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Abstract

We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to
mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended
number processing network and suggest that important processing nodes of this network are phonological processing, verbal
knowledge, visuo-spatial short-term and working memory, spatial ability and general executive functioning. The model was
highly specific to predicting arithmetic performance. There were no strong relations between mathematical achievement and
verbal short-term and working memory, sustained attention, response inhibition, finger knowledge and symbolic number
comparison performance. Non-verbal intelligence measures were also non-significant predictors when added to our model.
Number sense variables were non-significant predictors in the model and they were also non-significant predictors when entered
into regression analysis with only a single visuo-spatial WM measure. Number sense variables were predicted by sustained
attention. Results support a network theory of mathematical competence in primary school children and falsify the importance
of a proposed modular ‘number sense’. We suggest an ‘executive memory function centric’ model of mathematical processing.
Mapping a complex processing network requires that studies consider the complex predictor space of mathematics rather than
just focusing on a single or a few explanatory factors.

Introduction

Mathematics likely builds on several cognitive abilities
(Passolunghi, Vercelloni & Schadee, 2007; Passolunghi &
Lanfranchi, 2012; Krajewski & Schneider, 2008; Geary,
2012; Swanson & Jerman, 2006) implemented by an
extended neural network of the brain (Supekar, Musen &
Menon, 2009; Bressler & Menon, 2010; Menon, 2010;
Fias, Menon & Sz}ucs, 2013; Goswami & Sz}ucs, 2011;
Dowker, 2005). However, to date there have been only a
few studies considering several of these abilities in
a single framework. Further, in recent years the idea of
a potentially biologically based ‘number sense’, a non-
symbolic magnitude representation has received a lot of
attention as an explanatory factor behind mathematical
performance (Dehaene, 1997). Some argue that
mathematical skill is more related to a non-symbolic

magnitude representation while others claim that the key
is a link between the magnitude representation and
symbols (see De Smedt & Gilmore, 2011, and No€el &
Rouselle, 2011, for overviews). Hence, it is important to
compare the predictive power of number sense variables
to those of more general variables with robust methods
in a single framework. Here we report such a study which
relied on distribution independent permutation testing
and confidence interval estimation of correlation and
regression models contrasting the predictive power of
several variables on mathematical performance in 9-year-
old children.
A large number of studies strongly associated short-

term memory (STM) and working memory (WM) with
mathematical achievement by a large number of studies
(see reviews in Raghubar, Barnes & Hecht, 2010;
Gathercole, Pickering, Night & Stegmann, 2004;
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Swanson & Jerman, 2006; Geary, 2012; Passolunghi,
Mammarella & Alto�e, 2008; Passolunghi & Mammarel-
la, 2010; Passolunghi & Siegel, 2001; Simmons, Willis &
Adams, 2012). STM only requires the maintenance of
information while WM also requires an additional
processing component besides maintenance. Most stud-
ies have relied on Baddeley’s WMmodel (1986) and have
assumed that the additional processing component relies
on domain-general central executive (CE) function.
Hence, most studies have tested WM with verbal tasks
only. However, evidence is now accumulating that verbal
and visual WM function can dissociate (Shah & Miyake,
1996; Jarvis & Gathercole, 2003; Klauer & Zhao, 2004)
and in fact may differently relate to mathematical
competence as several studies testing both verbal and
visual memory found that only visual but not verbal
WM performance discriminates children with poor and
typical mathematical achievement (White, Moffitt &
Silva, 1992; Andersson & €Ostergren, 2012; Sz}ucs,
Devine, Soltesz, Nobes & Gabriel, 2013a; Kytt€al€a &
Lehto, 2008). One study tested children with poor
mathematical or poor reading achievement as well as
children with a combined deficit and found that visual
STM was related to poor mathematical achievement,
and poor reading achievement was linked to poor verbal
STM while the double deficit group had poor verbal
WM (Schuchardt, Maehler & Hasselhorn, 2008; see also
Van der Sluis, van der Leij & de Jong, 2005). Recent
studies have further confirmed the specific importance of
visual STM and WM for mathematical development
(Passolunghi & Lanfranchi, 2012; Sz}ucs et al., 2013a).
On the other hand, results are compatible with the wider
literature, e.g. studies with dyslexic children and poor
readers have reported impaired verbal STM (Helland &
Asbjornsen, 2004; Hecht, Torgesen, Wagner & Rashotte,
2001; Schuchardt et al., 2008; Pimperton & Nation,
2010) and children with specific language impairment
have very poor verbal STM and show weak counting and
calculation skills (Donlan, Cowan, Newton & Lloyd,
2007). Hence, poor verbal memory primarily seems to be
connected to poor reading while poor visual memory
seems more directly related to poor mathematical
function. The above results suggest that it is important
to test verbal and visual aspects of both STM and WM
function.

Phonological skill is another important domain to
examine. Reading and math ability are known to be
associated with each other (Jordan, Wylie & Mulhern,
2010). For example, recently in a sample 1004 British 7-
to 10-year-old children, Devine, Soltesz, Nobes, Gosw-
ami and Sz}ucs (2013) reported r = 0.626 correlation
between standardized reading and mathematics scores.
Phonological ability is known to be important for

reading skill (Goswami, 2011; Ziegler & Goswami,
2005; Bradley & Bryant, 1983) and it can also be
expected to play a role in arithmetic as written compu-
tational problems are typically coded into speech-based
representations during solution and often problems are
communicated in speech. Furthermore, verbally coded
solutions to multiplication and addition problems are
likely to be retrieved from long-term phonological
memory rather than computed on demand (Ashcraft,
1995; Ashcraft & Stazyk, 1981; Ashcraft & Bataglia,
1978) and counting strategies strongly build on learnt
verbal associations. In fact, Leather and Henry (1994)
reported strong correlations between phonological
awareness measures and arithmetic test scores. Hecht
et al. (2001) found that phonological memory (verbal
STM/WM), the rate of access to phonological codes in
long-term memory (naming digits and letters) and
phonological awareness were strongly associated with
computational ability and overall phonological skill
nearly completely explained the relationship between
reading and computational ability. More recently, Swan-
son and Beebe-Frankenberger (2004) and Simmons,
Singleton and Horne (2008) reported similar results.
Importantly, however, studies have also reported nega-
tive results. de Jong and van der Leij (1999), Passolunghi
et al. (2007) and Passolunghi et al. (2008) found no
relation between phonological ability and math achieve-
ment. Hence, overall it is not clear how and when during
development phonological ability contributes to mathe-
matical development.

