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Abstract: Single-nucleotide polymorphisms (SNPs) are one of the most common forms of genetic
variation and as such are powerful tools for the identification of bacterial strains, their genetic
diversity, phylogenetic analysis, and outbreak surveillance. In this study, we used 15 sets of SNP-
containing primers to amplify and sequence the target Escherichia coli. Based on the combination of
the 15-sequence primer sets, each SNP site encompassing forward and reverse primer sequences
(620–919 bp) were aligned and an SNP-based marker was designed. Each SNP marker exists in at
least two SNP sites at the 3′ end of each primer; one natural and the other artificially created by
transition or transversion mutation. Thus, 12 sets of SNP primers (225–488 bp) were developed
for validation by amplifying the target E. coli. Finally, a temperature gradient triplex PCR kit was
designed to detect target E. coli strains. The selected primers were amplified in three genes (ileS, thrB,
and polB), with fragment sizes of 401, 337, and 232 bp for E. coli O157:H7, E. coli, and E. coli O145:H28,
respectively. This allele-specific SNP-based triplex primer assay provides serotype-specific detection
of E. coli strains in one reaction tube. The developed marker would be used to diagnose, investigate,
and control food-borne E. coli outbreaks.

Keywords: single nucleotide polymorphisms (SNPs); Escherichia coli; triplex primer; allele; genes;
surveillance

1. Introduction

Single-nucleotide polymorphisms (SNPs) are single-base differences in DNA between
individual organisms [1–4]. They enable the distinction of very closely related organisms
or very limited allelic differences on similar genomic structures, such as different serotypes
of Escherichia coli bacteria [5,6]. SNPs are one of the most useful molecular markers because
of their stability and abundance in all organisms. The advent of whole-genome sequencing
(WGS) technologies [7,8], wider open-source websites, i.e., PubMLST [9], and the availabil-
ity of reference genome sequences of many bacteria has allowed for the wider implementa-
tion of SNP-based detection [10–12]. Nucleotide substitutions during DNA replication of
bacteria, with mutation rates of approximately 10−9 changes per nucleotide per generation,
are important biologically informative markers in bacteria [13,14]. In addition, SNP data
have also been used in epidemiological studies of field outbreaks [15]. However, the differ-
entiation of bacteria at the serovar level remains challenging, and SNP-based approaches
for differentiating specific strains have been applied to various bacterial species, such as
Escherichia [16,17], Salmonella [18], Brucella [19,20], and Bacillus species [21]. To date, several
molecular methods have been used for the detection of E. coli [3,10,11,17,22,23]. However,
SNP-based techniques have become increasingly attractive for the efficient detection of
E. coli compared to other recognized molecular techniques [13]. Using differences in SNPs
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of genes between isolates is also a promising technique for the identification of geographical
origins of E. coli [13,24–26]. SNPs are abundant in microbes and are often considered the
optimum choice for genetic studies, having several advantages such as flexibility, reduced
error rate, speed, and cost-effectiveness [27]. SNPs within different E. coli genes may be
useful markers for the development of rapid surveillance of food-borne diseases, outbreak
tracing [26,28] and typing methods, routine diagnostics, and the typing of Salmonella [29].
This approach has already been useful in retrospective investigations [27,28,30,31].

Shiga toxin-producing E. coli (STEC), E. coli O157 has been a major food-borne
pathogen since the early 1980s; however, early and accurate diagnosis presents preventive
measures to minimize the risk of food-borne pathogens and their outbreaks [32,33]. E. coli
O157:H7 has been reported in several outbreaks worldwide, in both developing and devel-
oped countries, including in the USA [34], Canada [35], and Europe [36]. Currently, there
several molecular techniques are commonly used for food-borne disease surveillance and
the subtyping of E. coli, such as the PulseNet [37,38], Multilocus Sequence Typing [39], and
Multilocus Variable-Number Tandem-Repeat Analysis [40] techniques. PulseNet is based
on the characterization of whole bacterial genomes using enzymatic digestion patterns
that are separated by pulsed-field gel electrophoresis [12,20,38]. This technique can be
biased because of the subjective interpretation of band patterns [37,41]. Similarly, Mul-
tilocus Sequence Typing (MLST) is widely used as a genotyping method and has been
applied successfully to E. coli [22,23]; however, this sequencing procedure is expensive
and time-consuming for routine monitoring [42]. Multilocus Variable-Number Tandem-
Repeat analysis is another subtyping technique used for E. coli, but it has limitations in the
development of a universal panel for MLVA [40]. Nevertheless, SNP analysis enables the
classification of very similar genomes and the detailed classification of genomes of E. coli
that are difficult to distinguish using conventional typing techniques [43]. To overcome
the limitations of the abovementioned molecular methods, SNP-based molecular methods
have been developed. Therefore, by comparing it with the existing methods, the SNP-based
method can be used to develop accurate, rapid, and molecularly meaningful typing meth-
ods that may lead to the more efficient detection of serotype-specific food-borne pathogenic
E. coli. In this study, we altered a mismatched nucleotide within the three bases closest to
the 3′ end (SNP site) in each primer sequence to detect serotype-specific E. coli. The aim
of this study was to investigate the interrogation of informative SNPs in genes of WGS
sequences of E. coli, along with the development of SNP marker-based detection.

2. Results
2.1. Acquisition and Alignment of WGS of E. coli from GenBank

A total of six E. coli strains, including three O157 and non-O157 sequences, was
downloaded from GenBank. From these, E. coli str. K-12 contained the most known genome
sequences and was therefore selected as the reference strain, whereas the remaining five
E. coli strains were considered for comparison. The accession numbers of all six E. coli
strains are provided in Table S1.

