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Abstract

Genome-wide analyses of two Neandertals and a Denisovan have shown that these archaic humans had lower genetic heterozy-

gosity than present-day people. A similar reduction in genetic diversity of protein-coding genes (gene diversity) was found in exome

sequences of three Neandertals. Reduced gene diversity, particularly in genes involved in immunity, may have important functional

consequences. In fact, it has been suggested that reduced diversity in immune genes may have contributed to Neandertal extinction.

We therefore explored gene diversity in different human groups, and at different time points on the Neandertal lineage, with a

particular focus on the diversity of genes involved in innate immunity and genes of the Major Histocompatibility Complex (MHC).

We find that the two Neandertals and a Denisovan have similar gene diversity, all significantly lower than any present-day

human. This is true across gene categories, with no gene set showing an excess decrease in diversity compared with the

genome-wide average. Innate immune-related genes show a similar reduction in diversity to other genes, both in present-

day and archaic humans. There is also no observable decrease in gene diversity over time in Neandertals, suggesting that

there may have been no ongoing reduction in gene diversity in later Neandertals, although this needs confirmation with a

larger sample size. In both archaic and present-day humans, genes with the highest levels of diversity are enriched for MHC-

related functions. In fact, in archaic humans the MHC genes show evidence of having retained more diversity than genes

involved only in the innate immune system.
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Introduction

Since the first complete Neandertal genome was sequenced

(Green et al. 2010), ongoing efforts have retrieved DNA

sequences from a number of additional extinct hominins

(Meyer et al. 2012; Castellano et al. 2014; Prufer et al.

2014, 2017). Comparing the Neandertal and Denisovan

genomes to the genomes of present-day people provided

evidence that the ancestors of all non-Africans living today

met and interbred with Neandertals (Green et al. 2010) and

that the ancestors of people that today live in Oceania inter-

bred with Denisovans (Reich et al. 2010). Although some of

the resulting introgressed DNA has been shown to be adap-

tive in anatomically modern humans (Huerta-Sanchez et al.

2014; Racimo et al. 2015; Dannemann et al. 2016; Racimo

et al. 2017), conserved regions of present-day

human genomes are significantly depleted of introgressed

Neandertal sequence, which has been interpreted as

evidence for purifying selection against introgressed

Neandertal DNA in anatomically modern human genomes

(Sankararaman et al. 2014; Fu et al. 2016; Harris and

Nielsen 2016; Juric et al. 2016). Recent studies suggested

that slightly deleterious alleles may have accumulated in

the genomes of Neandertals and Denisovans because of re-

duced efficacy of natural selection as a result of their small

long-term effective population size (Ne) (Harris and Nielsen

2016; Juric et al. 2016).

All archaic individuals analyzed to date have genome-wide

heterozygosities that are lower than those seen in present-

day humans. The genome-wide heterozygosity of a

�50,000-year-old Neandertal from Vindija cave in Croatia

(Prufer et al. 2017) was estimated to be 1.6� 10�5, similar

to that previously reported for the �120,000-year-old Altai

Neandertal (Prufer et al. 2014) and only slightly lower than

the estimate for an �80,000-year-old Denisovan individual
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(1.8� 10�5) (Meyer et al. 2012). This low genetic diversity has

also been observed in the exome sequences of three

Neandertals from the Vindija, El Sidr�on, and Denisova Caves

which show lower average heterozygosities than present-day

humans (Castellano et al. 2014). Genetic diversity in genic

regions is particularly important, as it can potentially impact

the levels of functional diversity in the population. However,

the limited number of high-quality archaic genome sequen-

ces means that we do not know to what extent levels of gene

diversity (i.e., genetic diversity in protein-coding genes) may

have changed over time. The availability of two high-

coverage Neandertal genomes of individuals who lived

70,000 years apart, as well the high-coverage genome of

one Denisovan, now allows us to begin to explore gene di-

versity in archaic human populations at different times during

Neandertal history.

