwide (1). The progressive nature of coronary 

atherosclerosis is the main underlying pathological process. Therefore, it is essential to have 

timely diagnosis of CAD to aid the management of patients and reduce both morbidity and 

mortality.

The last two decades have witnessed significant advancements in CAD imaging, from 

functional assessment of coronary artery stenoses and how they impact on the myocardium 

at stress and rest, using cardiac magnetic resonance (CMR), myocardial perfusion 

scintigraphy (MPS), and echocardiography, to anatomical assessment by means of coronary 

computed tomography angiography (CCTA) and invasive X-rays coronary angiography.

Computer vision technology on the other hand is going through an exciting era following the 

revolution of deep learning and artificial intelligence (AI) algorithms. CAD imaging is one 

of the key applications which has been targeted by many computer vision experts and deep 

learning practitioners.

Rationale and objectives

There has been an explosion in the number of deep learning publications in CAD over the 

recent years with a focus on atherosclerosis and coronary anatomy imaging. The wide range 

of methodology presented in the recent literature opened the door for applications in various 

coronary artery imaging modalities.

The mounting volume of new literature has left clinicians with a two-fold challenge: first of 

how to deal with increasing volume of new information on CAD diagnosis, prognosis, and 
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risk stratification, and second of how far can we trust the evidence of machine learning and 

deep learning algorithms to make decisions on patients’ care.

This review aims to unravel this challenge by summarising the new information we 

gained so far in this field, evaluating the performance of the presented deep learning 

algorithms, and drawing some conclusions on potential meaningful applications. We present 

the following article in accordance with the PRISMA reporting checklist (available at https://

jmai.amegroups.com/article/view/10.21037/jmai-22-36/rc).

Methods

Design

This review follows the Cochrane Review structure of diagnostic test accuracy (DTA) 

(2). The umbrella protocol for this systematic review is registered in the International 

Prospective Register of Systematic Reviews (PROSPERO, CRD42020204164), and reported 

according to PRISMA guidelines. All searching activities were performed by two 

independent reviewers (EA and UD), with divergences solved after consensus.

The PICO approach was used to define the main review question:

❖ Population: adults’ cohort with suspected or known CAD;

❖ Intervention: deep learning applications in coronary atherosclerosis imaging;

❖ Comparison: comparison with conventional coronary atherosclerosis imaging;

❖ Outcome: improve test accuracy and patient care.

Selection criteria

Without restrictions on minimal sample sizes or recruitment process, both prospective and 

retrospective studies were included. The included studies had participants with known 

or suspected CAD who had atherosclerosis imaging (invasive and non-invasive) with the 

application of deep learning technology, and compared with the gold standard (reference) 

test used in clinical practice.

Competitions presented in conferences on deep learning techniques, such as at the Medical 

Image Computing and Computer Assisted Intervention (MICCAI) conference, animal 

studies, and simulation studies were not included due to ambiguity in their direct relation to 

patient care. Studies which used atherosclerosis data as a target for outcome prediction were 

excluded, as were studies, which focused on clinical data and imaging reports rather than 

imaging data for prediction. Studies, which used deep learning software with no details on 

the deep learning architecture were also excluded. Fusion imaging studies were not part of 

this review, and studies of automated coronary anatomy and atherosclerosis quantification, 

which relied mainly on hand crafted or non-learning algorithms were not included.

For fractional flow reserve (FFR) derived from CCTA using deep learning, only the original 

publications were included in this review, all subsequent publications, which used the same 
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algorithms for different clinical applications were considered external validation papers and 

were not included in this review.

Search procedure

MEDLINE (with PubMed extension) and EMBASE using Ovid search engine was 

conducted to search the published literature. Yale Mesh Analyzer was used to include all 

possible Medline Subject Headings (MeSH) terms, after identifying two studies manually 

on MEDLINE database with focus on deep learning and CAD atherosclerosis imaging 

modalities. The PMIDs for those papers were extracted and inserted into the analyser, 

these produced Mesh terms to guide the systematic search. Truncation has been used in 

imaging term: [‘coronar*’], [‘myocardia*’], [‘atherosclero*’], [‘isch?mi*’], and [‘calci*’]. 