2.2. Search of SNP Sites from NGS of E. coli Genomes in GenBank

The six E. coli genome sequences were downloaded and compared to the reference
genome sequence. A total of 2160 SNPs were identified from the alignment of E. coli WGS
(Table S1). From them, the high-quality, useful, and abundant SNP sites were selected
based on nonsynonymous mutation with bioinformatics software, and 15 sets of SNP sites
encompassing forward and reverse primers were thus selected. These 15 primer sets were
chosen from 11 different genes of the E. coli genome (thrB/C, nhaR, ileS, dapB, carB, caiB/C,
polB, araB, yabI, thiP, and leuD) (Table 1). The ambiguous codes and positions of SNPs with
a nonsynonymous amino acid of a specific gene and the reference genome of non-O157
E. coli (NC_000913) are shown in Table 1.
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Table 1. Information on natural SNP-containing primer sets based on whole-genome sequences (WGS) of Escherichia coli strains (E. coli O157 and non-O157).

P. Code C Forward Primer (5’–3′) Reverse Primer (5’–3′) Amplicon Size Flanking Sequence with Ambiguous Code and
Position of SNP of a Reference E. coli Genome a

Alter Amino
Acid-SNP Position

in a Respective
Gene-Amino Acid

of Reference
E. coli b

Gene

01 GACGTTACAGCTGCCGGT ACCCAACCAGTCGGCAAC 919 thrB (3196: C) GCTGGAAGGCVGTATCTCCGG. (S/G)-396-R Homoserine kinase
(thrB)

02 TCGGCGGTCGCTTTATGG CCACGGCTGCATAACCCA 669 thrC (4363: G) GTTAAACTCGDCTAACTCGAT. (S/T)-630-A Threonine synthase
(thrC)

07 GCGAGCTGGGAGAACTGG GATTCGCTGTACCGCCGG 674 nhaR (19293: C) AGAACGGCGABTTTTGATTCC. (V/F)-579-L
Transcriptional

activator protein
(nhaR)

08 TGACTCGCCGTATGTGCC TGCCCGGCAGATAAGTGC 839
ileS (22945: C) GAAGCCAGTTVACTGGTGCGT. (N/D)-485-H;

(V/F)-714-I;
(Y/D)-747-N

Isoleucine–tRNA
ligase (ileS)ileS (23104: A) CTCGCTGGTADTCTGGACCAC.

ileS (23137: A) TCTGCCTGCCDACCGCGCAAT.

09 CGGCCTGGAAACCGCTAA TCGGTTGATGCCACCCAC 852 ileS (23980: T) GCCGGACACAKTGGATGTATG. V-1590-L Isoleucine–tRNA
ligase (ileS)

12 GGCATTAGAGGGCGTGCA TGTCATACGGCTGGACGC 649 dapB (28751: G) TGTCTTTGCTVCCAATTTTAG. (T/P)-378-A
4-hydroxy-

tetrahydrodipicolinate
(dapB)

14 TTGCTAAAGTGGCGGCGA AGACGGATTCGCTTCGCA 713 carB (32142: T) CGCCGATGCGYTCCGTGCGGG. L-1326-F

Carbamoyl-
phosphate

synthetase subunit
beta (carB)

15 TATGCAGCCAGCCATCGG AGATGTGGCACTTCCCGC 785 caiC (36991: A) AGGCGGCTGTVCCATCAACGT. (G/A)-721-V Carnitine-CoA
ligase (caiC)

16 GGCGGTATACGGGAAGGC CGTCTCCGGGGGATCTGA 702 caiB (39005: C) AACTTCCGCGMCCCATTCTGC. V-1108-G Carnitine-CoA
transferase (caiB)

20 CCCAAGTTGCCCGGTCAT GCACAGGGCTACGACGTT 738

polB (63783: A) GGTTTCGCGTVCATATTCCTG. (G/A)-355-V DNA polymerase
II (polB)

polB (63825: A) GCGCAGGTATMGCTCCTGCTG. R-397-L DNA polymerase
II (polB)
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Table 1. Cont.

P. Code C Forward Primer (5’–3′) Reverse Primer (5’–3′) Amplicon Size Flanking Sequence with Ambiguous Code and
Position of SNP of a Reference E. coli Genome a

Alter Amino
Acid-SNP Position

in a Respective
Gene-Amino Acid

of Reference
E. coli b

Gene

21 CAAATGCCGCCACCGAAC CGTCCGCCAGAACGCTAT 796 polB (65142: G) ATCGTAGTTGBCAAACCAGGC. (G/D)-1714-A DNA polymerase
II (polB)

22 CCGATTGGCCTGCTTCCA GCAGCTGTGGTCGGGATT 742 araB (69326: T)
AGTCCAAGTGWCAGTGAACAG. V-979-D

araB—
Ribulokinase

(araB)

23 TTGGCAGCGGCGAGTTAA AAGCGTCGCATCAGGCAA 620 yabI (71824: G) CTTCCTGCCAKGGATTCTGGC. W-474-G Inner membrane
protein (yabI)

24 CCATCTGGCGGGCGATAG GGTGCTGGAGATGAGCGG 804 thiP (73115: G) CAGCACGCATRCAAAGGCCAG. V-205-A
Thiamine transport
system permease

protein (thiP)

26 CAGTGGCGGCAGGAGTAC CCCTGGGCATTGACCGAC 671 leuD (78863: G) CATAAACGCASGTTGTTTTGC. L-16-P
3-isopropylmalate

dehydratase
subunit (leuD)

a Reference (non-O157) genome of Escherichia coli str. K-12 substr. MG1655 (NC_000913) and ambiguous code indicate, B = C/G/T; D = A/G/T; H = A/C/T; V = A/C/G; W = A/T,
S = C/G; M = A/C; K = G/T; R = A/G; Y = C/T; b the position of amino acid codes of respective genes of a reference E. coli str. K-12 substr. with changed amino acids due to SNP-based
changes. The amino acid codes, S = Serine, G = Glycine, R = Arginine, T = Threonine, A = Alanine, V = Valine, F = Phenylalanine, D = Aspartate, N = Asparagine, Y = Tyrosine,
Z = Glutamine, W = Tryptophan, P = Proline, M = Methionine, K = Lysine, L = Leucine, I = Isoleucine. C refers to primer code numbers (i.e., 01 ecoli, 02 ecoli, and 07 ecoli, and so on),
which were originated from the designed multiple primers based on the encompassing SNPs of the reference E. coli genome.
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2.3. Amplification of SNP Sites and Sequencing of Target E. coli Strains Using Newly
Designed Primers