Non-verbal intelligence also seems strongly related to
mathematical achievement. For example, in a longitudi-
nal study from kindergarten to grade 2, de Jong and van
der Leij (1999) found that non-verbal intelligence, word
knowledge, and phonological awareness were important
predictors of initial mathematical skill. Similarly, Kyttala
and Lehto (2008) found that non-verbal fluid intelligence
was the best predictor of mental arithmetic, explaining
23% of the variance, while Raven’s Progressive Matrices
explained 37% of the variance in geometry problems.
Non-verbal intelligence may partially depend on spatial
skills which have been reported to be weak in children
with poor mathematical achievement (Rourke &
Conway, 1997; Rourke, 1993). Spatial processes can be
potentially important in mathematics where explicit or
implicit visualization is required, like when imagining
operations along the number line or visualizing func-
tional relationships. In fact, Rourke (1988) suggested
that specific poor mathematical achievement can be
related to so-called non-verbal learning difficulties char-
acterized by poor visuo-spatial organization skill. Of
course, as the above studies demonstrate several other
factors relate to mathematical achievement besides
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spatial skills and poor spatial skills may also relate to
weak visuo-spatial STM/WM.
Several studies have found that mathematical skill

correlates with general executive functioning and task
switching (e.g. Van der Ven, Kroesbergen, Boom &
Leseman, 2012; Bull, Espy & Wiebe, 2008; Conlin,
Gathercole & Adams, 2005). Several studies have used
the trail-making A and B tasks as measures of executive
functioning and task switching and have shown that
performance on these tasks is correlated with mathe-
matical skill (Soltesz, Sz€ucs, D�ek�any, M�arkus & Cs�epe,
2007; McLean & Hitch, 1999; White et al., 1992; Sz}ucs
et al., 2013a). Others reported that mathematical
achievement was related to attentional function (Swan-
son, 2011; Ashkenazi, Rosenberg-Lee, Tenison &
Menon, 2012; Hannula, Lepola & Lehtinen, 2010) and
several studies found that inhibitory function was related
to the level of mathematical development (Bull & Scerif,
2001; Bull, Johnston & Roy, 1999; Passolunghi, Cornoldi
& De Liberto, 1999; Passolunghi & Siegel, 2004;
McKenzie, Bull & Gray, 2003; Espy, McDiarmid, Cwik,
Stalets, Hamby & Senn, 2004; Blair & Razza, 2007;
Swanson, 2011). Task-switching (control), attentional
and inhibition processes seem very important for math-
ematics because they coordinate which items of interest
receive processing and when and in what order they enter
processing. Such functions are probably very important
in calculations which require the continuous selection
and coordination of several processing steps and items in
memory. In fact, task-switching, inhibitory, attentional
and working memory processes may all be intricately
intertwined and form the core of ‘central executive’
memory processes (Hasher & Zacks, 1988; Miyake,
Friedman, Emerson, Witzki, Howerter & Wager, 2000).
Recently, some have suggested that mathematical

achievement strongly relates to a so-called number sense,
a proposed domain-specific intuition for magnitude
(Dehaene, 1997). Number sense has typically been
measured using non-symbolic magnitude discrimination
tasks where children decide which of two dot patterns is
more numerous. In such a task Mazzocco, Feigenson and
Halberda (2011) set up several regression models and
found that magnitude discrimination ability predicts
performance on standardized mathematics tests even
when spatial memory performance is considered. How-
ever, beta values were not communicated and, more
critically, mathematics and magnitude discrimination
performance were measured in grades 8 and 9 while
memory performance scores were determined in grade 3.
Considering the 6-year gap between taking measures, the
validity of the analyses is not clear. In another study,
Piazza, Facoetti, Trussardi, Berteletti, Conte, Lucangeli,
Dehaene and Zorzi (2010) found that non-symbolic

comparison performance moderately correlated with two
measures of symbolic number comparison (R2 = 0.17; p =
.049) and it was noted that this relationship remained
even after controlling for verbal IQ. However, other
math performance measures were not correlated with
non-symbolic discrimination and other variables were
not controlled. Halberda, Mazzocco and Feigenson
(2008) also reported ‘retrospective prediction’ of math
performance from performance in a non-symbolic deci-
sion task. However, in this study non-symbolic compar-
ison was actually measured well after math performance.
That is, better math performance in this study may have
been a cause of better non-symbolic comparison perfor-
mance rather than vice versa (see full argument and
summary of studies in No€el & Rouselle, 2011 and
Solt�esz, Sz}ucs & Sz}ucs, 2010). Besides, the above studies
typically use hierarchical regression analysis which relies
on (very) strong model assumptions that can greatly bias
analysis outcomes. Overall, there is a clear need for a
study that considers the predictive power of number
sense variables on mathematical achievement in the
context of several other variables.
In this study we contrasted the predictive power of

several cognitive abilities, including various measures of
the number sense, on mathematical skill in nearly 100
children. We tested both verbal and visual STM and
WM, had a measure of phonological decoding, two
measures of non-verbal intelligence (Raven’s CPM and
WISC Block Design), tests of executive functioning and
task switching (Trail-making A and B). We had measures
of spatial orientation ability, knowledge of spatial
symmetry, mental rotation, finger knowledge, a measure
of sustained attention and response inhibition (stop
signal task), and measured baseline simple RT in a target
detection task. We measured spatial bias using a line
bisection task and determined several parameters (accu-
racy, RT and coefficient of variation) of three proposed
measures of the number sense (non-symbolic and sym-
bolic number comparison and subitizing). We also
measured dot enumeration performance in the counting
range (4–6 dots). We used two standardized tests of
mathematical operations as outcome measures and a
standardized reading test as a control outcome measure.
Hence, we tested whether our preferred model specifi-
cally predicts mathematics achievement. We used robust
permutation based bootstrap correlation and regression
analyses which are not subject to any distributional
assumptions. Bootstrap confidence interval estimation is
also useful because it can quantify uncertainty in
parameter estimates (correlation coefficients and beta
values) which is particularly important in simultaneous
regression analyses where several variables ‘compete’ to
explain a share of variance. Hence, confidence intervals
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give a good indication of the robustness/stability of
particular parameters which is especially important in
psychological data where several variables may be
interrelated.

Methods

For complete description see the Supplementary Meth-
ods.

Participants

Here we report data from 98 children recruited from Year
3 and Year 4 classes of schools in Cambridgeshire,
Hertfordshire and Essex in the United Kingdom. There
were 51 girls (mean age = 8.9 years; SD = 0.5; range = 7.8
to 10.3 years) and 47 boys (mean age = 9.0 years; SD =
0.5; range = 8.3 to 10.5 years). The socioeconomic status
score was 3.6�1.9 in girls (mean�SD) and 3.8�2.0 in
boys (see detailed scoring in Supplementary Methods).
Children with at least normal reading skill (standard
reading score > 85) were invited to take part in the study
from a sample of 1004 British children described in detail
in Devine et al. (2013). The parents of 104 children gave
consent to taking part in the detailed study reported here.
Children completed approximately 7 hours of testing
across several testing sessions, and 95 to 98 children had
available scores along all measures examined in crucial
regression models reported in the current paper (98 for
the best models and 95 for number sense variable focused
models). Data for these children are reported here.

Measures and procedure

Standardized tests

Children were initially tested using standardized group
mathematics and reading tests which were administered
to whole classes. The math test used was the Mathemat-
ics Assessment for Learning and Teaching test (MaLT;
Williams, 2005). Reading ability was assessed using the
Hodder Group Reading Test II, levels 1 and 2 (HGRT-
II; Vincent & Crumpler, 2007).