Plain terms were used for [‘machine learning’], [‘deep learning’], [‘artificial intelligence’], 

[‘neural networks’], [‘unsupervised learning’], [‘supervised learning’], [‘semi-supervised 

learning’], [‘heart’], [‘plaque’], and [‘stenosis’]. The search included all records from 

database inception until 21st of October 2020 with no language constraints. Data was 

collected by EA and UD. Full Ovid search strategy and output is shown in https://

cdn.amegroups.cn/static/public/jmai-22-36-1.pdf. Due to reports of missing relevant studies 

and inconsistency using methodology search filters (2), this approach has not been used.

Search results

Search results yielded 81 studies to be used for the systematic review and only a subset of 8 

studies with unified defined outcomes were used for meta-analysis. Search results are shown 

in Figure 1.

Data extraction

The summary of input data, which were extracted from each study are reported below:

(I) First author’s surname;

(II) Year of publication;

(III) Total number of participants (images if not available);

(IV) Imaging modality used for deep learning;

(V) Index test;

(VI) Reference test;

(VII) Deep learning techniques;

(VIII) External validation;

(IX) Model performance metrics.

Assessment of risk of bias

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used to assess 

the risk of bias. Five main fields were assessed using a modified version:
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(I) Patient selection: randomly selected patients from a population meeting the 

inclusion criteria is considered a high-quality study;

(II) Index test: including a comparator test is expected in a high-quality diagnostic 

test study;

(III) Reference test: a gold standard test for validation is mandatory in all high-

quality diagnostic test studies;

(IV) Index test results blinded: the results of the comparator test are expected to be 

blinded to the deep learning arm in a high-quality study;

(V) Reference test results blinded: the results of the gold standard test are expected 

to be blinded to the deep learning arm in a high-quality study.

Statistical analysis

The performance of deep learning models was measured with various metrics including 

sensitivity, specificity, area under the curve (AUC), precision, recall, F1 score, Dice 

coefficient, Jaccard coefficient, and correlation. Those metrics were described quantitatively.

Data were reported as count or percentages. The pooled values of some of the reported 

diagnostic accuracy after the application of deep learning models, which were part of the 

meta-analysis, were visualised by forest plots.

A confusion matrix was produced for each of the included studies in meta-analysis given 

that most studies did not report the true negative (TN), true positive (TP), false negative 

(FN), and false positive (FP) values. This was calculated by taking sample size (S) to 

calculate FN from sensitivity, and FP from specificity. The TN and TP were then calculated 

from total sample size S.

Meta-analysis was performed on studies, which reported the same outputs with the 

corresponding sensitivity and specificity. Since pooling sensitivities or specificities can 

be misleading, the diagnostic odds ratio (DOR) approach is taken to calculate the pooled 

diagnostic performance. The fixed effect case of Mantel-Haenszel (MH) method is used.

Heterogeneity was examined using tau2, I2 and Q tests. P value of less than 0.05 was 

considered statistically significant.

All statistical analysis was performed using RStudio software version 1.4.1106 using R 4.0.4 

programming language.

Results

Characteristics of studies

The final number of studies included in this systematic review was 81, all published over 6 

years between 2015 and 2020, which indicates the recency of this topic.

Details of first author, year of publication, sample size, deep learning and machine learning 

techniques, index test (comparator) and reference test (gold standard) are shown in Table 1.
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The most popular imaging modality in deep learning application was CCTA (58%), as 

shown in Figure 2. However, invasive coronary angiography has gained more interest 

in recent years, along with invasive coronary intravascular imaging [optical coherence 

tomography (OCT) and intravascular ultrasound (IVUS)], which have been a focus for deep 

learning applications in recent years. Both OCT and IVUS are performed during invasive 

coronary angiography to add more detailed imaging analysis of atherosclerotic lesions seen 

on Cine X-ray images.

The most commonly used deep learning technique was convolutional neural network (CNN) 

as shown in Figure 3, with more than half of the studies (52%) have used this approach as 

a single model or combined with other models. The use of multi-layer perceptron (MLP) 

was scarce with only 4 studies reported their results using MLP approach. There was a 

variety of models used with only a few studies in each category, including generative 

adversarial network (GAN), recurrent neural network (RNN), random forest (RF), gradient 

boost, support vector machine (SVM), to name a few.

Principle deep learning applications and meta-analysis

Coronary calcification—Several CCTA studies have focused on detection or 

quantification of coronary calcium given its prognostic importance in clinical outcomes. 