It has been suggested that lack of functional variation in

immune-related genes—especially in genes related to the in-

nate immune system which is known to serve as a first de-

fense mechanism against pathogen detection—, some of

which are targets of long-term balancing selection (Meyer

and Thomson 2001; Key, Teixeira, et al. 2014; Bitarello

et al. 2018), could have contributed to Neandertal extinction

(Wolff and Greenwood 2010; Houldcroft and Underdown

2016; Sullivan et al. 2017). This is known as the differential

pathogen resistance hypothesis (DPRH), and Sullivan et al.

(2017) recently presented evidence both for and against this

hypothesis. Using the exome data (Castellano et al. 2014),

they found that Neandertals had substantially lower numbers

of nonsynonymous single nucleotide polymorphisms (SNPs)

than present-day humans in 73 innate immune-related genes,

12 genes of the Major Histocompatibility Complex (MHC),

164 virus-interacting protein genes, and 73 loci with high

diversity in chimpanzee (which might be enriched for targets

of balancing selection). They concluded that reduced protein

sequence diversity in this set of immune genes may have

resulted in reduced resistance to pathogens and have thereby

contributed to Neandertal extinction. However, on the other

hand they also reported a higher number of nonsynonymous

SNPs in Neandertals than in present-day humans for 12 genes

of the MHC, suggesting high levels of functional diversity in

this component of the immune system.

Here, we leverage existing high-quality whole-genome

data from three archaic humans to test for evidence of a

specific reduction of gene diversity in archaic humans that

would be expected under the DPRH. We focus on comparing

genetic diversity between archaic and present-day humans,

and over time in the Neandertal lineage in a comprehensive

set of 1,548 innate immunity genes defined by Deschamps

et al. (2016). We chose to study genes of the innate immune

system as these are affected in a more direct way by the

effects of natural selection than genes involved in adaptive

immunity (Quintana-Murci and Clark 2013), such as T cell and

B cell receptors, that derive their variability both from inherited

genetic variation and from individual somatic recombination

(Flajnik and Kasahara 2010). In addition, we separately ana-

lyze 14 MHC genes because of their important role in immu-

nity, and their well-studied and unique evolutionary history

(Meyer and Thomson 2001; Key, Teixeira, et al. 2014;

Bitarello et al. 2018). In a second analysis, we then generalize

the idea underlying the DPRH. Instead of exploring gene di-

versity only in innate immunity genes, we tested if any func-

tional category of genes had particularly high or low gene

diversity in Neandertals when compared with modern

humans.

Materials and Methods

Data

Our analyses are based on three published high-coverage

genomes of the Altai and Vindija Neandertals and the

Denisovan (Meyer et al. 2012; Prufer et al. 2014, 2017) as

well as a published data set of 14 present-day individuals

consisting of five individuals from Africa (Mandenka, Mbuti,

San, Yoruba, Dinka), three from Asia (Dai, Han, Papuan), two

from Australia, two from Europe (French, Sardinian), and two

from South America (Karitiana, Mixe) (Meyer et al. 2012). For

all analyses, we used the filters applied by (Prufer et al. 2017).

In brief, we retained sequences with mapping quality >25,

sites with coverage >10 (including both a 2.5% higher and

lower coverage cut-off; corrected for GC content), and

unique positions in the genome according to 35-mer 1-mis-

match filter, while removing simple repeats (tandem repeat

finder track at UCSC). We downloaded a list of all annotated

autosomal human protein-coding genes from BioMart/

Ensembl Release 84 (GRCh37) (Yates et al. 2016) including

introns, exons, and additional 1 kb up and downstream to

capture adjacent regulatory elements, and filtered for unique-

ness by HGNC symbol and gene coordinates (GRCh37/hg19,

N¼ 17,505). We extracted the sequences that pass these

filters for each individual from the whole genome VCF files

and excluded genes with <2,000 callable sites from the anal-

ysis (reducing the number of genes by 2,041 genes for each

individual on average). Data processing was done using Tabix

(Li 2011), BEDOPS (Neph et al. 2012), and BEDTools (Quinlan

2014) and statistical analysis and visualization was done using

R (Team RC 2016).