Children were individually administered an additional
standardized measure of mathematical ability (the
Numerical Operations subtest of Wechsler Individual
Achievement Test (WIAT-II; Wechsler, 2005)). Math
performance (hereafter: math) in this study is character-
ized by the mean score on the MaLT and the WIAT
Numerical Operations subtest. There was a standardized
measure of reading ability (WIAT-II Word Reading
subtest) and a standardized measure of phonological

decoding (WIAT-II Pseudoword Decoding subtest), and
two IQ tests (the Raven’s Coloured Progressive Matrices
(Raven’s CPM; Raven, 2008) and a short form of the
Wechsler Intelligence Scale for Children – 3rd Edition
(WISC-III; Wechsler, 1991)). The WISC-III short form
included the Block Design (non-verbal) and Vocabulary
(verbal) subtests. This combination of subtests has the
highest validity and reliability of the two-subtest forms
(rtt = .91 r = .86; Table L-II, Sattler, 1992). Socioeco-
nomic status was estimated from parents’ education
levels and occupations. Children were also administered
five subtests of the Automated Working Memory
Assessment (AWMA; Alloway, 2007), which included
two measures of verbal short term memory (STM): Digit
Span and Word Recall; one measure of visuo-spatial
STM: Dot Matrix; one measure of verbal working
memory: Listening Span (recall and processing scores);
and one measure of visuo-spatial working memory: Odd
One Out (Odd-one-out; recall and processing scores).

Experimental tasks

Trail-making task. Trail-making tests A and B were
administered. Each received a score (2 = no errors or self-
corrected, 1 = one error, 0 = two or more errors), and
solution speed was measured in seconds.

Finger knowledge. Children were asked to identify, with
their eyes closed, which finger had been touched by the
experimenter using the eraser end of a pencil. Children
were familiarized with finger names prior to the task.
The experimenter touched the children’s fingers in a
randomized order and responses were recorded using a
voice recorder. Each response received a score (1 =
correct, 0 = incorrect).

Line bisection. Children bisected 16 lines of varying
length. Children were instructed to mark where they
thought the ‘halfway’ point of each line was. Lines were
presented individually on strips of paper. Lines varied
with respect to the alignment with the midline of the
strips of paper. The total time to bisect the 16 lines was
recorded. The distance from the leftmost point of the line
to the point where the children made their midpoint
estimate was measured to the nearest mm using a ruler.
The difference between the actual midpoint and the
estimate was calculated and recorded for each item.

Mental rotation. Three separate worksheets with differ-
ent stimuli types (objects/animals, letters and hands)
were presented to the children; each worksheet had seven
items. For each item within a worksheet, a target
stimulus was presented, along with three comparison
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stimuli, two of which were mirror images (distractors)
and one was identical to the target. All three comparison
images were rotated by various angles. The children were
required to identify and circle the stimulus identical to
the target. Children’s accuracy and time to complete all
seven items was recorded for each worksheet.

Spatial symmetry. Children were presented with two
pages which contained six half-drawn shapes against a
grid background. A dashed line indicated the line of
symmetry. Children were required to draw the other half
of the shape for each item. Shapes (and lines of
symmetry) were presented vertically on one page and
horizontally on the other. The total time to complete the
12 shapes was recorded and the accuracy of items was
scored with one point for every correct line segment.

Spatial orientation. Children were presented with a map
containing different items such as a tree, car, cat and
traffic light. Children were required to imagine them-
selves in this space, and to imagine they were standing
next to one item, and facing another item. The children
were then required to estimate the direction of a third
item and draw the location of this item in relation to the
other two items on a piece of paper. Responses were
recorded as correct if they fell within �20 degrees of the
correct location. Correct responses received a score of 1,
with a maximum of 6 points available. It is important to
note that this scale was not standardized and we could
not determine the reliability of this scale, which is a
limitation of our study. Future research should use a
proven reliable measure of this construct.

Simple RT. Children pressed a key in response to a white
square which appeared after 1000, 2500 or 4000 ms.
There were 60 trials.

Sustained attention. Children were required to attend to
a stimuli stream (letters) and to detect a target sequence
(A B C) and to withhold responses to other sequences
containing the target letters (‘deceiver’ trials; e.g. A B D
etc.) or sequences containing no target letters (‘non-
target’ trials; e.g. D H F). The number of hits and misses
for targets, the RT for target hits, the number of correct
rejections and false alarms for deceivers and non-target
trials were recorded. Children were presented with 80
triads of the three different trial types.

Stop signal task. A white arrow, pointing left or right,
was shown on a black background in the middle of the
screen. The arrow was followed by either a sound, the
stop signal, or there was no sound. Children were
required to indicate the direction of the arrow using a

key press during ‘go’ trials, and to withhold their
responses during ‘stop’ trials. The time delay until the
stop sound was dynamically varied between 0 and 1000
ms depending on performance (see Supplementary
Methods). The ratio of ‘go’ and ‘stop’ trials was 2:1.
Children completed three blocks of 60 trials. For each
trial we measured RT, Stop Signal RT (defined as the RT
� average stop signal delay), and the number of times the
child responded to the arrow incorrectly.

Number sense measure 1: Non-symbolic magnitude
comparison. Two sets of black dots were presented
simultaneously on a white background. The children’s
task was to decide which set contained more dots and
press the button on the side of the larger set. Dot size
was varied between sets. There were four blocks of 32
stimuli. See more details in Supplementary Methods.

Number sense measure 2: Symbolic magnitude
comparison. Children decided whether visually presented
digits were smaller or larger than 5. Children pressed a
button on the keyboard with their left hand if the number
was smaller than 5 and another buttonwith their right hand
if the number was larger than 5. Two blocks of 40 stimuli
were presented.

Number sense measure 3: Subitizing. Arrays containing
one to six black dots appeared on a white background
and children were instructed to say the number of dots as
quickly as possible. Dot stimuli were presented in
canonical and, where possible, non-canonical arrange-
ments. Two blocks of 30 trials were presented. RTs were
measured using a voice-key.

Statistics

To start with, zero-order and partial correlations were
studied. Partial correlations controlled for the influence
of three IQ variables: WISC Vocabulary, WISC Block
Design and Raven’s CPM (hereafter: Raven). Other
variables were considered to have a robust relationship
with math if their correlation remained even after
controlling for the three IQ variables. Highly intercorre-
lated variables were averaged in order to avoid problems
with multicollinearity (see Results).
In order to assess the robustness of correlations, a

bootstrap procedure determined empirical 95% confi-
dence intervals for correlations. Bootstrap and permuta-
tion procedures followed Chihara and Hesterberg (2011)
and Fox (2008). These procedures do not rely on any
assumptions regarding the distribution of variables. In
all, 100,000 bootstrap samples were taken with replace-
ment, the correlation coefficient was computed for each
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sample and confidence limits were determined using
values at the 2.5% and 97.5% centiles. When computing
bootstrap confidence intervals, correlations can be con-
sidered robust if their confidence interval does not
include zero. That is, this procedure offers another
criterion for establishing the significance of correlations
besides traditionally used p values.