There have been successful applications of deep learning models using mainly CNNs 

to detect coronary artery calcification (CAC). Studies with large sample sizes have been 

conducted and reported good or excellent model performance in detecting CAC. Huo et al. 
(43) used 2,332 of scan-rescan pairs as input to their CNN architecture called AID-Net, 

which is composed of 3D ResNet and 3D DenseNet layers. They reported high model 

performance with AUC as high as 0.93 in detecting CAC. van Velzen et al. (63) used a 

large sample of CCTA data from 7,240 participants, and with a CNN they quantified CAC 

and achieved a high model performance with 97% inter-class correlation with expert reader 

and 96% accuracy. All other studies had smaller sample sizes and reported similar level of 

performance for CAC detection and quantification using CNNs.

Fischer et al. (62) used RNN for CAC quantification, and their model achieved good 

performance with sensitivity of 92% and specificity of 89%. All these reports confirm 

that deep learning algorithms are capable of performing CAC detection or rule out, and 

quantification in a highly reliable way and with less time than an expert human reader.

Coronary artery stenosis

All of the four main imaging modalities (CCTA, OCT, IVUS, invasive coronary 

angiography) were used for deep learning applications to assess coronary stenosis in various 

ways: coronary plaque classification and segmentation, coronary stenosis classification and 

segmentation, culprit lesions predictors, vulnerable plaque precursors, thrombus, dissection 

and clinical outcome prediction.

Invasive coronary angiography studies used large numbers of patients for coronary artery 

segmentation. Du et al. (50) looked at 10,073 cases and trained a CNN and a GAN for 

better characterisation of coronary lesion location and description. Their model was able to 
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perform coronary artery segmentation, stenosis classification, detection of total occlusion, 

calcification, thrombus and coronary dissection. They reported an AUC of 0.8 for coronary 

stenosis classification and F1 score of 0.82, and similar metrics for the other outputs were 

achieved, with a better performance in coronary segmentation with an AUC of 0.86. Similar 

performance was achieved from CCTA studies in coronary artery segmentation, Chen et al. 
(72) reported an AUC of 0.89 after using a CNN with 3D U-Net architecture on a sample 

size of 432 cases.

FFR

The earliest and most successful application of deep learning in atherosclerosis and coronary 

anatomy imaging was achieved in the assessment of FFR using CCTA, currently there 

are clinical applications available and it has gained a lot of attention in cardiovascular 

medicine and cardiothoracic surgery, due to the advantage of assessing coronary anatomy 

and ischaemic burden of coronary lesions both non-invasively.

The first application was in 2016 when Itu et al. (6) analysed 87 cases of CCTA and used 

a MLP architecture and some feature extraction techniques to calculate reliable FFR values, 

which was validated by invasive measurements. Also, this was compared to conventional 

CT-FFR based on computational fluid dynamics and showed to be more efficient. Their 

reported specificity was 84% and sensitivity 82% compared to invasive assessment. Many 

studies have been published since then to externally validate those findings and the 

algorithm has been tested for various applications beyond just the absolute FFR values, 

such as looking at clinical outcome and prognosis.

Following this successful application, several studies have used more developed deep 

learning techniques to predict CT-FFR using CNNs and RNNs, and they all reported high 

performance metrics after comparing with invasive FFR.

A meta-analysis has been performed on eight studies which reported FFR prediction and had 

sensitivity and specificity reported. Figure 4 shows a coupled forest plot for sensitivity and 

specificity to assess heterogeneity by visual appreciation.

After calculating the DOR for all studies using MH method, the pooled value of DOR was 

estimated at 12.5. According to the literature this is considered as a positive finding as it is 

higher than 10 (84). Figure 5 shows a forest plot of the natural logarithmic DOR (lnDOR) 

for all eight studies with the pooled value in the summary (MH).

Assessment of heterogeneity

Quantifying heterogeneity of the eight studies included in meta-analysis showed 

tau2 =0.0011 with confidence interval (0.0000, 0.0166), this indicates no significant 

heterogeneity between studies.

I2 was calculated at 22.6%, indicating that true effect size differences have affected less 

than quarter of the variation in our data. According to “rule of thumb” from the literature, 

heterogeneity based on this value is considered mild.
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The predictive interval was ranging from (0.9006 to 1.1061), this means that based on the 

present evidence, it is possible that some future studies will likely find positive effect.

Finally, Q test has shown a P value above significance level (P=0.2496), which indicates that 

there is no significant heterogeneity.