Measure of Gene Diversity

To estimate gene diversity for autosomal protein-coding

genes per genome, we counted SNPs (Andres 2009). For in-

dividual genomes, a SNP is defined as a biallelic heterozygous

site. To account for local heterogeneity in mutation rate and

the rate of substitutions, we divided the number of SNPs by

the number of fixed differences (FDs) which serves as a proxy

for mutation rate. For individual genomes, a FD is a site in

which the chimpanzee reference allele (taken from the EPO
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alignment version 69 [Yates et al. 2016] based on the chim-

panzee reference CHIMP2.1.4) is different from a homozy-

gous allele in the test individual. We calculated the SNP/FD

ratio for each gene that passed our filter and define this mea-

sure as a proxy for genetic diversity in protein-coding genes

which we call gene diversity. We note that because we con-

sider the full length of genes including regulatory sequences

and introns, and use divergence with chimpanzee, the num-

ber of genes with very small number of FDs is extremely low

(on average, there are eight genes with less than three FDs per

individual; the mean number of FDs per gene over all individ-

uals is 272). Further, we predefined sets of genes (more spe-

cifically, innate immune and MHC genes, see below),

summed the total number of SNPs in those genes, and divided

that number by the total number of FDs in those genes to a

combined single ratio of SNPs to FDs per individual (mean

SNP/FD ratio). We computed confidence intervals on boot-

strapped sets. After sampling N genes with replacement

from both test and background gene sets, we recalculated

the SNP/FD ratios for each of 5,000 resampled sets and de-

fined cut-offs based on the 2.5% and 97.5% quantiles of the

resulting empirical distributions as cut-offs.

Diversity in Innate Immune and MHC Genes

To test whether there is evidence for an overall increase or

reduction in gene diversity of innate immune genes in archaic

humans, we calculated SNP/FD ratios in a comprehensive set

of innate-immune genes curated by Deschamps et al. (2016).

This set combines genes from InnateDB (Breuer et al. 2013)

and genes assigned to the GO category innate immune re-

sponse (GO: 0045087). We updated this gene list with recent

InnateDB entries following our filtering scheme. This resulted

in a set of 1,548 innate immunity genes. We additionally in-

vestigated the following subsets of this innate-immune gene

list separately: Toll-like receptor signaling pathway (GO:

0002224, N¼ 169), innate immune response in mucosa

(GO: 0002227, N¼ 10), defense response (GO: 0006952,

N¼ 65), defense response to bacterium (GO: 0042742,

N¼ 60), defense response to Gram-negative bacterium (GO:

0050829, N¼ 29), defense response to Gram-positive bacte-

rium (GO: 00050830, N¼ 52), defense response to fungus

(GO: 0050832, N¼ 16), defense response to virus (GO:

0051607, N¼ 154), as well as the MHC genes (N¼ 14). We

then defined a hand-curated set of autosomal protein-coding

background genes without any reported immune function to

use as a background set (13,393 Ensembl genes [Yates et al.

2016]) for which we excluded 4,723 genes with any reported

immune system-related function (ImmPort gene list [Breuer

et al. 2013]) as well as genes shorter than 500 bp in

length. To compare the diversity of immune genes relative

to the protein-coding background between archaic and

present-day humans, we normalized the levels of gene diver-

sity for each individual by the overall gene diversity in the set

of background genes found in that same individual, that is,

we divided the mean SNP/FD ratio of innate-immune genes by

the mean SNP/FD ratio of the background genes (normalized

gene diversity). We repeated the same analysis for the MHC

gene set, that is, all HLA genes on chromosome 6.

GO Enrichment Analysis

We performed a gene ontology (GO) enrichment analysis to

explore whether any particular functional groups of genes

(GO categories) are overrepresented among the genes with

the highest (top-5% tail of the empirical SNP/FD ratio distri-

bution) or lowest (bottom-5% tail of the same distribution)

SNP/FD ratios in the three archaics, or a set of three represen-

tative present-day humans (Africa [Yoruba], Europe [French],

and Asia [Han]). In this analysis, we only considered genes that

pass our above-mentioned filters in the test individuals, and

averaged the SNP/FD ratio over those individuals for each

gene. For GO enrichment analyses, we used the R package

“GOfuncR” (Prufer et al. 2007; Grote et al. 2016; Grote

2018). In the GO enrichment analyses, we compared the

test sets to all genes with SNP/FDs ratios outside the top

and bottom-5% in the relevant set of three individuals. We

further performed GO enrichment analyses for pairs of

genomes and for individual genomes. While these analyses

have lower power than the one above, they allow us to better

define and understand the enrichment signal in genes with

specific functions.