A total of 15 SNP markers with a size of 620–919 bp were identified from E. coli
genomes via the bioinformatics software analysis. Within the SNP markers, SNP sites, bold
ambiguous codes, and the positioning of the amino acid codes in each gene of the reference
E. coli genome and with the respective genes are marked in Table 1. All 15 primers were
tested for the amplification of the SNP markers with the target E. coli strains (Table 1). The
amplified product sizes and an image of the PCR results are shown in Figure 1.
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Figure 1. PCR amplification of three different serotypes including four target Escherichia coli strains
with 15 primer sets of first PCR amplification {(01-ecoli-F/R (919 bp); 02-(669 bp); 07-(674 bp);
08-(839 bp); 09-(852 bp); 12-(649 bp); 14-(713 bp); 15-(745 bp); 16-(702 bp); 20-(738 bp); 21-(796 bp);
22-(742 bp); 23-(620 bp); 24-(804 bp) and 26-(671 bp)}. PCR band ‘M’ indicates DNA 100 bp marker.
The gel lane numbers are shown in each section (1–4): lane No. 1 = E. coli O157:H7 (ATTC-95150);
No. 2 = E. coli O157:H7 (NCCP-15739); No. 3 = E. coli (KVCC-BA1800069); No. 4 = E. coli O145:H28
(KVCC-BA1800090). The four primers (12-, 21-, 23-, and 24-ecoli primer sets) were not produced with
any desired bands with the target genes of E. coli, whereas the three primers (14-, 15- and 26-ecoli
primer sets) were not produced with the target genes of E. coli. The detailed information of all primers
was provided in Tables 1, S2 and S3.

2.4. Confirmation of SNP Sites Based on Aligned Sequences of Target E. coli and Design of E. coli
Serotype-Specific SNP Primers Using Sequences Containing SNP Sites

During the first PCR amplification, seven primer sets (01-, 02-, 07, 08-, 09-, 16-, and
22-ecoli) were amplified on the target genes of the tested E. coli strains (Tables S2 and S3),
whereas four primer sets (12-, 21-, 23-, 24-ecoli) were not amplified on any target bands
(Figure 1) and three primer sets (14-, 15-, and 26-ecoli) were partially amplified on the target
genes of four E. coli strains (Figure 1, Tables S1 and S3). Moreover, the primers of 20- and
22-ecoli were amplified with all the tested E. coli strains during the second PCR, and their
sequences are shown in Table S2. Thus, we tested all primers with all target E. coli strains
with the first and second PCR amplification and each primer was amplified the specific
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gene (i.e., 01-primer amplified specific gene, homoserine kinase, thrB) of the four target
E. coli strains.

The amplified products of all 15 primers, their sequences, and the detailed information
of each primer with the four target E. coli strains are shown in Tables S2 and S3. The specific
gene target amplified sequences (n = 38 out of 60) were submitted to the NCBI database
with the following accession numbers (OL589326–OL589363). The chimeric, off-target
sequences with non-specific genes and dimer sequences (n = 22) were not used for further
analysis of the SNP-based primer design (Table S4). Moreover, the three positions of SNPs
were 22,945 > C, 23,104 > A, and 23,137 > A of ileS gene in reference non-O157 E. coli str.
K-12 (NC_000913) (Tables 1 and S1). The amplified ileS gene products of the target E. coli
strains were sequenced and aligned. We then checked one or multiple SNP positions on the
aligned sequences. Thus, 12 sets of SNP primers of serotype-specific E. coli were designed
based on five genes (nhaR, thrB/C ileS caiB, and polB) where at least one natural SNP was
present (Table 2).

Table 2. List of developed single-nucleotide polymorphism (SNP)-based primers based on five
gene sequences.

Primer Sequence (5′–3′) a Length (bp) Amplicon
Size (bp) Gene Description

O.nhaR-1-F TTGTTTGACGTTGGCGTGACT 21
397 Transcriptional activator

protein (nhaR)
O.nhaR-1-R CGGCATCATCAAACTCACCA 20
O.nhaR-3-F GCGTACTTAACGCCGCATTG 20

225O.nhaR-3-R CCGGGAACGGTTTTTCTAGT 20
O.thrB-3-F TGTTCGGTGGTCGCGACG 18

337
Homoserine kinase (thrB/C)

O.thrB-3-R CGTGAATGAAGCCAGCTAGA 20
O.thrC-4-F CCATTCTGACCGCGACCCCT 20

344O.thrC-4-R AACCAGCTGGTTGCGCACC 19
O.ileS1-4-F TCTGGGCGTGCTGGGCAAT 19

488

Isoleucine–tRNA ligase (ileS)

O.ileS1-4-R AGCGCAGCAGCTCAAGTTCT 20
O.ileS1-3-F ACAAAGGCGCGAAGCCAATT 20

391O.ileS1-3-R GGATGGGTAAAGCGCAGTAA 20
O.ileS2-1F GATCATCTTCCGCGCAGCG 19

401O.ileS2-1R CAACAACAGAAGAGTGAGTATAG 23
O.ileS2-3-F CGATCATCTTCCGCGCGCCG 20

376O.ileS2-3-R GAGTCAAACCATACATCCAATTTG 24
O.caiB-3-F GCAAATTGCGGCGGGAGGGC 20

318 Carbamoyl-phosphate
synthase large chain (caiB)

O.caiB-3-R CTGCCTGATGCGACGTTAAT 20
O.caiB-4-F ATAACCAGTTTCGGGTTGCGC 21

296O.caiB-4-R ATCGAAATCGCCGGACCGGTT 21
O.polB-3-F CAAGGGGCGACCGCGCTTCGA 21

262
DNA polymerase II (polB)O.polB-3-R GCTGGAAACCGTGCGCCCC 19

O.polB-4-F TAATGGTGCCGCGGTTCTGG 20
232O.polB-4-R CTTTACCTGCGTATCTTCAGT 21

a Red color indicates natural SNP and blue color indicates artificial SNP with transition or transversion mutated.