In order to determine the importance of individual
predictors, simultaneous multiple linear regression was
used throughout this study. The order of entry into
models is irrelevant in simultaneous regressions (unlike
in hierarchical regression). The procedure finds an
optimally weighted sum of predictor variables for
predicting the dependent variable. We were interested
in the relative importance of variables, hence standard-
ized b values will be reported rather than unstandardized
Beta (B) coefficients.

The modelling attempt started with the potential
predictor variables showing significant partial correla-
tions with math. These variables were entered into the
regression and variables with significant b values were
identified. We tested whether non-significant predictor
variables can become significant predictors when adding
them to the model one by one. This was achieved by
adding a single, previously non-significant variable to the
model with significant predictors one by one. None of
the non-significant predictors became significant.

After a best model was identified, further procedures
tested whether adding IQ variables (WISC Vocabulary,
WISC Block Design and Raven) to the regression model
changed significant predictors and improved fit. In order
to determine potential gender differences, another analy-
sis also added Gender as a dummy variable to the best
model. In order to get a measure of any potentially
remaining multi-collinearity problems in regression
models the variance inflation factor (VIF; see e.g.
Cohen, 2003; O’Brien, 2007) was computed from the
overall intercorrelation tables of all variables tried in
various models. Typically, VIF values larger than 5 or 10
are considered to indicate multi-collinearity problems.
All VIF values we measured were smaller than 2.02.

In order to study the robustness of models, bootstrap
confidence intervals were computed for the b values of
each predictor. To this end, 100,000 bootstrap samples
were generated with replacement. The confidence inter-
vals of robustly significant variables should not include
zero. In addition, permutation testing of the significance
of b values and whole models was also carried out. To
this end, 100,000 permutations were generated without
replacement. That is, the order of rows of the dependent
variable was kept fixed and the order of the rows of the
predictor variables was permuted 100,000 times and a
regression was run for each 100,000 random samples.

The significance level can then be determined by
assessing the extremity of regression parameters relative
to the 100,001 samples (100,000 random samples plus
the original sample). Generating 100,000 random sam-
ples allows for determining p values with 10-5 precision.
Analyses were done in Matlab 8.1 (2013a) (www.math-
works.com) and in R 2.14.1 (www.r-project.org).

Results

Zero-order and partial correlations

There was a strong relation between math and intelli-
gence measures: WISC Block Design (r = 0.53; p < .001),
Raven (r = 0.49; p < .001) andWISC Vocabulary (r = 0.52;
p < .001). Hence, other variables were considered to have
a robust relationship with Math if their correlation
remained even after controlling for WISC Block Design,
Raven and WISC Vocabulary scores. Significant partial
and zero-order correlations are shown in Table 1. For
completeness, Table 1 shows correlations for all tests
including the non-significant partial correlations with the
Hodder Group Reading Test and AWMA Word Recall
(verbal STM). There were no significant partial or zero-
order correlations with simple RT (r = �0.13), finger
knowledge (r = 0.05), line bisection deviation score (r =
0.12) or RT (r =�0.016). There were no significant partial
correlations with symmetry total score (r = 0.16) or RT (r
= 0.06) and mental rotation score (r = �0.02) or RT (r =
�0.11). However, zero-order correlations with the sym-
metry total score (r = 0.43, p < .001) and mental rotation
accuracy score (r = 0.29, p < .01) were significant. Hence,
these measures will also be investigated further later.

None of the number sense slope or Coefficient of
Variation (COV) measures showed significant partial
correlations in accuracy or in RT (0 ≤ r ≤ 0.22; non-
symbolic comparison, symbolic comparison, subitizing
and counting range dot enumeration). There were no
correlations with the percent of correct solutions in the
dot enumeration and non-symbolic magnitude discrim-
ination task (0 ≤ r ≤ 0.15). The sole number sense related
measure which showed significant partial correlation
with math was the percentage of correct solutions in the
symbolic number discrimination task (see Table 1).
Some number sense measures did show significant
zero-order correlations with math. These will also be
investigated further below.

Averaging highly correlated variables

Odd-one-out recall and Odd-one-out processing scores
were highly correlated (r = 0.96). Hence they were
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averaged to form a visual WM score. Listening Span
Recall and Listening Span Processing scores were highly
correlated (r = 0.95). Hence, they were averaged to form
a Verbal WM score. The WIAT Word Reading and
WIAT Pseudo-word reading scores were highly corre-
lated (r = 0.77). Hence, they were averaged to form a
Phonological Decoding score. Full zero-order and par-
tial correlation tables for all relevant measures are shown
in Supplementary Table 2. While there were no signifi-
cant partial correlations between math and most number
sense measures except symbolic number comparison RT,
it is theoretically important to see their relation with
math and related variables. Hence, correlations are also
shown for all number sense variables, except for slope
measures which did not show any zero-order correlation
with math (all: r ≤ 0.12).

Bootstrap correlations

In order to assess the robustness of correlations, a
bootstrap procedure determined empirical 95% confi-
dence intervals for zero-order correlations. Figure 1
shows empirical 95% bootstrap confidence intervals for
zero-order correlations between math and those vari-
ables which showed significant partial and/or zero-order
correlations with math. Correlations for all number sense
measures are also shown. All measures which showed
significant partial correlations with math showed robust
zero-order correlation with math except the stop signal
task. Descriptive statistics for measures showing signif-
icant partial and bootstrap correlations with math are
shown in Table 2. In addition to the above, while only
symbolic number comparison task total accuracy
showed significant partial correlation with math, some
other number sense measures also showed zero-order
bootstrap correlations with math (see Figure 1). Descrip-
tive statistics for number sense measures are provided in
Table 3.

Regression modelling

Regression outcomes including bootstrap confidence
intervals for b values and permutation testing results
are summarized in Figure 2. Supplementary Table 3
shows initial steps of setting up a model and Table 4
shows refining the model. Because of the lack of robust
bootstrap correlation with math, the Stop Signal task
was omitted from the initial potential predictor pool.
First, the nine main variables of interest (which showed
significant partial and bootstrap correlations with math)
were entered into the regression (Supplementary Table 3;
M1). The regression explained 65% of variance. Dot
matrix, visual WM, Phonological Decoding, SpatialT
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Orientation and Trail-making were significant predic-
tors. In contrast, verbal WM, Digit Recall, Symbolic
number comparison accuracy and Sustained Attention
were not significant predictors. The initial model is also
shown in Figure 2A with bootstrap confidence intervals
and permutation testing outcomes which confirmed
parametric statistics results.

In order to establish the potential individual impor-
tance of the above non-significant predictors, each of the
non-significant predictors was entered into regressions
one-by-one along with the five above-established signif-
icant predictors (Dot matrix, visual WM, Reading,
Spatial Orientation and Trail-making). That is, in each
step only a single, sixth variable was added to the above
five significant predictors. Results are shown in M2–5 in
Supplementary Table 3. In each of these analyses the
amount of explained variance ranged between 63 and
65%. b values related to each added variable remained
non-significant. In contrast, all originally significant b
values associated with the above five significant predic-
tors remained significant. An additional regression
added the Stop Signal Task accuracy to the five
significant predictors (M6 in Supplementary Table 3).
The related b value was non-significant while Beta values
related to the five originally significant predictors
remained significant. Hence, the five non-significant
variables (verbal WM, Digit Recall, Symbolic number
comparison accuracy, Sustained Attention, Stop Signal
Task) were omitted from all further analyses. Two
additional separate regressions added Symmetry and
Mental Rotation scores to the five significant predictors
because these showed significant zero-order (but not
partial) correlations with math (M7–8 in Supplementary
Table 3). The related b values were non-significant while
b values related to the five originally significant predic-
tors remained significant. Hence, these variables were
also omitted from further analyses.