Assessment of risk of bias

Overall, there was a low risk of study bias, a table of the included studies with their 

associated risk of bias is shown in Table S1. One of the main observations was that a 

significant number of studies (51 out of 81 studies) did not have a comparator conventional 

test to draw conclusion on the performance of the models compared to current practice. 

However, the majority of the studies reported reasonable information about their models and 

performance metrics.

Discussion

Deep learning techniques

The three main types of layers which compose artificial neural networks (ANNs) are: input 

layers taking the raw image data, hidden layers connected via weight vectors, and an output 

layer which takes the weighted sum, applies an output function and return a prediction.

The fully connected layers with MLP put significant limitation to the size of the model 

and the number of filters available to learn image features. CNNs overcome this challenge 

by using fully connected layers very sparsely, and with more focus on convolution layers 

using hundreds or thousands of filters, the values of which are learnt automatically during 

the training phase. The sequential nature of the layers of the CNN can be thought of in the 

following steps: the early layers detect edges from raw pixel data, these edges are then used 

to detect shapes in further layers, and these shapes are used to detect higher-level features 

in the later layers. An additional exciting property of neural networks is that they can be 

used with transfer learning where high-level feature extraction ability is kept by saving the 

majority of the network, and a new layer to fit with the purpose of the study is exchanged 

with the output layer (85).

GANs have been gaining more popularity recently in medical imaging, and we saw some 

novel applications which have been applied in CCTA and invasive coronary angiography, 

as shown in Figure 3. These networks were first introduced by Goodfellow et al. (86), and 

can be used to generate synthetic images that are perceptually similar to their ground truth, 

authentic originals. This can be achieved by training two neural networks, one is called the 

generator that accepts an input vector of randomly generated noise and produces an output 

“imitation” image that looks similar to an image from the training image domain, if not 

identical to an authentic image, and the other is called the discriminator which attempts to 

determine if a given image is an “authentic” or “fake”. By training both of these networks 

at the same time, one giving feedback to the other, we can learn to generate synthetic 

images. This model has been applied by Du et al. (50) successfully to unravel the complex 

features of coronary lesions seen in invasive coronary angiography by combining images 

from lesion location with images from lesion morphology to generate a high-level diagnostic 
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information including identification of every coronary artery lesion and the coronary artery 

segment, in which it is located.

Finally, RNNs are type of neural networks which uses sequential data or time series data. 

They are distinguished by their memory as they take information from prior inputs to 

influence the current output. An RNN cell contains a closed-loop which allows the output of 

the current step to be influenced by the output of the previous step. Carson et al. (79) applied 

a RNN on CCTA to predict FFR based on the fact that coronary anatomy geometry has 

large variations including different vessel sizes, connectivity and the inclusion or exclusion 

of certain vessels. RNN has the advantage for providing the solution in the next vessel based 

on the solution of the previous vessel. This model had high performance compared to other 

non-invasive models and perfect sensitivity when compared with invasive FFR, however, it 

had very low specificity at 40% with high rate of FP FFR. This study had a small sample 

size of only 25 cases. Therefore, further testing and studies on RNN is required for further 

evaluation.

Summary of main results

This systematic review shows how extensive the work has been made in the last few years in 

the field of coronary anatomy and atherosclerosis imaging using machine learning and deep 

learning applications. Overall, all studies reported in this review (81 studies over 6 years) 

showed good performance of the models presented to achieve the target outputs for each 

individual study.

The most popular imaging modality which has been used extensively in deep learning 

application is CCTA, with a wide range of applications ranging from coronary anatomy 

segmentation, plaque classification, coronary calcium quantification, vulnerable plaque 

detection, noise reduction and image reconstruction, and clinical outcome prediction.

Invasive coronary angiography was a focus in deep learning in recent years, various 

applications looked at coronary segmentation, coronary stenosis classification, thrombus 

detection, total occlusion detection and dissection detection. Moreover, the intra-vascular 

coronary imaging modalities such as IVUS and OCT have been studied for the last few years 

for various applications, mainly linked to segmentation and characterisation of coronary 

artery lumen and plaque.