2.5. E. coli-Specific SNP Primer Design Using Aligned Gene Sequences with Availability of
SNP Sites

Based on previous research [44], the triplet base of the 3′ end primer of each primer
sequence and the last triplet codon at the 3′ end of the first and third position base altered
within all primer sets so that they could hybridize very strongly during PCR amplification.
Based on this principle, we designed 12 sets of SNP primers (225–488 bp) developed for
validation by amplifying target E. coli strains. Two examples of these primers are shown
in Figures S1 and S2. The marker “01”-amplified homoserine kinase (thrB) genes of four
E. coli strains were aligned. It was found that the number of the natural SNP position was
342 and the artificial transition (purine to purine)-mutated SNP position number was 340
on the aligned gene sequences. Thus, we designed the SNP based marker ‘O-thrB-3-F/R’
to include at least two SNPs, e.g., the forward primer length was 18 bp from 325 to 342
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(the position of the natural SNP ‘G = 342′ and the transition-altered SNP site was “G = 340;
A > G”) and the reverse primer length was 20 bp from 642 to 661 (the position of two
natural SNPs ‘T = 642′ and ‘C = 643’, respectively, and the transition-mutated SNP site
was “G = 645; A > G”). The amplified target product size was 337 bp (Figure S1). Another
forward primer ‘ileS1-4-F’ was 19 bp long (141–159) and the reverse primer ‘ileS1-4-R’ was
20 bp long (609–628), as shown in Figure S2. The target amplicon size was 488 bp. Moreover,
the amplicon size (391 bp) and the position of the forward and reverse primers of the primer
“ileS1-3” are shown in Figure S2. The natural SNP is marked by a square shape and the
altered SNP is marked by a black shaded italicized square shape (Figures S1 and S2). Thus,
12 SNP-based markers of E. coli serotype-specific primers were used for amplification with
the four E. coli strains, and finally, it was possible to confirm selection with the efficiency of
the SNP marker of the positive target band of all E. coli strain-specific SNP primers for PCR
amplification (Table 3 and Figure 2).

Table 3. Selection of SNP primers with the target band pattern of serotype-specific E. coli strains.

Primer E. coli O157:H7
(ATCC-95150)

E. coli O157:H7
(NCCP-15739)

E. coli (KVCC-
BA1800069)

E. coli O145:H28
(KVCC-

BA1800090)

O.nhaR1
√ √ √

O.ileS2-1
√ √

O.thrB-3
√

O.nhaR-3
√

O.ileS1-3
√

O.ileS2-3 +
√ √

O.caiB-3 ++
√

O.polB-3 +
√

O.thrC-4
√

O.ileS1-4
√

O.caiB-4
√ √

O.polB-4
√

“
√

” indicates a positive target band, “+” indicates an off-target single band, and “++” indicates the off-target
double band.

2.6. SNP Marker-Based Triplex PCR

To determine the strain specificity of the confirmed SNPs, we aligned the re-sequences
containing the variable positions of the target E. coli sequences (Table S1). To detect the
target serotypes of E. coli-specific SNP markers in a single reaction, a temperature gradient
SNP marker-based triplex PCR kit was developed. This efficient test was performed with
target E. coli strains via PCR amplification of the SNP-based triplex PCR kit (Figure 3 and
Table 4).

In the encompassing primer sequences (Table 1), the red-colored bases indicate nat-
ural SNPs and the blue-colored bases indicate artificial SNPs (altered by transition or
transversion mutation) (Table 2). For example, for the primer of O.ileS2-1F “GATCATCTTC-
CGCGCAGCG”, which consists of three SNP bases, the underlined nucleotide positions
are the 16th, ‘A’, and the 19th, ‘G’, whereas the blue color base, the 17th, was changed from
‘A’ to ‘G’ (transition). Thus, in each primer sequence of the SNP sites, we altered an artificial
base, except for O-polB-4-F, so that SNP-based primers improved their ability to bind the
PCR template sequence, thereby improving the allele-specific detection of target E. coli
strains (Table 2, Figure 2). The 12 sets of SNP-based primers were designed to amplify the
desired band of serotype-specific E. coli. Finally, SNPs containing three genes (ileS, thrB, and
polB) with three markers (O.ileS2-1, O.thrB-3, and O.polB-4) were selected to detect three
target E. coli strains (Figure 3 and Table 4). In the case of E. coli O157:H7, two SNP-based
primers (O.nhaR1 and O.ileS2-1) produced the target band, whereas the other two markers
(O.ileS2-3 and O.caiB-3) produced the off-target bands (Table 3). The primer ‘O.ileS2-1′