Results

Archaic Humans Had Lower Overall Gene Diversity than
Present-day Humans

We estimated gene diversity per individual by calculating SNP/

FD ratios in five present-day individuals from African popula-

tions (Mandenka, Mbuti, San, Yoruba, and Dinka), and nine

present-day individuals from non-African populations (French,

Sardinian, Dai, Han, Papuan, Karitiana, Mixe, and two

Australians). In agreement with previous observations, we

consistently found significantly higher diversity in African indi-

viduals than in individuals from non-African populations

(fig. 1A, indicated by nonoverlapping 95% confidence inter-

vals), consistent with reduced diversity in non-African as a

consequence of the out-of-Africa bottleneck (reviewed in

Cavalli-Sforza and Feldman 2003). All three archaic humans

exhibit significantly lower gene diversity compared with the

present-day humans, consistent with their previously reported

overall low genomic diversity (Meyer et al. 2012; Castellano

et al. 2014; Prufer et al. 2014, 2017). The Altai Neandertal has

lower gene diversity than the other two archaic individuals

likely as a consequence of recent inbreeding (Prufer et al.

2014). Removing the extended tracts of homozygosity (de-

fined by Prufer et al. 2014) from the Altai genome (Altai*),

results in comparable levels of gene diversity in the Altai and
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Vindija Neandertals. Gene diversity in both of the Neandertals

is slightly lower than in the Denisovan, which is consistent

with the reported differences in genome-wide diversity

(Meyer et al. 2012).

Archaic Humans Had Similarly Low Gene Diversity in Innate
Immune Genes Compared with Non-immune Genes

Next, we tested whether genes of the innate immune system

showed a similar reduction in Neandertals (when compared

with present-day humans) as non-immune genes. Figure 1B

shows the distribution of SNP/FD ratios for each immune gene

in all individuals as well as for the Altai Neandertal excluding

homozygous tracts (Altai*). As was the case for all autosomal

protein-coding genes (fig. 1A), present-day humans from

Africa (Mandenka, Mbuti, San, Yoruba, and Dinka) have

higher diversity in innate immune-related genes (SNP/FD ratios

range from 0.154 to 0.167) than individuals from non-African

populations (French, Sardinian, Dai, Han, Papuan, Karitiana,

Mixe, and two Australians, SNP/FD ratios range from 0.042 to

0.105). With values from 0.005 to 0.018, the median SNP/FD

ratios are lower for the three archaic humans than for the

present-day humans (fig. 1B). The median SNP/FD ratio for the

Altai Neandertal is slightly (not significantly) lower than that

for the Vindija 33.19 Neandertal. Again, after removing iden-

tified homozygous tracts, the Altai Neandertal (Altai*) exhibits

similar gene diversity to the younger Vindija 33.19 Neandertal

and the Denisovan, suggesting the lower SNP/FD ratio is likely

a result of recent inbreeding in the Altai Neandertal (Prufer

et al. 2014).

To further investigate a putative specific reduction in innate

immune gene diversity, we investigated normalized immune

gene diversity by dividing mean SNP/FD ratios in immune

genes by mean SNPD/FD ratios in a set of non-immune-related

background genes (see Materials and Methods, fig. 2). There

are no significant differences in the normalized gene diversi-

ties between any pair of ancient or present-day individuals, as

indicated by overlapping 95% confidence intervals.