One of the major works, which shows how effective deep learning can be is the CT-FFR 

algorithm. Our meta-analysis of the 8 studies looking at deep learning applications to 

predict CT-FFR showed positive results of the pooled diagnostic performance and low level 

of heterogeneity. Furthermore, predictive interval tests showed that some future studies 

will likely find positive effect based on the present evidence. Although CT-FFR was 

performed initially by Itu et al. (6) using a MLP, it gained popularity after showing superior 

performance to computational fluid dynamics and was tested in several studies for external 

validation, which confirmed its utility in clinical applications. There is currently more focus 

on using more advanced deep learning techniques such as CNN, and this continues to show 

promising results.
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The positive findings in all the presented studies could have an impact on clinical practice by 

introducing new developments to current state of the art imaging modalities, such as CCTA, 

IVUS, and OCT, and improve clinical workflow with faster diagnosis and more meaningful 

image analysis.

The quantification ability of deep learning and radiomics can unravel features and 

relationships in the medical images which are not easily detected by the human eye, 

however, this area still needs further studies to evaluate the clinical usage of such models, 

and the current review has set the scene for the potential, which computer vision could offer 

to achieve this goal.

Limitations

This review excluded studies which have been presented in computer vision competitions, 

which may underrepresent some of the effective techniques out in the industry, therefore, the 

list of the models listed here is not exclusive.

The presented studies in this review have reported a large variation of performance metrics, 

which made meta-analysis challenging and it is limited to only 8 studies.

Conclusions

Implications for practice

This review has shed light on an important rising field in cardiovascular imaging, deep 

learning and computer vision. The tremendous advancement in coronary atherosclerosis 

imaging has already affected our practice with the use of non-invasive CT-FFR to make 

clinical decisions, and will soon change many other decisions we make in cardiovascular 

medicine. Although this is an exciting era of technology and precision medicine, clinical 

scrutiny and systematic review of the evidence is essential and should be periodic, in order 

to make the best possible decision for our patients.

Implications for research

There is a high demand for more research using novel deep learning applications on large 

datasets, in well-designed environments with robust study protocols, to achieve meaningful 

software applications, which are trustworthy and reliable to use on our patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlight box

Key findings

• Deep learning has important applications in coronary anatomy imaging.

• CT-FFR is an example which has translated into clinical practice and patients’ 

care.

• CNNs have been the most powerful in recent literature.

What is known and what is new?

• Coronary anatomy imaging is mainly assessed by human experts.

• Deep learning has shown a high performance in coronary anatomy 

interpretation, prediction, and improving patient care and safety.

What is the implication, and what should change now?

• Research in deep learning for coronary anatomy imaging is making 

significant advancements.

• Successful deep learning applications will require clinical validation.
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Figure 1. PRISMA flow diagram showing the results of systematic search strategy.
DL, deep learning.
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Figure 2. A stacked bar plot showing the number of studies for each imaging modality in the last 
6 years.
Some imaging modalities are very rare and not widely used, therefore they are not explained 

in the text but listed in the table and the bar plot, such as cPSTA and coronary angioscopy. 

Invasive coronary angioscopy is an old technique used for direct lumen visualisation using 

lenses and a light bulb, similar to endoscopic principles. One study of retinal fundus imaging 

was included as it used deep learning to predict coronary calcification compared to CCTA 

(78). CCTA, coronary computed tomographic angiography; cPSTA, cardiac phase space 

tomography analysis; IVUS, intra-vascular ultrasound; OCT, optic coherence tomography.
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Figure 3. Bar plots showing the different neural networks models used based on the imaging 
modality used.
CCTA, coronary computed tomography angiography; CNN, convolutional neural network; 

GAN, generative adversarial network; MLP, multi-layer perceptron; RNN, recurrent neural 

network; IVUS, intra-vascular ultrasound; OCT, optimal coherence tomography.
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Figure 4. Forest plots showing summary of sensitivity and specificity across all eight studies in 
the meta-analysis.
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Figure 5. Forest plot showing summary of all DOR with the pooled summary, all reported in log 
values.
DSL, DerSimonianLaird meta-analysis; DOR, diagnostic odds ratio.
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Table 1
List of all relevant studies for coronary anatomy imaging included in this systematic 
review

First author Year Model output Sample 
size

Imaging 
modality

Model Index test Reference 
test

External 
validation

Rodrigues et al. 
(3)

2016 Pericardial and 
mediastinal fat 
classification

20 CCTA RF Manual feature 
extraction 
algorithms

Expert reader No

Kang et al. (4) 2015 Coronary 
stenosis 
classification

42 CCTA SVM Expert reader Invasive 
coronary 

angiography

No

Araki et al. (5) 2016 Coronary 
plaque 
calcification

15 IVUS SVM NA cIMT No

Itu et al. (6) 2016 FFR prediction 87 CCTA MLP Computational 
fluid dynamics 

CT-FFR

Invasive FFR Yes

Wolterink et al. 
(7)