detected two E. coli O157:H7 strains, but it did not detect the other two non-O157 E. coli
strains. Thus, this marker (O.ileS2-1) is a good candidate for E. coli O157:H7. However, if
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we want to know the serotypes of an unknown E. coli, we have to PCR-amplify each of
12 primer pairs, which is a limitation of the developed SNP-based (n = 12) marker. We
overcame the cost and time involved in repeated PCR amplification of the SNP-based
marker through the development of a triplex SNP marker (the developed triplex PCR
marker is indicated as “O1”) (Figure 3 and Table 4).
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Figure 2. PCR amplification of SNP-based markers with four target E. coli strains including two E. coli
O157, E. coli, and E. coli O145. PCR band ‘M’ indicates DNA of 100 bp. The gel lane numbers are
provided in each section (1–4): lane No. 1 = E. coli O157:H7 (ATTC-95150); No. 2 = E. coli O157:H7
(NCCP-15739); No. 3 = E. coli (KVCC-BA1800069); No. 4 = E. coli O145:H28 (KVCC-BA1800090). The
nine primers (O.nhaR1, O.ileS2-1, O.thrB-3, O.nhaR-3, O.ileS1-3, O.thrC-4, O.ileS1-4, O.caiB-4, and
O.polB-4) produced a single target band, whereas three primers (ileS2-3, O.caiB-3, O.polB-3) produced
dimers or multiple bands. The two primers (O.nhaR1 and O.ileS2-1) produced the target band of
serotype specific E. coli O157:H7 but O.nhaR1 also produced the target band of E. coli. Moreover, the
primers (ileS1-3, O.caiB-3, O.polB-3, and O.polB-4) produced a light band during the 1st PCR and
these three primers produced a strong band with the 2nd PCR amplification (images are not shown
in here but 1st and 2nd PCR amplification sequences are provided in Tables S2 and S4). Moreover,
the detailed primer information is provided in Table 2.
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Table 4. Information on triplex SNP primers (O1) and their target strains.

Primer Name Sequence (5′–3′) Length (bp) Amplicon Size (bp) Target Strains

O.ileS2-1F GATCATCTTCCGCGCAGCG 19
401

E. coli O157:H7
(ATTC-95150; NCCP-15739)O.ileS2-1R CAACAACAGAAGAGTGAGTATAG 23

O.thrB-3-F TGTTCGGTGGTCGCGACG 18
337 E. coli (KVCC-BA1800069)O.thrB-3-R CGTGAATGAAGCCAGCTAGA 20

O.polB-4-F TAATGGTGCCGCGGTTCTGG 20
232

E. coli O145:H28
(KVCC-BA1800090)O.polB-4-R CTTTACCTGCGTATCTTCAGT 21

Serotype-specific E. coli strains were detected in a single reaction with the developed
assay (Figure 3 and Table 4). In addition, the marker ileS2-1 was able to detect the most
pathogenic O157, whereas the other two primer pairs, O.thrB-3 and O.polB-4, could detect
E. coli (KVCC-BA1800069) and E. coli O145:H28 (KVCC-BA1800090), respectively (Table 4).

2.7. Cross Reaction and Validation Test

The developed markers were investigated by means of the cross-reaction test with
other gram-positive and gram-negative pathogenic bacteria. The developed assay did not
produce cross-reactions with any of the tested bacteria, indicating the specificity of the
primer sets. However, the assay sometimes produced an off-target band with the tested
bacterial strains (data not shown). For more validation, 23 identified E. coli from wild-
animal fecal samples were tested and validated with SNP-based markers. The generating
band was marked on the isolate lanes numbered from one to eight, where lane 1 is a
positive band of reference E. coli O157 (401 bp) and the tested E. coli (lane no. 2–7) was
matched with E. coli O157:H7. Lanes no. 9–11 were matched to the target E. coli (KVCC-
BA1800069, lane no. 13, amplicon length 337 bp). Lanes no. 14–19 were matched to the
target E. coli O145:H28 (KVCC-BA1800090; lane no. 14, amplicon length 232 bp). Five of the
isolates (lanes no. 20–25) were not exactly matched to the three target E. coli strains. They
might have originated from the animal fecal samples as different E. coli strains (Figure S3).
Sometimes, the tested E. coli was produced multiple off-target bands. To obtain a clearer
resolution, we should conduct further analysis with a variety of E. coli isolates with diverse
sources, such as foods.



Pathogens 2022, 11, 115 10 of 18

3. Discussion

To date, several different methodological approaches have been used to detect E. coli,
for instance, PCR bands [45], PFGE [46], phage typing [47], and MLST [18,23]. There are
some limitations to the current molecular typing methods; however, SNP-based techniques
have recently been suggested as a cost-effective alternative typing method for various
bacterial species, as well as E. coli [6,27,28,48]. The SNPs in the WGS have discriminative
power that enables the comparison of genetic bases not only between bacterial subspecies
but also at the serotype level. This provides an easy method of determining the position of
SNPs from the WGS of bacteria using different bioinformatics software tools. Thus, various
polymorphisms can be used to detect very similar strains from different sources [2,3]. In
addition, SNPs could be used as an accurate and convenient method to detect disease
outbreaks, for the surveillance of food-borne pathogens [13,26] and their source detec-
tion [28,34], to develop risk models for outbreaks, and even to map the phylogenetic and
evolutionary relationships between similar strains [49].