Furthermore, 95% confidence intervals include the value 0

in 16 of the 17 individuals (in one Australian the upper con-

fidence interval limit is slightly below 0). This suggests that in

all individuals, innate-immune related genes have levels of di-

versity that are expected given their genome-wide gene diver-

sity. We find thus no indication that innate immunity genes in

archaic individuals have significantly different levels of normal-

ized gene diversity than in present-day humans. These results

are also reflected in the analysis of eight subsets of innate

immunity genes (containing 10–169 genes, respectively) in

which we also find no evidence for a specific reduction of

gene diversity, even though there is some variation due to

low sample sizes (supplementary fig. S2, Supplementary

Material online).

The younger Vindija 33.19 Neandertal and the older Altai

Neandertal show similar levels of normalized gene diversity in

innate immune genes (–0.05 and –0.02 for Vindija 33.19 and

Altai*, respectively with a trend towards lower normalized

gene diversity in Vindija 33.19). This further suggests that

immune gene diversity did not decrease over time. We note

that differences in the branch lengths leading to each of the

archaic humans, which reflect the differences in ages of the

FIG. 1.—Distributions of SNP/FD ratios per gene for all 17 individuals. Black lines and notches give medians and 95% confidence intervals, respectively. Y-

axis trimmed at 0.5 for clarity (for full plots see supplementary fig. S1, Supplementary Material online), each grey dot gives the SNP/FD ratio for a single gene.

(A) All protein-coding genes and (B) innate immune-related genes. AF, African; EU, European; AS, Asian; SA, South American; AH, Archaic Humans.
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specimens (that is, branch shortening), do not have a substan-

tial effect on our analyses as we do not observe a strong

positive correlation between the age of archaic individuals

and the normalized gene diversity (Pearson correlation coef-

ficient between normalized mean SNP/FD ratio and age, using

Altai*: 0.08).

High MHC Gene Diversity in Archaic Humans

MHC genes are known to be among the most diverse genes

in the genome, due to the action of long-term balancing se-

lection (Meyer and Thomson 2001; Key, Teixeira, et al. 2014;

Bitarello et al. 2018). In contrast to the overall gene diversity,

which is consistently lower in archaic than in present-day

individuals, the levels of gene diversity in MHC genes of ar-

chaic humans are comparable to the levels observed in

present-day humans (supplementary fig. S3, Supplementary

Material online). To better understand this signature, we eval-

uated MHC gene diversity for the three archaic humans and

the 14 present-day humans by averaging the normalized SNP/

FD ratios (fig. 3A). Both archaic and present-day humans

show higher diversity in MHC genes than in the background

gene set (indicated by log2-values of lower 95% confidence

intervals> 0). Interestingly, MHC diversity is �47-fold higher

than the background genes in archaic humans (95% CI: 32–

76-fold) but only �7-fold higher than background genes in

present-day humans (95% CI: 5–9-fold). This higher diversity

in the MHC observed in archaics compared with present-day

humans is driven largely by the MHC class II genes (fig. 3B–D).

It is interesting that the normalized gene diversity in the MHC

of the two early modern humans Loschbour (which is

�7,000 years old [Lazaridis et al. 2014]) and Ust’-Ishim (which

is�45,000 years old [Fu et al. 2014]) is comparable to that of

present-day humans (fig. 3E), and thus lower than that of the

archaic humans—this is also true for the set of innate immu-

nity genes (supplementary fig. S4, Supplementary Material

online).

Comparing MHC gene diversity between archaic and

early modern humans also helps to determine whether prob-

lems with the alignment of short ancient DNA reads in these

highly polymorphic genomic regions could lead to an over-

estimate of diversity. The sequences generated from these

ancient specimens have comparable read length distribu-

tions (supplementary fig. S5A, Supplementary Material on-

line), and a similarly high median genomic coverage to

the three archaic genomes (supplementary fig. S5B,

FIG. 2.—Normalized mean SNP/FD ratios (log2) for all 17 individuals in the full set of innate immune-related genes (N¼1,548). Error bars give 95%

confidence intervals calculated by bootstrapping (B¼5,000). AF, Africa; EU, European; AS, Asian; SA, South American; AH, Archaic Humans. Dashed line

gives expected value if the mean values for innate immunity genes and autosomal protein-coding background genes were equal.
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Supplementary Material online). Since MHC gene diversity in

the Loschbour and Ust’-Ishim individuals is no higher than in

present-day humans, the high MHC diversity in the archaics

is likely not caused by problems with aligning short ancient

DNA reads. The fact that the signature is unique of the MHC

further suggests that it is not an artefact of incorrect short

read mapping of short ancient DNA reads (supplementary

figs. S6–S8, Supplementary Material online).