2016 CAC 
quantification

250 CCTA CNN NA Expert reader No

Su et al. (8) 2017 Media 
adventitia 
border detection

4 IVUS MLP NA Expert reader No

Yong et al. (9) 2017 Coronary lumen 
segmentation

64 OCT CNN NA Expert reader No

Xu et al. (10) 2017 Coronary 
plaque 
classification

18 OCT CNN and 
SVM

NA Expert reader No

Zreik et al. (11) 2019 Coronary 
plaque 
classification

163 CCTA RNN NA Expert reader No

Zreik et al. (12) 2018 LV 
segmentation 
for coronary 
stenosis 
significance 
classification

156 CCTA CNN + SVM NA Invasive FFR No

Kolluru et al. 
(13)

2018 Coronary 
plaque 
classification

48 OCT CNN NA Expert reader No

Zhang et al. 
(14)

2018 Coronary 
plaque 
classification

61 IVUS SVM NA Expert reader No

Oh et al. (15) 2018 Lipid core 
plaque detection

116 IVUS CNN NA Expert reader No

van Rosendael 
et al. (16)

2018 Clinical 
outcome 
prediction

8,844 CCTA Boosted 
ensemble 
algorithm

Conventional 
clinical risk 

scores

Clinical 
outcomes

No

Stuckey et al. 
(17)

2018 CAD detection 606 cPSTA Elastic net NA Invasive 
coronary 

angiography

No

Lessmann et al. 
(18)

2018 CAC detection 1,744 CCTA CNN NA Expert reader No

Šprem et al. 
(19)

2018 Motion artefact 
detection in 
CACS

585 CCTA CNN NA Conventional 
CACS

No

Hae et al. (20) 2018 Prediction of 
myocardium 
subtended by 

932 CCTA SVM NA Invasive 
coronary 

angiography

Yes
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First author Year Model output Sample 
size

Imaging 
modality

Model Index test Reference 
test

External 
validation

coronary 
stenosis

Dey et al. (21) 2018 FFR prediction 254 CCTA Boosted 
ensemble 
algorithm

Conventional 
CCTA

Invasive FFR No

van Hamersvelt 
et al. (22)

2019 LV 
segmentation 
for coronary 
stenosis 
significance 
classification

126 CCTA SVM NA Expert reader No

Cho et al. (23) 2019 FFR 
classification

1,501 Invasive 
coronary 

angiography

XGBoost NA Invasive FFR Yes

Liu et al. (24) 2019 Vulnerable 
plaque detection

2,300 
(images)

OCT CNN NA Expert reader No

Gessert et al. 
(25)

2019 Coronary 
plaque 
segmentation

49 OCT CNN NA Expert reader No

Abdolmanafi et 
al. (26)

2019 Coronary artery 
wall pathology 
detection

45 OCT CNN NA Expert reader No

Liu et al. (27) 2019 Bifurcation 
lesion detection

308 Invasive 
coronary 

angiography

CNN NA Expert reader No

Gharaibeh et al. 
(28)

2019 CAC 
quantification

34 IVUS CNN NA Expert reader No

Jun et al. (29) 2019 Thin cap 
fibroatheroma 
classification

100 IVUS CNN NA OCT No

Lee et al. (30) 2019 Coronary artery 
segmentation

4,980 Invasive 
coronary 

angiography

CNN NA Expert reader No

Yang et al. (31) 2019 Coronary artery 
segmentation

2,042 Invasive 
coronary 

angiography

CNN NA Expert reader Yes

Wang et al. (32) 2019 Media 
adventitia 
border detection

22 IVUS MLP P6 and P8 
detectors

Expert reader No

Johnson et al. 
(33)

2019 Clinical 
outcome 
prediction

6,892 CCTA KNN Conventional 
CT and clinical 

risk scores

Clinical 
outcomes

No

Kolossváry et 
al. (34)

2019 Coronary 
plaque 
classification

21 CCTA Least angle 
regression + 
radiomics

Histogram 
assessment by 
expert reader

Histology (ex 
vivo)

No

Wang et al. (35) 2019 FFR prediction 63 CCTA RNN Conventional 
CCTA

Invasive FFR No

Datong et al. 
(36)

