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Abstract: Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) 

characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, 

which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent 

and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase 

(SAMN–RITC–BSAO) that immobilized on the surface of specifically functionalized mag-

netic nanoparticles was developed. The multifunctional nanomaterial was characterized using 

transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity 

measurements. The results of this study demonstrated that bare magnetic nanoparticles form 

stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine 

serum amine oxidase was approximately 6.4 mg g-1 nanoparticles. The immobilization procedure 

reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant 

was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, character-

ized by a specific activity of 0.81 IU g-1, could be used in the presence of polyamines to create 

a fluorescent magnetically drivable H
2
O

2
 and aldehydes-producing system. Selective tumor cell 

destruction is suggested as a potential future application of this system.

Keywords: amine oxidase, hydrogen peroxide production, superparamagnetic nanoparticles, 

rhodamine isothiocyanate, fluorescent nanoparticles, fluorescent nanocatalyst

As a result of the rapid development of nanotechnology, magnetic nanoparticles are 

now widely studied. It has long been known that the physicochemical properties of 

magnetic nanoparticles can be vastly different from the properties of the correspond-

ing bulk material.1

In comparison to micro- or submicrometric size particles, the advantage of using 

nanometric size particles is that they have a larger surface area that can be used to 

attach biomolecules. These biomolecules will enable the preparation of nanostructured 

biomaterial with a high loading per mass unit and the possibility of immobilizing 

biomolecules.

Magnetic separation is an interesting tool that is used in bioassays because, when 

compared to conventional chromatographic methods, the magnetic beads enable 

the isolation or extraction of a target molecule with higher efficiencies through the 

application of an external magnetic field.2–4 Due to the good biocompatibility and 

adequate functional groups for chemical fixation, magnetic nanoparticles modified 

on the surface by various recognition polymers can be used to immobilize specific 

biomolecules. Additionally, they are employed as a solid adsorbent and as magnetic 

separation of support from the reaction mixture.5 Magnetic nanoparticles are applicable 
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in many areas such as the immobilization of proteins and 

enzymes,6 bioseparation,7 immunoassay,8 drug delivery,9 

and biosensors.10

We have developed a new method to synthesize super-

paramagnetic nanoparticles constituted of stoichiometric 

maghemite (γ-Fe
2
O

3
) with a dimension of approximately 

10  nm. These nanoparticles are characterized by specific 

chemical behavior without any superficial modification or 

coating derivatization. These bare iron nanoparticles are 

stable in water for several months as colloidal suspensions. 

They also present a high average magnetic moment and 

can be easily derivatized to immobilize specific organic 

molecules in a solution.11,12

The aim of this present work is to combine the advantages 

of immobilized proteins on nanomaterials and the easy opera-

tion of magnetic nanoparticles to develop an inexpensive and 

simple amine oxidase-based magnetic nanocatalyst tagged 

with a fluorescent probe.

Copper containing amine oxidases, Cu-AO (EC 1.4.3.6), 

represents a heterogeneous class of enzymes (amine:oxygen 

oxidoreductase [deaminating] [copper-containing]) that is 

widely found in mammals, plants, and microorganisms.13 

There has been an increase in research interest in this 

class of enzymes because they are involved in polyamine 

metabolism and in numerous physiopathological processes.14 

A number of Cu-AOs have been purified to homogeneity 

and characterized. These enzymes share some fundamental 

structural properties. They both are glycosylated homodim-

ers measuring 70–95 kDa. Depending on their source, each 

monomer contains one tightly bound Cu(II) ion and one 

carbonyl-type group as cofactors. These cofactors are either 

6-hydroxydopa quinone (2,4,5-trihydroxyphenylalaninequi-

none) or lysine tyrosylquinone.15,16

These enzymes operate by abstracting two electrons from 

aromatic and aliphatic primary amines and transferring them 

to molecular oxygen. The following equation demonstrates 

how this process produces the corresponding aldehyde, 

ammonia, and hydrogen peroxide:

R-CH -NH O H O

R-CHO NH H O

Amineoxidase
2 3 2 2

4 2 2

+

+

+ +  →
+ +

Despite their wide distribution, the physiological 

role of Cu-AOs is still unclear. Bovine serum amine 

oxidase (BSAO: EC 1.4.3.6) was used to generate cyto-

toxic polyamine metabolites. The oxidative deamination 

of spermine by BSAO generates H
2
O

2
, aldehydes, and 

ammonia.17–19 Hydrogen peroxide and aldehydes induce 

stress-activated signal transduction pathways, which leads 

to apoptotic and nonapoptotic cell death.20,21 Exposure of 

tumor cells to purified BSAO and spermine causes a time-

dependent decrease of cell viability21 and impairs the growth 

of mouse melanoma.22 Analogous to other radical forming 

processes, the formation of reactive oxygen species (ROS) 

and cytotoxic aldehydes from polyamines are currently 

being explored as a possible strategy in cancer therapy.23 

Moreover, hydrogen peroxide and aldehydes generated 

by BSAO/spermine enzymatic systems have been shown 

to overcome multidrug resistance (MDR) in human colon 

adenocarcinoma (LoVo)24,25 and melanoma (M14) cells.26 

This is particularly interesting because one of the problems 

of conventional anticancer therapy is the development of 

drug resistance.

In the present work, we report a unique synthetic route 

of maghemite nanoparticles exhibiting excellent colloidal 

behavior without any additional organic or inorganic modi-

fication of their surface. These nanoparticles immobilized 

rhodamine B isothiocyanate (RITC), which acted as a fluores-

cent label, and a magnetically controllable rhodamine-based 

fluorescent nanocomposite has been synthesized as a result. 

Moreover, the rhodamine structure used in this research 

allows for the covalent attachment of various biomolecules. 

This has been demonstrated in the immobilization of BSAO. 

Acting as a monomolecular layer, the immobilized enzyme 

retains its catalytic activity towards oxidation of polyamines. 

The prepared fluorescent magnetically drivable nanocatalyst 

could be used as a nanodevice that selectively kills tumor 

cells by the in situ production of hydrogen peroxide and 

aldehydes.27 In order to achieve this potential clinical appli-

cation, our system offers the dual advantage of being easily 

removed by nanomaterial superparamagnetism and of being 

easily detectable by fluorescence.

Materials and methods
Chemicals
Chemicals were purchased at the highest commercially 

available purity and were used without further treatment. 

Iron(III) chloride hexahydrate (97%), sodium borohydride 

(NaBH
4
), RITC, rhodamine 110, rhodamine B, fluorescein, 

fluorescein isothiocyanate (FITC), tetramethylammonium 

hydroxide, perchloric acid, and ammonia solution (35% in 

water) were obtained from Aldrich (Sigma-Aldrich, Milan, 

Italy). Spermine tetrahydrochloride was obtained from Fluka 

(Buchs, Switzerland).

Amine oxidase from bovine serum was purified to electro-

phoretic homogeneity according to Turini et al.28 All of the  
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samples that were used had a minimum specific activity on 

benzylamine oxidation of 0.38 IU mg-1. Assay was performed 

spectrophotometrically at 25°C by monitoring the formation of 

benzaldehyde at 250 nm absorbance (ε = 1.25 × 104 M-1cm-1). 

International Unit (IU) is defined as µmoles of substrate 

oxidized per minute.

Instrumentation
Optical spectroscopy and fluorescence measurements were 

respectively performed in 1 cm quartz cuvettes using a Cary 

50 spectrophotometer and a Cary Eclipse fluorescence spec-

trometer (Varian Inc, Palo Alto, CA).

Fourier transform-infrared (FTIR) spectra were acquired 

using a Thermo Nicolet NEXUS 670 FTIR instrument 

(Thermo Fisher Scientific, Waltham, MA). Nanoparticle 

samples were homogenized with KBr powder and pelletized 

using an 8-ton hydraulic press. Microscopic characterizations 

of the native maghemite particles, as well as rhodamine-

coated particles, were performed using transmission electron 

microscopy (TEM). TEM micrographs were obtained using 

a Tecnai 12  microscope (FEI, Portland, OR) operating at 

120 kV with a point-to-point resolution of 1.9 Å.