The relatively high MHC diversity in archaic humans is

evenly distributed in introns and exons, which do not

show significantly different SNP/FD ratios (supplementary

fig. S9, Supplementary Material online). In fact, neither

introns nor exons show different SNP/FD ratios between ar-

chaic and present-day humans (supplementary fig. S10,

Supplementary Material online). High gene diversity is thus

homogeneously distributed within single genes, rather than

FIG. 3.—Comparison of normalized mean SNP/FD ratios (log2) of present-day humans (PDH) and archaic humans (AH). (A) Average values for PDH and

AH for all MHC genes. Error bars give 95% confidence intervals calculated via bootstrap (B¼5,000). (B) Average values for PDH and AH for all MHC class I

genes. (C) Average values for PDH and AH for all MHC class II genes. (D) Distribution of SNP/FD ratios (log2) of MHC genes (x-axis) for all individuals. Missing

values for single individuals can either be genes without FDs or genes with <500 callable sites. (E) Comparison of normalized mean SNP/FD ratios (mean)

between single individuals. AF, Africa; EU, European; AS, Asian; SA, South American; EMH, Early anatomically Modern Humans; AH, Archaic Humans. Note

differences in the y-axis. Dashed lines in (D) and (E) give expected values if the mean values for innate immunity and autosomal protein-coding background

genes are the same.
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due to peaks of diversity in highly polymorphic sections of

the genes, which we would expect with mapping errors. The

observed patterns are consistent with the high linkage dis-

equilibrium and low average recombination rates of the

MHC region (International HapMap C 2005; Miretti et al.

2005; de Bakker et al. 2006; Traherne 2008) resulting in

high levels of diversity across the entire MHC region.

Further, we note that coverage is also evenly distributed

across genes—we find no evidence for different coverages

in introns than exons—and coverage is also comparable be-

tween ancient and present-day individuals (supplementary

fig. S11, Supplementary Material online).

We separately investigated SNP/FD ratios for the b-2-

microglobulin gene (B2M). B2M is part of the class I MHC

(light-chain) but—unlike the other MHC genes—is located

on chromosome 15. It is known to be nonpolymorphic in

humans (Corazza et al. 2004; Esposito et al. 2008). In con-

cordance with this, we find low SNP/FD ratios that are com-

parable between archaic and present-day humans

(supplementary fig. S12, Supplementary Material online).

Genes with Highest/Lowest Diversity Show Similar GO
Enrichments in Archaic and Present-day Humans

When evaluating the diversity of the entire gene set, genes

with the highest diversity (in the top-5% tail of the empirical

distribution for SNP/FD ratios) show a highly significant en-

richment only of GO categories related to the MHC in both

the archaic and present-day humans after correcting for

multiple testing (Bonferroni correction, k¼ 17, table 1).

This signal was consistently found when testing the archaic

humans in pairs (rather than triplets, supplementary tables

S1–S3, Supplementary Material online) and individually for

the Vindija Neandertal and the Denisova (supplementary

tables S4 and S5, Supplementary Material online), with the

Altai Neandertal showing nonsignificant enrichment (sup-

plementary table S6, Supplementary Material online).

In the bottom-5% tail of the empirical distribution we

found enriched categories related to virus or mitochondrial

functions (Bonferroni correction, k¼ 17, table 2). It is tempt-

ing to interpret these findings as differences between archaic

and present-day humans, especially as previous work suggests

that genes related to antiviral defense are often subject to

natural selection, either under strong purifying (Deschamps

et al. 2016) or positive selection (Manry et al. 2011; Key, et al.