2019 CAC detection 820 
(images)

CCTA CNN NA Expert reader No

Oikonomou et 
al. (37)

2019 Clinical 
outcome 
prediction

5,487 CCTA RF + 
radiomics

Conventional 
clinical risk 

scores

Clinical 
outcomes

Yes

Masuda et al. 
(38)

2019 Coronary 
plaque 
classification

78 CCTA Extreme 
gradient 
boosting

Conventional 
CCTA

IVUS No

Kigka et al. (39) 2019 Coronary 
plaque 

40 CCTA RF NA Clinical 
outcomes

No
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First author Year Model output Sample 
size

Imaging 
modality

Model Index test Reference 
test

External 
validation

progression 
prediction

Zhang et al. 
(40)

2019 Coronary risk 
prediction

4,415 CCTA Boosted 
ensemble 
algorithm

Conventional 
clinical risk 

scores

Clinical 
outcomes

No

Commandeur et 
al. (41)

2019 Epicardial 
adipose tissue 
quantification

850 CCTA CNN NA Expert reader No

Hong et al. (42) 2019 Coronary artery 
segmentation

156 CCTA CNN NA Expert reader No

Huo et al. (43) 2019 CAC detection 2,332 CCTA CNN NA Expert reader No

Wang et al. (44) 2020 MPVI 
prediction

9 IVUS SVM and RF GLMM Follow-up 
MPVI

No

Lee et al. (45) 2020 FFR prediction 1,328 IVUS AdaBoost NA Invasive FFR No

Wu et al. (46) 2020 Coronary 
stenosis 
detection

63 Invasive 
coronary 

angiography

CNN NA Expert reader No

Sampedro-
Gómez et al. 
(47)

2020 Stent restenosis 
prediction

263 Invasive 
coronary 

angiography

ERT Conventional 
clinical risk 

scores

Clinical 
outcomes

No

Miyoshi et al. 
(48)

2020 Coronary 
neointimal 
coverage 
classification, 
yellow colour 
classification, 
red thrombus 
detection

107 Invasive 
coronary 

angioscopy

GAN SVM Expert reader Yes

Zhang et al. 
(49)

2020 Coronary 
stenosis 
classification

228 Invasive 
coronary 

angiography

HEAL NA Expert reader No

Du et al. (50) 2021 Coronary artery 
segmentation, 
stenosis 
classification, 
total occlusion 
detection, 
calcification 
detection, 
thrombus 
detection, 
dissection 
detection

10,073 Invasive 
coronary 

angiography

CNN and 
GAN

NA Expert reader No

He et al. (51) 2020 Coronary 
plaque 
segmentation

24 OCT CNN NA Expert reader No

Yabushita et al. 
(52)

2021 Coronary artery 
segmentation

146 Invasive 
coronary 

angiography

CNN NA Expert reader No

Hamaya et al. 
(53)

2020 Clustering 
epicardial 
functional 
stenosis with 
low CFR

364 Invasive 
coronary 

angiography

Unsupervised 
hierarchical 
clustering

K-mean 
clustering

Clinical 
outcomes

No

Lee et al. (54) 2019 Coronary 
plaque 
segmentation

55 OCT CNN A-line CNN 
detector

Expert reader No

Min et al. (55) 2020 Thin cap 
fibroatheroma 
classification

602 OCT CNN NA Expert reader No
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First author Year Model output Sample 
size

Imaging 
modality

Model Index test Reference 
test

External 
validation

Commandeur et 
al. (56)

2020 Clinical 
outcome 
prediction

1,912 CCTA Extreme 
gradient 
boosting

Conventional 
CT and clinical 

risk scores

Clinical 
outcomes

No

Muscogiuri et 
al. (57)

2020 CAD 
classification

288 CCTA CNN NA Expert reader No

Benz et al. (58) 2020 Coronary artery 
image 
reconstruction

43 CCTA CNN Adaptive 
statistical 
iterative 

reconstruction

Invasive 
coronary 

angiography

No

Wang et al. (59) 2020 CAC 
quantification

530 CCTA CNN NA Expert reader No

Al’Aref et al. 
(60)

2020 Coronary 
stenosis 
prediction from 
CACS

13,054 CCT Boosted 
ensemble 
algorithm

NA CCTA No

Kawasaki et al. 
(61)

2020 FFR prediction 47 CCTA RF NA Invasive FFR No

Fischer et al. 
(62)