Table 4; M1 shows the model with only the above five
significant predictors. The following steps examined the
relevance of general IQ variables for the above model. It
is important to emphasize that the order of entry is not
important when using simultaneous regressions. First,
the three main IQ scores (WISC Vocabulary, Raven and
Block Design) were added to the five remaining variables
(Table 4; M2 and Figure 2B). Only WISC Vocabulary
was a significant predictor. Hence, Raven and WISC
Block Design were omitted from the following model
(Table 4; M3 and Figure 2C). Raven (Table 4; M4 and
Figure 2D) and WISC Block Design (Table 4; M5 and
Figure 2E) remained non-significant even when they
were entered into the regression without the other non-
verbal IQ variable. In addition, the R2 value of the whole
model did not change when adding either Raven orT

ab
le

2
D
es
cr
ip
ti
ve

st
at
is
ti
cs
.
P
h
o
n
.D

ec
.:
P
h
o
n
o
lo
gi
ca
l
d
ec

o
d
in
g
(W

IA
T
).
Sp

at
ia
l
O
r.
:
Sp

at
ia
l
O
ri
en

ta
ti
o
n
.
T
ra
il
-A

ti
m
e:

T
ra
il
-m

ak
in
g
A
ti
m
e
in

se
co

n
d
s.
Su

st
.
A
tt
.

H
it
:
Su

st
ai
n
ed

A
tt
en

ti
o
n
H
it
ra
te
.
Sy

m
b
.
C
o
m
p
.
T
o
t.
:
Sy

m
b
o
li
c
n
u
m
b
er

co
m
p
ar
is
o
n
to
ta
l
ac

cu
ra
cy

sc
o
re
.
N

=
n
u
m
b
er

o
f
p
ar
ti
ci
p
an

ts
.
M
ea

n
,
SD

,
SE

an
d
lo
w
er

an
d

u
p
p
er

b
o
u
n
d
s
o
f
9
5
%

co
n
fi
d
en

ce
in
te
rv
al
s
ar
e
sh
o
w
n

M
at
h

W
IA

T
R
ea
di
ng

D
ot

M
at
ri
x

vs
W
M

P
ho

n.
D
ec
.

Sp
at
ia
l

O
r.
(%

)
T
ra
il-
A

ti
m
e

(s
ec
)

W
IS
C

V
oc
ab
ul
ar
y

B
lo
ck

D
es
ig
n

R
av
en

ve
rb
al

W
M

D
ig
it

R
ec
al
l

Su
st
.
A
tt
.

H
it
(%

)
Sy

m
b.

C
om

p.
To

t.
(%

)

N
98

98
98

98
98

98
98

98
98

98
98

98
94

97
M
ea
n

97
.9

10
7.
5

10
0.
6

11
1.
2

10
1.
8

29
.6
%

45
.5

10
.6

10
.1

10
7.
8

99
.7

10
1.
8

69
.5
%

91
.7
%

S
D

14
.5

15
.3

15
.8

12
.7

9.
6

21
.1
%

12
.8

2.
8

3.
8

14
.4

14
.0

16
.1

13
.6
%

6.
7%

S
E

4.
6

4.
9

5.
0

4.
0

3.
0

6.
7%

4.
0

0.
9

1.
2

4.
6

4.
2

4.
9

3.
5%

2.
0%

C
i:2

.5
%

95
.0

10
4.
4

97
.4

10
8.
6

99
.9

25
.4
%

43
.0

10
.0

9.
3

10
4.
9

96
.9

98
.5

66
.8
%

90
.4
%

C
i:9

7.
5%

10
0.
8

11
0.
6

10
3.
8

11
3.
7

10
3.
8

33
.8
%

48
.1

11
.1

10
.9

11
0.
6

10
2.
5

10
5.
0

72
.3
%

93
.1
%

© 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

Mathematical network nodes in children 513



WISC Block Design. Further, the significance of signif-
icant predictors did not change when Raven and WISC
Block design were added to the model. That is, adding
IQ variables did not affect other variables’ predictive
effect. Hence, the model in Table 4; M3 and Figure 2C
was considered the best solution because this explained
the highest amount of variance with the least number of
variables with significant b values. This selected best
model (Table 4; M3; with WICS Vocabulary added) was
also compared to the starting model (Table 4; M1) with
a partial F test. The model fit was significantly better in
the selected ‘best’ model than in the starting model (F =
10.14; p = .0019). Notably, in all of the above analyses
parametric, permutation and bootstrap procedures pro-
duced exactly the same outcome. The best model was
also tested with Gender as an additional dichotomous
dummy coded variable. Gender was a non-significant
predictor (b = �0.06; p = ns [0.35]). The bootstrap
resampling provides a robust method for estimating
confidence intervals for b values and determining p
values. In addition, the best model conformed well to the
assumptions of multiple linear regression and VIF values

were low (see Supplementary Results and Supplementary
Figure 1).

Testing the specificity of the model

The specificity of the model was tested by using the
above best model (Figure 2C) to predict reading rather
than math performance. The dependent variable was the
Hodder Group Reading Test which was not included in
any of the predictors and showed a moderate (r = 0.57)
zero-order correlation with the Phonological Decoding
predictor variable. The model provided a good fit (N =
98; R2 = 0.39; F = 9.57; p < .0001). However, only
Phonological Decoding (b = 0.424; p < .0001) and WISC
Vocabulary (b = 0.23; p = .017) were significant individ-
ual predictors. Other variables showed negligible b values
(0.005 ≤ b ≤ 0.08; 0.444 ≤ p ≤ .948). The model fit
remained unchanged when only Phonological Decoding
(b = 0.462; p < .0001) and WISC Vocabulary (b = 0.267; p
< .0001) were used as predictors (N = 98; R2 = 0.39; F =
30.10; p < .0001). The model fit improved slightly when
Sustained Attention (which showed a significant partial

Figure 1 95% bootstrap confidence intervals for zero-order correlations. Significant correlations are marked by big bold dots. Non-
significant correlations are marked by small dots. Blue lines show confidence intervals for test scores and accuracy. Red lines show
confidence intervals for median RT. Symbolic/ Non-symbolic: symbolic and non-symbolic comparison tasks.