2014; Enard et al. 2016). However, there was no consistent

enrichment pattern when analyzing genomes in pairs or indi-

vidually (rather than triplets), and most enrichments were

nonsignificant trends in some, but not all, archaic or

present-day humans (supplementary tables S7–S22,

Supplementary Material online). Thus, we have no strong ev-

idence of any different GO enrichment patterns between the

modern and archaic genomes.

Together, our results indicate that the enrichment of gene

categories among the genes with the highest or lowest diver-

sity is not specific to archaic nor present-day humans, with

patterns of diversity in genes with the highest or lowest SNP/

FD ratios probably being shaped by the action of long-term

balancing selection and strong purifying selection or selective

sweeps, respectively. However, we caution that the strength

of our conclusions is limited by our small sample size, and that

they will have to be confirmed when more archaic genomes

become available.

Discussion

Our results are consistent with previous studies that have

reported lower genetic diversity in archaic humans than in

present-day humans, both genome-wide and in protein-

coding regions (Meyer et al. 2012; Castellano et al. 2014;

Prufer et al. 2014, 2017). In a recent study, lower protein-

coding diversity observed in a set of 73 innate immunity genes

(Sullivan et al. 2017) was interpreted as suggesting that

Neandertals may have lacked the functional immune diversity

necessary to survive new pathogen infections (Wolff and

Greenwood 2010; Houldcroft and Underdown 2016;

Sullivan et al. 2017). Here, we re-evaluated this hypothesis

by studying the diversity of a set of 1,548 innate immune

genes, and by explicitly comparing them to all autosomal

protein-coding genes. We focused on innate rather than

adaptive immune genes as individual variation in innate im-

mune genes is not affected by somatic recombination (Flajnik

Table 1

Significantly Enriched GO Categories for Genes from the Top 5% Tail of the SNP/FD Empirical Distribution in the Three Archaic Humans and Three Present-

day Humans (Yoruba, French, Han) Ordered by Family-Wise Error Rate (FWER)

Archaic Humans (N 5 3) Present-day Humans (N 5 3)

GO ID GO Name FWER GO ID GO Name FWER

0032395 MHC class II receptor activity 0 0004984 Olfactory receptor activity 0

Top 5% 0042613 MHC class II protein complex 0 0042613 MHC class II protein complex 0

0004984 Olfactory receptor activity 0.017 0032395 MHC class II receptor activity 0.034

0042611 MHC protein complex 0.034 — — —

NOTE.—FWER values are given after correcting for multiple testing (Bonferroni correction, k¼17). Analyses considering pairs of individuals, and single individuals, are
presented in the Supplementary Materials. GO categories related to the MHC region are highlighted with bold font.
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and Kasahara 2010). Using this set of innate immune genes,

we find no significant difference in diversity between protein-

coding genes involved in innate immunity and all other auto-

somal protein-coding genes in any present-day or archaic in-

dividual. More strikingly, we see no difference in innate

immune gene diversity between the older Altai Neandertal

and the younger Vindija Neandertal individuals who lived at

least 70,000 years later, as might have been the case if

Neandertals were losing important gene diversity over time.

A larger number of Neandertal genomes are needed to con-

firm our results, but with the current available genomes, we

find no evidence to link a specific reduction in innate immune

gene diversity to Neandertal extinction. We cannot exclude,

though, that the global reduction in genome-wide diversity in

archaic humans affected the function of immune-related

genes.

As expected from long-term balancing selection, we find

that diversity in MHC genes is much higher than the diversity

in other autosomal protein-coding genes (Meyer and

Thomson 2001; Key, Teixeira, et al. 2014; Bitarello et al.