In this study, fifteen primer sets were chosen from 11 different genes of the E. coli
genome (Table 1). Primers were designed based on suitable abundant SNP sites on the
aligned WGS of the 11 abovementioned genes, approximately 620–919 bp (Table 1). Grish
and Burbudae [50] conducted a similar study and found that nine markers were considered
to be the best candidate markers in terms of their target band patterns out of the 30 SNP
markers tested. In this study, SNP-based primers were designed based on natural and arti-
ficial SNPs or by introducing a mismatched nucleotide within the three bases at the 3′ end
SNP sites (transition or transversion mutations). In addition, the artificial mismatched
(transition or transversion) bases that were varied in the 3rd position of a codon at the
3′ end of each primer might have altered the codon, resulting in an amino acid substitution,
which represents a target for PCR methods [51–53]. Moreover, the introduction of a mis-
matched (A-T transversion or A-G transition) base pair at the third base from the 3′ end
could increase the allele-specific amplification during PCR [44,54,55]. Thus, transitions
(A-G and T-C), as well as transversions (A-T, A-C, G-C, and G-T), were useful as base pair
mismatches in improving the allele-specific amplification. Based on natural and artificial
bases (transition/transversion), we developed 12 sets of SNP primers (232–488 bp) for
validation by amplifying the four target E. coli genes including three different serotype
strains (Table 2). Moreover, the melting temperature (Tm) sometimes depends on the GC
content of the designed primer sequences, which is important for the adjustment of PCR
conditions. By introducing transverse mismatched bases, the melting temperature of allele-
specific SNP-based primers can be fixed or adjusted to standardized PCR conditions [44].
Similarly, the E. coli O157 and non-O157 detected primers were designed based on natural
and artificial SNPs or a mismatched nucleotide introduced within the three bases (except
for primer ‘O.polB-4-F’) at the 3′ end SNP sites (Table 2, Figure 2). A temperature gradient
SNP marker-based triplex PCR kit was developed for the target serotypes of E. coli specific
SNP markers in a single reaction. An efficient test was performed with the target E. coli
serovar by means of PCR amplification of the SNP-triplex PCR kit and was adjusted to
standardized PCR conditions (Table S5). In addition, the E. coli detected in wild-animal
fecal samples were tested with the efficiency and validation of the designed primer (O1),
but all the isolates were not exactly matched to the three target E. coli serotype strains
(Figure S3). We should analyze more isolates for the validation of the SNP-based triplex
O1 primer.

Recently, software algorithms and parameters have been used to search for SNP
positioning from raw or assembled genome sequences [56,57]. SNP-based techniques
have become increasingly attractive for the efficient detection of E. coli, compared to other
molecular techniques. In some previous investigations, the SNP-based technique has
already been useful in retrospective research studies based on SNPs of WGS that can
detect different isolates of similar bacterial strains [2,30,31,58]. In one study, two highly
homologous serovars were distinguished based on 20 SNPs compared to the sequence
of a reference strain [59]. Nonetheless, another study showed that up to four SNPs were



Pathogens 2022, 11, 115 11 of 18

required for the precise identification of all E. coli-investigated serovars. Dallman et al.
showed three SNP differences in outbreak-associated isolates compared to non-outbreak
isolates. It was possible to detect outbreak isolates using SNP-based primers [60]. Current
SNP-based typing methods can be applied for the detection and typing of STEC and other
organisms. [24]. Desphande et al. showed that 29 SNPs were used as a signature sequence
(either synonymous or non-synonymous amino acid changes) for E. coli strains from other
pathogenic serotyping E. coli strains present in the NCBI database [61]. In our research,
we mention the varying nucleotide positions (SNPs) between the following strains: IAI39,
2011C-3493, Sakai, NRG 857C, and UMN026, and the reference strain (K-12) (Table S1).
A study by Camprubí-Font et al. compared 286 polymorphic sites in adherent-invasive
E. coli (AIEC-associated SNPs). Sixty SNPs were selected for re-sequencing, and 20 of the
confirmed SNPs in 11 genes of AIEC strains were used for the identification of E. coli [2].
Similarly, we found 2160 SNPs on the aligned genome of six serotype-specific E. coli strains,
among which the SNP-flanking regions of aligned sequences on 11 genes were selected
for further sequencing and finally only three SNPs containing three genes (ileS2, polB, and
thrB) were confirmed for the SNP-based triplex PCR marker. However, Moorhead et al.
speculated that PCR enzymes are capable of three to five proofreading activities to correct
an artificial mismatch [51] but DNA polymerase can extend primers less efficiently (100-
to 10,000-fold) compared to matched with mismatched 3′ bases [62]. The simultaneous
introduction of mismatched bases in the third position prevented the amplification of
fragments from the targeted E. coli genome (Table 2). Therefore, altered SNPs could be used
for developing an alternative, accurate, rapid, and cost-effective typing method that may
lead to significant improvements in the diagnosis of E. coli. To the best of our knowledge,
this study is the first to detect serotype-specific E. coli strains using the developed (O1) SNP
triplex PCR method.

4. Materials and Methods
4.1. General Overview of SNP-Based Marker Design and Validation with PCR Amplification of
Target E. coli

There were six steps involved in the development of SNP-based markers. They were
as follows: (i) the whole-genome sequences of six E. coli strains, including three E. coli
O157 and three non-O157 strains, were retrieved from the GenBank database and each was
aligned with the respective reference (K-12 substr. MG1655). (ii) We used the NUCmer
program [63] to search for the SNP positions on the aligned WGS and to determine the
primer sets encompassing each SNP site (upstream and downstream of each SNP position).
The SNP-matrix files were shown in variant call format (VCF) files by generating them
from VCFtools v.4.1.0 (https://vcftools.github.io/index.html, accessed on 29 December
2021), and a filtered SNP matrix was constructed from the output VCF files [63]. (iii) The
designed primers were used for the amplification of SNP sites, and subsequently, the four
amplified E. coli were sequenced (E. coli O157 and non-O157). (iv) Then, E. coli primers
were designed based on the four aligned E. coli sequences. (v) E. coli O157 and non-O157
specific-SNP markers were used for PCR amplification and evaluation. (vi) Finally, the SNP
marker-based triplex PCR kit was designed. A schematic flow diagram of the development
of the SNP-based marker for E. coli detection is shown in Figure 4.

https://vcftools.github.io/index.html
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4.2. Culture and Isolation of Genomic DNA from Serotype-Specific E. coli (O157 and
Non-O157) Strains

The four E. coli strains, including three different serotype strains, were selected for
DNA isolation, PCR amplification (with the designed SNP-encompassing primers), and
sequencing. The two E. coli O157 strains were O157:H7 (ATCC-95150, NCCP-15739) and the
non-O157 strains were E. coli (KVCC-BA1800069) and E. coli O145:H2 (KVCC-BA1800090).
The target bacterial colonies were streaked onto nutrient agar media, and a single colony
was collected using a sterilized toothpick. The colonies were incubated at 35 ◦C for 18 h in
a 5 mL lactose broth (LB) solution. Genomic DNA was extracted from 1 mL of LB culture
fluid using a DNeasy Blood and Tissue Kit, according to the manufacturer’s instructions
(Qiagen, Valencia, CA, USA).