Table 3 Descriptive statistics for number sense measures. Non-Symb. / Symbolic / Subitizing Total: Total accuracy in the non-
symbolic task, symbolic and subitizing tasks. COV: Coefficient of Variation in the three above tasks. N = number of participants.
Mean, SD, SE and lower and upper bounds of 95% confidence intervals are shown

Non-Symb
Total (%)

Symbolic
Total (%)

Subitizing
Total (%)

Non-Symb
COV (RT)

Symbolic
COV (RT)

Subitizing
COV (RT)

N 97 97 97 97 97 97
Mean 90.6% 87.2% 86.7% 0.34 0.29 0.24
SD 21.2% 21.1% 21.2% 0.15 0.10 0.13
SE 8.7% 8.6% 8.6% 0.06 0.04 0.05
Ci:2.5% 86.4% 83.0% 82.5% 0.31 0.27 0.21
Ci:97.5% 94.8% 91.4% 90.9% 0.37 0.31 0.26

© 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

514 D�enes Sz}ucs et al.



correlation with the Hodder Group Reading Test) was
also added to the model (N = 95; R2 = 0.43; F = 22.85; p <
.0001. Phonological Decoding: b = 0.461; p < .0001.

WISC Vocabulary: b = 0.207; p < .0001. Sustained
Attention: b = 0.15; p = .095). The above demonstrates
that the best math model was highly specific to

(A)

(B)

(C)

(D)

(E)

Figure 2 Model parameters. Y axes show b and r values for individual predictors. Mean b values (x) and 95% bootstrap confidence
intervals are shown for individual predictor regression b values. The permutation test p value is shown next to confidence interval
bars. Significant predictors are marked by red bars, non-significant predictors are marked by blue bars. Panels A–E show various
models explained in the text. Panel C shows the best model. In Panel C the dark bars represent b values (the number below is the b
value), the light bars represent zero-order r values (the number below is the r value). The comparison of b values and correlation
values suggest that the model was stable. Permutation tests showed that all overall models were significant at the p < .00001 level.

Table 4 Optimizing regression models for predicting math performance (N =98 for all models; 51 girls). vs. WM: visual memory.
Phon. Dec.: Phonological Decoding. Spatial Orient.: Spatial Orientation. Significant p values are marked in red

Model R2/F � p b/p Dot Matrix vsWM
Phon.
Dec. Spatial Orient. Trail-Making WISC Vocab Block Design Raven

M1 0.64/33.01 b 0.24 0.26 0.33 0.26 �0.19 – – –
<0.0001 p .0017 .0009 .0000 .0001 .0055 – – –

M2 0.68/24.01 b 0.25 0.17 0.26 0.23 �0.15 0.18 0.03 0.08
<0.0001 p .0008 .0289 .0002 .0008 .0216 .0156 .6883 .3051

M3* 0.68/31.93 b 0.26 0.19 0.27 0.25 �0.17 0.22 – –
<0.0001 p .0005 .0130 .0001 .0001 .0090 .0020 – –

M4 0.68/27.68 b 0.25 0.18 0.26 0.23 �0.16 0.19 – 0.09
<0.0001 p .0005 .0177 .0002 .0004 .0144 .0129 – .2462

M5 0.68/27.27 b 0.25 0.17 0.27 0.24 �0.16 0.21 0.05 –
<0.0001 p .0008 .0269 .0001 .0004 .0176 .0038 .5053 –

© 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

Mathematical network nodes in children 515



mathematics and predicting reading performance would
require a substantially different model. VIF values for all
variables used ranged between 1.22 and 1.93.

Forced prediction of math from number sense variables

While none of the number sense measures proved a
reliable predictor of math performance it was neverthe-
less theoretically important to clarify their relation to
math. The analysis started from number sense measures.
Final results are summarized in Figure 3. Only regres-
sion models based solely on total accuracy data and RT
COV identified significant predictors. Hence, the results
below relate to these measures. Results are summarized
in Supplementary Table 4. First, all number sense
measures showing robust zero-order correlations with
math were entered into the regression (Supplementary
Table 4; M1). Only total symbolic comparison accuracy
and Non-symbolic comparison COV showed significant
connection to math. The R2 value was much smaller than
in the above analyses with additional variables. Results
remained practically unchanged with only three number
sense variables in regression. M2 tested subitizing COV
while M3 tested total non-symbolic task accuracy. M4
only included the two significant number sense measures.
M5–10 successively added one of the non-number sense

variables identified in the best model predicting math
(Supplementary Table 4; M3 and Figure 2C). M11
added two of the above variables. M12 added all of the
significant variables from the best model. In order to
assess the robustness of models and predictors, bootstrap
and permutation analyses were run with 100,000 permu-
tations for some of the above models (see results in
Figure 3). Non-symbolic comparison COV invariably
became non-significant when there was even a sole
additional visuo-spatial predictor variable (visuo-spatial
WM; Dot Matrix; Spatial Orientation) in the regression
equation. Total symbolic comparison accuracy remained
significant as long as visuo-spatial WM and reading were
not added to the regression. None of the number sense
measures proved to be reliable when there were more
than two non-number sense predictors in the model. In
contrast, other variables were extremely robust.

Predicting number sense variables

While it was not the main objective of the current study,
it is theoretically important to identify potential predic-
tors of number sense variables. Details are described in
the Supplementary Results. In summary, Sustained
Attention emerged as the most robust predictor of
number sense variables and Phonological Decoding and

(A)

(B)

(C)

(D)

Figure 3 Model parameters for testing number sense variables. Y axes show b and r values for individual predictors. Panels A–D
show various models explained in the text. Overall model R2 and parametric and permutation testing p values are shown on the left
of each panel. For individual predictors 95% bootstrap confidence intervals for regression b values are shown. Permutation p values
for individual predictor b values are shown next to confidence intervals.
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the Dot Matrix task were also predictors in some
analyses.

Discussion

We contrasted the predictive power of various cognitive
variables and several variables associated with a pro-
posed number sense in a robust, permutation testing
based framework in 9-year-old children with normal
reading. Verbal intelligence and phonological ability,
visual STM and WM, spatial ability and trail-making
task performance emerged as robust predictors of
mathematical achievement. Non-verbal IQ measures
were non-significant predictors in the above model and
the model was highly specific to predicting mathematical
performance. None of the number sense measures proved
to be serious predictors of mathematical achievement.
We propose an executive memory function centric model
of mathematical expertise.

A mathematical processing network

Our data are consistent with an extended number
processing network (Supekar et al., 2009; Bressler &
Menon, 2010; Menon, 2010; Fias et al., 2013; Goswami
& Sz}ucs, 2011; Dowker, 2005). Based on our measures,
we conclude that important processing nodes of this
network are phonological decoding, verbal knowledge,
visuo-spatial memory, spatial ability and general execu-
tive functioning measured by the trail-making task. This
is in line with several studies cited in the Introduction.
WISC Block design and Raven scores were non-signif-
icant predictors when tested with our best model. Thus,
the well specified spatial components of our model (both
visuo-spatial STM/WM and spatial orientation) better
explained variance than the functionally less clearly
defined Raven and/or WISC Block design scores. Only
spatial orientation but not symmetry score showed a
relationship with math. This suggests that more active
spatial processing components are likely to be related to
math performance, probably because these are more
related to spatially based mental operations required by
mathematics.