2020 CAC 
quantification

200 CCTA RNN NA Expert reader No

van Velzen et 
al. (63)

2020 CAC 
quantification

7,240 CCTA CNN NA Expert reader No

Zreik et al. (64) 2020 Coronary 
stenosis 
classification

187 CCTA CNN + SVM NA Invasive FFR No

Kumamaru et 
al. (65)

2020 FFR prediction 1,052 CCTA CNN + GAN Conventional 
CCTA

Invasive FFR No

Candemir et al. 
(66)

2020 Coronary 
stenosis 
classification

493 CCTA CNN NA Expert reader Yes

Shu et al. (67) 2022 Clinical 
outcome 
prediction

154 CCTA SVM + 
radiomics

NA Expert reader Yes

van den Oever 
et al. (68)

2020 CAC rule out 100 CCTA CNN NA Expert reader Yes

Han et al. (69) 2020 Coronary 
stenosis 
classification

150 CCTA CNN Expert reader Invasive 
coronary 

angiography

No

Han et al. (70) 2020 Rapid plaque 
progression 
prediction

1,083 CCTA Boosted 
ensemble 
algorithm

Conventional 
clinical risk 

scores

Clinical 
outcomes

No

Lin et al. (71) 2020 Pericoronary 
adipose tissue 
prognosis 
prediction

177 CCTA Boosted 
ensemble 

algorithm + 
radiomics

Conventional 
CT and clinical 

risk scores

Clinical 
outcomes

No

Chen et al. (72) 2020 Coronary artery 
segmentation

124 CCTA CNN Expert reader Invasive 
coronary 

angiography

No

Tesche et al. 
(73)

2021 Clinical 
outcome 
prediction

361 CCTA Boosted 
ensemble 
algorithm

Conventional 
CT and clinical 

risk scores

Clinical 
outcomes

No

Al’Aref et al. 
(74)

2020 CL precursors 
detection

46 CCTA Boosted 
ensemble 
algorithm

Traditional 
CCTA CL 
precursors

Invasive 
coronary 

angiography

Yes

Hong et al. (75) 2020 CCTA image 
noise reduction

82 CCTA CNN NA Invasive 
coronary 

angiography

No

Podgorsak et al. 
(76)

2020 Coronary 
segmentation 

64 CCTA CNN Expert reader Invasive FFR No
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First author Year Model output Sample 
size

Imaging 
modality

Model Index test Reference 
test

External 
validation

and FFR 
prediction

Eberhard et al. 
(77)

2020 FFR prediction 56 CCTA CNN Invasive FFR Clinical 
outcomes

No

Son et al. (78) 2020 CAC prediction 20,130 Retinal 
fundus 

imaging

CNN NA CCTA No

Carson et al. 
(79)

2020 FFR prediction 25 CCTA MLP and 
RNN

MPR Invasive FFR Yes

Gangl et al. (80) 2019 Coronary 
plaque 
segmentation

104 
(images)

OCT CNN NA Expert reader No

Głowacki et al. 
(81)

2020 Coronary 
stenosis 
prediction from 
CACS

435 CCT Extreme 
gradient 
boosting

NA CCTA No

Hoshino et al. 
(82)

2020 FAI clusters 220 CCTA Unsupervised 
hierarchical 
clustering

Invasive FFR Clinical 
outcomes

No

Kawaguchi et 
al. (83)

2018 FFR prediction 934 CCTA CNN NA Invasive FFR No

CCTA, coronary computed tomographic angiography; RF, random forest; SVM, support vector machine; IVUS, intra-vascular ultrasound; NA, 
not available; cIMT, carotid intima-media thickness; FFR, fractional flow reserve; MLP, multi-layer perceptron; CT, computed tomography; CAC, 
coronary artery calcification; CNN, convolutional neural network; OCT, optical coherence tomography; RNN, recurrent neural network; LV, left 
ventricle; CAD, coronary artery disease; cPSTA, cardiac phase space tomography analysis; CACS, coronary artery calcium score; KNN, k-nearest 
neighbours; MPVI, morphological plaque vulnerability index; GLMM, generalised linear mixed model; ERT, extremely randomised tree; GAN, 
generative adversarial network; HEAL, hierarchical attentive multi-view; CFR, coronary flow reserve; CL, culprit lesion; MPR, multi-variant 
polynomial regression; FAI, fat attenuation index.
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