4.3. Acquisition and Alignment of WGS of E. coli from GenBank

The complete whole-genome sequences of E. coli based on NGS data were downloaded
from GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/, accessed on 10 July 2021),
including one reference strain of the most studied and best-annotated genome (E. coli str.
K-12), which was used as a reference genome. E. coli str. K-12 substr. MG1655 (NC-000913.3)
was downloaded along with five query strains, E. coli IAI39 (NC_011750), E. coli O104:H4
str. 2011C-3493 (NC-018658), E. coli O157:H7 str. Sakai (NC-002695), E. coli O83:H1 str.

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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NRG 857C (NC-017634), and E. coli UMN026 (NC-011751). Among them, three were E. coli
O157 and three were non-O157. We selected the most suitable SNPs based on the allelic
diversity of the aligned sequences with SNP sites encompassing a primer compared to the
reference and query sequences of E. coli (Table S1). The “selected SNPs” are defined as the
homologous gene sequences of aligned pairs of WGS. In addition, the SNPs in the highly
variable region end of the contigs or synonymous amino acid changes in the coding regions
were not selected.

4.4. Search for SNP Sites on WGS Alignment and Design with Suitable Primers Encompassing
SNP Sites (Upstream and Downstream of SNP Sites)

We used the NUCmer software of MUMer v4.0.0 (https://mummer4.github.io/, ac-
cessed on 12 July 2021) to determine the SNP positions on WGS alignments and to design
primers both upstream and downstream of SNP sites [42,63,64]. The construction of the
indel matrix and the detection of SNPs were completed using VCFtools v.4.1.0 (https:
//vcftools.github.io/index.html, accessed on 15 July 2021), and variant annotation was per-
formed using SnpEff v.4.3.0 (http://pcingola.github.io/SnpEff/, accessed on 17 July 2021).
The final output of the workflow was a filtered SNP matrix. SNP positions were inferred
using show-snp programs [63]. Eleven genes were selected based on the suitable SNP
sites. These genes (homoserine kinase-thrB, threonine synthase-thrC, transcriptional acti-
vator protein-nhaR, isoleucine-tRNA ligase-ileS, 4-hydroxy-tetrahydrodipicolinate-dapB,
carbamoyl-phosphate synthase-carB, DNA polymerase-polB, ribulokinase-araB, inner mem-
brane protein-yabI, thiamine transport system permease protein-thiP, and 3-isopropylmalate
dehydratase small subunit-leuD) were amplified with four E. coli strains, which were se-
lected as targets for sequence analysis for the desired SNPs (Table 1). The gene sequences
were selected based on non-synonymous changes in amino acids. The “selected SNPs”
were validated by re-sequencing with Sanger sequencing. The primers were designed
upstream and downstream of the selected SNP position to achieve good sequence quality
containing SNPs, using Primer3 software v0.4.0 (http://bioinfo.ut.ee/primer3-0.4.0/, ac-
cessed on 19 July 2021). Multiple primer sets were produced but the suitable primer sets
were selected based on corresponding SNP positions and amplicon length (approximately
750–1000 bp).

4.5. Amplification of DNA Fragments Encompassing the SNP Sites of Interest and Re-Sequencing
of the Amplified PCR Products of the Target Strains Using the Newly Designed Primers

The target E. coli and laboratory-detected E. coli from wild-animal fecal samples were
streaked onto nutrient agar media, and a single colony was then incubated at 35 ◦C for
18 h in a 5 mL lactose broth (LB) solution. Genomic DNA was extracted from 1 mL of
LB culture fluid using a DNeasy Blood and Tissue Kit, according to the manufacturer’s
instructions (QIAGEN Inc, Valencia, CA, USA). Then the target E. coli strains were selected
for re-sequencing (Table S2) using newly designed primers for the amplification of the SNP
sites that were aligned with six WGS GenBank datasets (https://www.ncbi.nlm.nih.gov/
genome/?term=E.+coli, accessed on 10 July 2021). Information on the whole genome of E.
coli is provided in Supplementary Table S1. Each PCR reaction consisted of 1 µL (5 ng/µL)
of template DNA, 0.5 µL each of forward and reverse primers, 3 µL 10× HS buffer, 3 µL
dNTP, 0.3 µL Hot Star Taq DNA polymerase (Qiagen), and 21.7 µL distilled water to a final
volume 30 µL. The first and second cycles of PCR consisted of amplification at 95 ◦C for
5 min, followed by 30–35 cycles of denaturation for 30 s, annealing at 55 ◦C for the 1st PCR
cycle and 50 ◦C for the 2nd PCR cycle with 30 s, polymerization at 72 ◦C for 1 min 30 s, and
a final elongation at 72 ◦C for 10 min. The amplified product sequences are provided in
Table S2 and Figure 1. The amplified primer products were purified (Gel & PCR Purification
Kit; Biomedic Co., Ltd., Seoul, Korea) and sequenced using a BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and an ABI 3730 DNA
Analyzer (Applied Biosystems, Foster City, CA, USA). All 11 genes, including SNP sites,
were amplified using the target E. coli. The amplified PCR products of the target E. coli were
re-sequenced (Table S2) and aligned using BioEdit Sequence Alignment Editor, version 7.0.0