We found no strong relations between mathematical
achievement and verbal STM/WM, simple detection task
RT, sustained attention, stop signal task performance, a
symmetry task, a mental rotation task, finger knowledge
and line bisection performance. Our study included
children with at least average reading skill. Hence,
finding strong relations between visuo-spatial STM/
WM measures and mathematics but not with verbal
STM/WM measures is in line with recent studies

controlling for poor reading skill (Schuchardt et al.,
2008; see also Van der Sluis et al., 2005; Sz}ucs et al.,
2013a). These studies together with our data and with
studies reporting poor verbal WM in children with
reading comprehension problems (Helland & Asbjorn-
sen, 2004; Hecht et al., 2001; Schuchardt et al., 2008;
Pimperton & Nation, 2010) suggest that verbal STM/
WM is primarily related to reading comprehension while
visual STM/WM is more related to mathematical ability.
With regard to this it is important that the optimal
model predicting reading achievement was substantially
different from the model predicting mathematical
achievement with only verbal IQ and phonological
decoding predicting reading performance significantly.
Hence, while there is substantial shared variance between
reading and mathematical performance, our data suggest
that this shared variance relies on verbal IQ and
phonological decoding which are equally important for
both reading and mathematics. In contrast, visual STM/
WM, spatial ability and trail-making performance were
only related to mathematics but not to reading compre-
hension.

Number sense related variables

Recent cognitive neuroscience research on numerical
cognition has shifted the focus of research to a putative
magnitude representation supposedly core to mathemat-
ical function. Strong claims have been made about the
importance of this proposed number sense for mathemat-
ical development and performance in children at various
ages and in adults (Halberda et al., 2008; Piazza et al.,
2010; Halberda, Ly, Wilmer, Naiman & Germine, 2012).
Our data do not support these claims and suggest that
number sense measures are in fact not directly related to
mathematical performance if other more robust predic-
tors are taken into account (see also Mix, Levine &
Huttenlocher, 1997; Mix, Huttenlocher & Levine, 2002;
Rouselle & No€el, 2007; Solt�esz et al., 2007; Holloway &
Ansari, 2008; Schneider, Grabner & Paetsch, 2009;
Landerl & Kolle, 2009; Kovas, Giampietro, Viding, Ng,
Brammer, Barker, Happ�e & Plomin, 2009; Solt�esz et al.,
2010; Sz€ucs et al., 2013a). That is, our data in effect falsify
claims about the importance of a modular number sense
for mathematical performance, at least in 9-year-old
children. Our conclusions are in line with recent papers
which found that non-symbolic magnitude discrimination
performance did not predict mathematical performance
when inhibitory control was taken into account (Fuhs &
McNeil, 2013; Gilmore, Attridge, Clayton, Cragg, John-
son, Marlow, Simms & Inglis, 2013).

Here, number sense measures produced weak but
significant effect sizes when entered into regressions
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alone. This is compatible with the results of some studies
claiming support for number sense. Halberda et al.
(2012) reported a correlation of r = �0.16 between one
number sense measure and standardized mathematical
performance in 458 individuals while not controlling for
other variables. This correlation is even weaker than the
correlation values we measured here. However, our
analyses demonstrate that number sense variables cease
to be significant predictors of mathematics as soon as
more robust predictors are added to models (also note
that regression assumptions do not seem to have been
tested in number sense studies). This suggests that
several reports of a predictive relationship between
number sense and mathematical performance may have
been spurious and were due to the fact that other better
predictors of mathematical performance were not
entered into regressions and/or were not measured/used
in a valid way. An additional point regarding the validity
of non-symbolic number sense measures is that these
measures are inherently confounded by visual stimulus
parameters which may distort results (see Sz}ucs, Nobes,
Devine, Gabriel & Gebuis, 2013b; Gebuis & Reynvoet,
2012; Clearfield & Mix, 1999; Mix et al., 1997).
In our data both non-symbolic and symbolic number

sense variables were related to sustained attention. This
makes sense because in these tasks children perform a
tedious and sometimes difficult task with relatively quick
presentation times for a sustained period. A relationship
between non-symbolic magnitude comparison perfor-
mance and selective attention may also explain intrapa-
rietal sulcus (IPS) activity in magnitude comparison
tasks as IPS activity is known to be modulated by
attention (Coull & Frith, 1998; Vandenberghe, Mole-
nberghs & Gillebert, 2012; Santangelo & Macaluso,
2013; Davranche, Nazarian, Vidal & Coull, 2011;
Culham & Kanwisher, 2001). In addition, non-symbolic
comparison performance seemed connected to visual
STM (dot matrix task). Further, both non-symbolic and
symbolic comparison tasks ceased to predict arithmetic
when visuo-spatial variables were added to regressions
(visual STM/WM and spatial orientation scores).
Provided that both comparison tasks require the
involvement of memory processes, particularly the non-
symbolic comparison task which may rely on visual
memory (e.g. Xenidou-Dervou, Van Lieshout & van der
Schoot, 2013), our data are also in agreement with
studies which linked visual memory related IPS activity
to mathematical performance (Rotzer, Loenneker,
Kucian, Martin, Klaver & von Aster, 2009; Dumontheil
& Klingberg, 2011).
Symbolic number comparison accuracy was more

connected to mathematical scores than non-symbolic
comparison accuracy which is in line with several studies

(Nosworthy, Bugden, Archibald, Evans & Ansari, 2013;
Holloway & Ansari, 2009; No€el & Rouselle, 2011; De
Smedt & Gilmore, 2011). However, our data also suggest
that symbolic number comparison performance is prob-
ably more directly related to reading performance and
phonological decoding than to arithmetic performance
per se. This would suggest that this task may be more
important as a measure of the developmental level of
symbolic labelling/understanding than a measure of
symbol to magnitude representation connections. It is
important to point out that although we emphasize the
role of domain-general variables we do not deny the
relevance of mathematics subject-specific knowledge
for mathematical understanding. It is obvious that
such knowledge is important together with more gen-
eral cognitive abilities (see Jordan, Hansen, Fuchs,
Siegler, Gersten & Micklos, 2013; Geary, Hoard,
Nugent & Bailey, 2013; Tr€aff, 2013). What we show in
relation to proposed mathematics domain specific vari-
ables is that a proposed number sense (a non-symbolic
magnitude representation or approximate number system)
is not relevant (or it has negligible relevance) for mathe-
matical performance in 9-year-old children.