2018) but, interestingly, this effect is much stronger in archaic

than in present-day humans: For archaic humans, we find an

�47-fold higher diversity in MHC than in the protein-coding

background, whereas for present-day humans, MHC diversity

is only�7-fold higher than in background genes. This signal is

driven by very high diversity in the polymorphic MHC class II

genes. This is consistent with the analysis of 12 MHC genes by

Sullivan et al. (2017) who reported a significantly higher num-

ber of nonsynonymous SNPs in Neandertals compared with

present-day humans, also at intermediate frequencies, for

MHC genes relative to a genome-wide background. From

this, they concluded that heterozygote advantage at MHC

loci might have been stronger than expected and might

have maintained crucial functional variation despite low Ne

in Neandertals (Sullivan et al. 2017). Interestingly, the two

early modern humans we analyzed here show similar MHC

gene diversity to present-day people (fig. 3E), even though

their population densities, and therefore likelihoods of path-

ogen transmission, were presumably more similar to that of

archaic humans than to that of present-day humans. This is

not completely unexpected as the effective population size of

early modern humans was likely higher than that of archaic

humans (Fu et al. 2014). However, it contrasts with the un-

expectedly high MHC diversity maintained in the archaic

genomes.

Although it is difficult to completely rule out that techni-

cal artefacts might increase our measure of diversity in the

MHC genes, none of our tests shows evidence for misalign-

ments of short ancient DNA reads being responsible for our

findings. There are thus two plausible explanations for the

pattern of MHC diversity. 1) It could be caused by the old

TMRCA in the MHC region (Leffler et al. 2013; Tesicky and

Vinkler 2015) and the persistent presence of intermediate

frequency alleles as a consequence of long-term balancing

selection (Meyer and Thomson 2001; Key, Teixeira, et al.

2014; Bitarello et al. 2018), resulting in the maintenance

of sequence diversity in these genes which has been

reported for targets of long-term balancing selection

(Bitarello et al. 2018). 2) It could have been shaped by stron-

ger selective pressures in Neandertal than humans prevent-

ing extensive loss of diversity in these genes—although in

populations with small Ne the effects of selection are gener-

ally weaker than in population of larger Ne (Willi et al. 2006;

Charlesworth 2009; Hoffmann et al. 2017). A possible

mechanism for this would be associative overdominance.

In that case, selection against homozygous recessive delete-

rious alleles in genomic regions could result in overdomi-

nance at linked neutral loci, boosting the effects of

Table 2

Significantly Enriched GO Categories among the Bottom 5% Tail of the SNP/FD Empirical Distribution in the Three Archaic Humans and Three Present-day

Humans (Yoruba, French, Han) Ordered by Family-Wise Error Rate (FWER)

Archaic Humans (N 5 3) Present-day Humans (N 5 3)

GO ID GO Name FWER GO ID GO Name FWER

0004984 Olfactory receptor activity 0 0003676 Nucleic acid binding 0

Bottom 5% 0004930 G-protein coupled receptor activity 0

0004888 Transmembrane signaling receptor activity 0

0098800 Inner mitochondrial membrane protein complex 0

0099600 Transmembrane receptor activity 0

0005125 Cytokine activity 0

0005179 Hormone activity 0

0098798 Mitochondrial protein complex 0

0038023 Signaling receptor activity 0

0007186 G-protein coupled receptor signaling pathway 0.017

0005743 Mitochondrial inner membrane 0.034

NOTE.—FWER values are given after correcting for multiple testing (Bonferroni correction, k¼17). Analyses considering pairs of individuals, and single individuals, are
presented in the Supplementary Materials.
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balancing selection. Associative dominance has recently

been reported to drive maintenance of genetic diversity in

experimental small-Ne populations of field-caught

Drosophila melanogaster, especially in regions with low re-

combination rates (Fraser 2017; Schou et al. 2017). This is

particular interesting as recombination rates in the human

MHC region on average are notably lower than expected

from the genome average (International HapMap

Consoritum 2005; Miretti et al. 2005; de Bakker et al.

2006; Traherne 2008). Theoretically, the increased diversity

in the MHC could also be the result of introgression into the

archaic hominins. However, we note that 1) gene flow of

this magnitude has not been detected to date and 2) if in-

trogression contributed, we would not expect it to strongly

affect the gene set as a whole. Therefore, we consider this

an unlikely explanation.

Future sequencing of additional high-coverage archaic

genomes that sample the geographic and temporal distribu-

tion of Neandertals will allow questions about the effects of

gene diversity on Neandertal fitness to be addressed in greater

detail.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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