https://mummer4.github.io/
https://vcftools.github.io/index.html
https://vcftools.github.io/index.html
http://pcingola.github.io/SnpEff/
http://bioinfo.ut.ee/primer3-0.4.0/
https://www.ncbi.nlm.nih.gov/genome/?term=E.+coli
https://www.ncbi.nlm.nih.gov/genome/?term=E.+coli
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(Tom Hall, North Carolina State University, Raleigh, NC, USA). However, none of the SNP-
encompassing primers produced the desired SNPs of the expected bands or sequences due
to the presence of short or chimeric sequences. The SNP sites on the aligned target E. coli of
11 gene sequences were confirmed. The E. coli detected primers were designed based on
natural and altered SNPs or a mismatched nucleotide introduced within the three bases at
the 3′ end SNP sites (transition or transversion mutations). Thus, all the designed primers
were further analyzed using NetPrimer (https://www.premierbiosoft.com/netprimer/,
accessed on 22 July 2021) to select the optimal primer pairs. The validated polymorphisms
are referred to as “confirmed SNPs”.

4.6. PCR Amplification of E. coli O157 and Non-O157 Specific SNP Markers and Their
Efficient Testing

Standard PCR primers targeting numerous SNP locations were initially designed
through an in silico approach, and the primers were optimized via repeated PCR testing.
To improve detection efficiency, we introduced a mismatched base within the triplet base of
the 3′ end primer of each primer sequence. It was observed that there were no non-specific
bands during PCR amplification [55]. Optimization was accomplished through repeated
PCR cycling through variations in primer design, assay conditions, reagent concentrations,
and the selection of alternative SNP targets. For this, the designed SNP primers were used
to amplify the target E. coli strains. When SNPs were found with ambiguous or overlapping
peaks, they were removed from further analysis. Finally, it was possible to confirm efficient
SNP-based primers with the expected target bands of E. coli strains. Therefore, allele-
specific primers were designed to discriminate single base changes through experimental
optimization [54,55].

4.7. Development of a Triplex SNP-Based PCR Marker

For the detection of all target E. coli strain-specific SNP markers in a single reaction,
a temperature gradient SNP-based triplex PCR kit was developed. Each PCR reaction
consisted of 1 µL (5 ng/µL) of template DNA, 3 µL each of forward and reverse primers,
DSbio Hot Start Taq mixture 10 µL, and 6 µL distill water to a final volume 20 µL. (Table S4).
The PCR reaction was performed for a period of 5 min at 95 ◦C, followed by denaturation
for 30–35 cycles for 30 s, then annealing at 55 ◦C for 35 s, polymerization at 72 ◦C for 1 min
30 s, and a final elongation at 72 ◦C for 10 min. The amplified product size and PCR results
are shown in Figure 2 and Table S1.

4.8. Validation and Cross Reaction Test with SNP-Based Triplex PCR

Wild-animal fecal samples were collected from various agricultural regions across
South Korea (unpublished data). From these fecal samples, E. coli isolates were detected
based on cultural, serological, and molecular approaches as per the methods described
previously [65]. For efficiency tests, the laboratory-isolated selective E. coli (n = 23) was
tested with the triplex PCR marker (Figure S3). In addition, possible cross-reactions were
also investigated with other closely related Gram-negative and Gram-positive bacteria (data
not shown). The Gram-positive bacteria were Staphylococcus aureus (NCCP-14780); Bacillus
cereus (NCCP-14579) and the Gram-negative bacteria were Salmonella enterica (NCCP-15756),
E. coli (NCCP-14034), Pseudomonas aeruginosa (NCCP-16099), Shigella dysenteriae (NCCP-
14746), Klebsiella pneumoniae (NCCP-14631), and Enterobacter cloacae (NCCP-14621). These
bacteria were checked with the target bacteria (E. coli O157:H7, E. coli, and E. coli O145:H28)
during the triplex PCR assay, and cross-reactivity was observed via PCR amplification with
the specific length of the target band.

5. Conclusions

SNPs are the most common form of genetic variation, not only in E. coli but also in
a wide variety of other bacterial species. SNP-based markers represent a target for PCR
methods to easily and rapidly differentiate between different E. coli strains [51,66]. STEC
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pathogens still pose a major threat to public health, not only in developing countries but
also in developed countries. To limit their spread and prevent infectious food-borne disease
outbreaks, accurate and rapid diagnosis and classification of isolates are of great importance.
SNPs are the most popular tool for the detection and study of genetic diversity and the
phylogenetic analysis of any kind of genetic resource. This could be used in the medical
sector for rapid and easy identification and typing of E. coli. In addition, the mutations
can serve as phylogenetic markers for strain classification. Despite the importance of SNPs
in our understanding of the diversity of E. coli populations, the research community is
currently lacking a comprehensive database, even though multiple frontline laboratories
in the USA and Canada have applied SNP analysis for the typing of STEC for clinical
public health purposes [13]. SNP-based markers are also used for spatial epidemiology,
typing, traceability, genetic information, determination, and genetic evolution analysis of
food-borne pathogenic E. coli. Therefore, SNP-based studies promote food-borne disease
outbreak monitoring and prevention, and the analysis and control of pathogenic E. coli. In
this study, we used only E. coli obtained from wild-animal fecal samples for the evaluation
of detection efficiency. However, further analysis and investigation should be conducted
with a number of variable sources of E. coli for the evaluation of the efficiency of the
developed SNP-based triplex marker assay.

6. Patents

Yung Chul Park, M.M. Rahman, and S.J. Lim. Development of multiplex PCR kit and
detection of pathogenic Escherichia coli (E. coli O157:H7). Kangwon National University,
Korea. Patent application No HP-17-076.
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indicated by underline. The natural SNP base is marked by a square shape, and artificial mutated SNP
base is marked by a black shaded square shape. Here two primer pairs are presented (iles “1-4-F/R”
and “iles3F/R”) Figure S3: PCR amplification of Escherichia coli strain-specific triplex primer set
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