An executive memory function centric model of
mathematical processing

Besides modular theories not being developmentally very
feasible (Karmiloff-Smith, 1995), a network view of
mathematical ability is highly plausible because it fits
very well the heterogeneity of mathematical weaknesses
(see Rubinsten & Henik, 2009). Figure 4 outlines a
preliminary ‘executive memory function centric’ model
of mathematical processing. The focus on executive
memory processes relies on the large volume of studies
confirming the importance of working memory function
for mathematics (Raghubar et al., 2010, for review) and
on studies of developmental dyscalculia reporting work-
ing memory function disruption (Sz}ucs et al., 2013a, for
review).
Following Miyake et al. (2000), we assume that

executive functions (attentional focus shifting related to
selective attention; information updating and monitor-
ing; inhibition of irrelevant information) form the core of
(central) executive memory processes. These executive
processes are necessary to control the workflow of
activities taking place in working memory, for example
selecting stimuli for momentary operations. Most studies
in numerical cognition have relied on the initial formu-
lation of Baddeley’s WM model (1986) assuming
domain-general central executive (CE) function. How-
ever, the working memory literature (Shah & Miyake,
1996; Miyake et al., 2000; Jarvis & Gathercole, 2003)
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and numerical development studies (Schuchardt et al.,
2008; Van der Sluis et al., 2005; Sz}ucs et al., 2013a)
suggest that verbal and visual WM function can disso-
ciate. Verbal and visual memory processes most likely
support verbal and spatial operations. These operations
serve abstract symbol manipulation which is the most
important characteristic of human mathematics. Recent
studies suggest that visual memory processes may be
more directly important for mathematical processing
than verbal memory (current study; Schuchardt et al.,
2008; see also Van der Sluis et al., 2005; Sz}ucs et al.,
2013a). During the first school year (Rubinsten, Henik,
Berger & Shahar-Shalev, 2002) symbols are linked to
their referents, like magnitudes (Ansari, 2008) and
counting words. Our study suggests that the relevance
of this link for later age-appropriate mathematical
processing is limited.

The majority of pupils are likely to consider math a
difficult subject (Brown, Brown & Bibby, 2006) and
math is able to elicit specific anxiety from pupils
(Ashcraft, 2002; Maloney & Beilock, 2012). Math being
difficult and a somewhat special subject is a plausible
introspection for the following reasons: First, abstrac-
tion (symbolizing problems) matures only by late child-
hood (Markovits & Lortie-Forgues, 2011). Second,
abstract symbol manipulation is a very unnatural task
for the human mind (Cohen, 1981; Oaksford & Chater,
1994). Third, we suggest math difficulties also relate to

the extensively networked nature of processing require-
ments: Age-appropriate math probably taxes all the
elements of a processing network to their maximum
capacity virtually at the same time and coordinating
elements of the network probably puts considerable
burden on executive (memory) processes. Due to these
high processing demands, math does not have any fail
tolerance: a perfect computational result has to be
achieved typically under time pressure and task difficulty
is increasing all the time during schooling. Hence, the
processing network must perform perfectly, at peak levels,
under pressure and minor mistakes unrelated to the
subject matter of math (like misremembering a sign) can
lead tovastly incorrect results. Hence, anyweakness at any
nodes in the extended processing network, especially in
executive functions coordinating network activities, can
lead to catastrophic consequences in task solutions. The
heterogeneity of mathematical weaknesses seems straight-
forwardwhen considering the above: Due to high demand
(task difficulty), any (minor) weaknesses of the extensive
processing network may result in disrupted mathematical
performance. In contrast, other school activities may be
less demanding than mathematics and/or allow for
more compensation by alternative processing nodes if
one network node is weak. Hence, a problem with a
particular processing node (e.g. weak visuo-spatial mem-
ory) can become very apparent in mathematics but may
cause much less serious difficulties in other subjects.

Figure 4 A preliminary, executive memory function centric model of mathematical expertise. The variables tested in this study are
bold. Working memory function relies on specific executive functions and is core to mathematical processing. Visuo-spatial STM/
WM (underlined) seems more directly related to mathematics while verbal STM/WM contributes to both reading and mathematics.
Spatial abilities most likely rely on visuo-spatial STM/WM capacity. Phonological processing and verbal IQ most likely rely on verbal
STM/WM capacity. Numerous arithmetic facts (e.g. multiplication tables and formulas) are retrieved from long-term verbal memory
but long-term memory based visual pattern recognition is probably also important (e.g. at more advanced stages when quickly
recognizing identities like [a � b]2 = a2 � 2ab + b2). The network serves mathematical symbol processing and symbol manipulation.
Symbols need to be grounded initially by linking them e.g. to magnitudes and count words. However, our study suggests that the
level of this symbol grounding is not relevant to age-appropriate mathematical performance after the initial grounding process.
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Our study has some limitations. First, we tested an
unusually large number of variables which did not allow
us to test more than one age group. However, the
predictor space of mathematics is probably changing
throughout development (Karmiloff-Smith, 1995). For
example, understanding magnitude relations of digits
may be most important at the beginning of primary
school when children are actually learning these relations
(Rubinsten et al., 2002). Hence, symbolic magnitude
comparison may be more related to mathematical ability
earlier rather than later in education (e.g. Holloway &
Ansari, 2009). Extensive cross-sectional and/or longitu-
dinal studies are needed to map the changing develop-
mental landscape and determine the age-appropriate
relevance of variables. Second, mathematics consists of
several major domains, e.g. arithmetic and geometry, and
specific operations may rely on different nodes of a
processing network. Hence, future studies could explore
to what extent models based on different groups of nodes
of a large processing network are specific to certain
mathematical domains and/or operations. Third, while
most of our measures were well-established standardized
measures, the reliability of some measures, most impor-
tantly that of spatial orientation ability, needs to be
established. Fourth, while we identify important nodes of
a mathematical processing network, of course more work
is needed before a formal computational model of
network interactions between these nodes can be
defined.

Conclusions

We suggest an ‘executive memory function centric’
model of a mathematical processing network and in line
with Fias et al. (2013) we suggest that research on
mathematical development should shift towards identi-
fying mechanisms of mental processes operating on
(symbolic) representations, especially those of executive
memory processes. Number sense variables had negligi-
ble explanatory power which seriously challenges the
number sense theory. We suggest that previous studies
measured spurious correlations between number sense
variables and mathematical performance. Valid mapping
of the extensive mathematical processing network
requires testing significant variables in their extended
psychological context rather than in isolation. Major
questions are how much particular nodes of the math-
ematical network can be trained, whether one node can
compensate for the weakness(es) of (an)other one(s),
whether training network nodes in the context of
mathematical tasks is more effective than training them
on their own, and how exactly various processing nodes
enable mathematical symbol manipulation.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:
Figure S1. Tests of regression assumptions for the best

multiple linear regression model shown in Figure 2C.
Table S1. The dot number pairs for each ratio.
Table S2. Zero order and partial correlations. Test abbrevi-

ations: HGRT: Hodder Group Reading Test. WB: WISC Block
Design. WV: WISC Vocabulary. Rav: Raven’s CPM. vsWM:
visual WM. verbWM: verbal WM. Phon.Dec: Phonological
decoding. Sp. Orient: Spatial Orientation. Sust.Att: Sustained
attention. Non-symb. / Symb. / Subit.: Non-symbolic compar-
ison / symbolic comparison / Subitizing tasks; Tot: Total
accuracy; COV: Coefficient of Variation. RT: Reaction Time.
Significance levels: red: p<0.001; magenta: p<0.01; blue: p<0.05.
Table S3. Initial regression models for predicting math

performance. Spatial Or.: Spatial Orientation. Sus. Att.: Sus-
tained Attention. Symb tot: Symbolic number comparison total
accuracy. vsWM: visual memory. Significant p values are
marked by red.
Table 4. Regression models for predicting math performance

from number sense variables (51 girls in all models). Significant
p values are marked by red, marginally significant p values are
marked by blue. Variance Inflation Factors (VIF) ranged
between 1.20 - 2.01.
Methods. Supplementary Methods.
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