Synthesis of iron oxide nanoparticles
A typical nanoparticle synthesis has already been described11,12 

and can be summarized as follows: FeCl
3
 × 6H

2
O (10.0 g, 

37 mmol) was dissolved in MilliQ grade water (800 mL) under 

vigorous stirring at room temperature. An NaBH
4
 solution 

(2 g, 53 mmol) in ammonia (3.5%, 100 mL) was then quickly 

added to the mixture. Soon after the occurrence of the reduc-

tion reaction, the temperature of the system was increased to 

100°C and kept constant for 2 hours. The material was cooled 

at room temperature and aged in water for another 12 hours. 

This product was separated by the imposition of an external 

magnet and washed several times with water. This material 

was transformed into a red-brown powder (final synthesis 

product) by drying and curing at 400°C for 2 hours. The result-

ing nanopowder showed a magnetic response upon exposure 

to a magnetic field. The final mass of the product was 2.0 g 

(12.5 mmol) of Fe
2
O

3
 and a yield of 68% was calculated.

The resulting nanoparticulated material was character-

ized by zero field and in field (5T) Mossbauer spectroscopy, 

FTIR spectroscopy, high-resolution TEM, X-ray powder 

diffraction, magnetization measurements,11,12 and consti-

tuted stoichiometric maghemite (γ-Fe
2
O

3
) with a mean 

diameter of 10  ±  2  nm. Sonication in water (mod. 221, 

48 kHz, 50 W; Branson Ultrasonic Corporation, Danbury, 

CT) can form a stable colloidal suspension without any 

organic or inorganic coverage. Notwithstanding, the surface 

of these bare maghemite nanoparticles shows peculiar bind-

ing properties and can be reversibly derivatized with selected 

organic molecules. These bare nanoparticles are called 

surface-active maghemite nanoparticles (SAMNs).

Preparation of rhodamine  
bound nanoparticles
The surface of bare SAMNs can be superficially and revers-

ibly derivatized by simple incubation in 50 mM tetrameth-

ylammonium perchlorate, pH 7.0, in the presence of 50 µM 

RITC. The amount of bound RITC was calculated from the 

disappearance of the RITC absorbance at 554  nm in the 

supernatant (ε = 6.6 × 104 M-1cm-1). Following the appli-

cation of an external magnet, SAMN–RITC suspensions 

were extensively washed in 50 mM tetramethylammonium 

perchlorate and no leaching of the rhodamine derivative was 

evident, as determined by absorbance spectroscopy of the 

resulting supernatant upon external magnet application. The 

resulting fluorescent magnetic nanoparticles were comprised 

of 29.1 ± 3.8 µmol RITC per g of SAMNs.

Preparation of bovine serum amine 
oxidase adduct with rhodamine-modified 
maghemite nanoparticles
RITC can be used as a spacer-arm and presents the isothio-

cyanate functionality to which the primary amino groups 

of selected molecules can be covalently linked. In this way, 

a magnetically drivable fluorescent nanocarrier was prepared 

using the SAMN–RITC adduct. In the present work, the 

binding reaction was performed by adding 11 µM BSAO in 

0.1 M KCl containing 5 g L-1 SAMN-RITC nanoparticles and 

stirring overnight at 4°C. The unbound enzyme was removed 

with the aid of an external magnet application using extensive 

nanoparticle washing.

Determination of nanoparticle bound 
amine oxidase by mass spectrometry
The nature and optical scattering properties of maghemite 

nanoparticles interferes with the determination of proteins 

bound on their surface by the classical protein determina-

tion methods. To overcome this limitation, an alternative 

approach based on protein quantitation by mass spectrometry 

was applied.

BSAO samples, native or nanoparticle bound, were 

extensively dialyzed against 40 mM ammonium bicarbon-

ate (3 × 2 hour buffer changes with a 1000:1 volume ratio), 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2251

Amine oxidase magnetic nanocatalyst

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

dried under a vacuum, and resuspended in 100  µL of 

40 mM ammonium bicarbonate. Native and SAMN-bound 

BSAO samples were normalized based on their enzymatic 

activity and incubated overnight at 37°C with sequencing 

grade trypsin (Promega, Madison, WI) and an enzyme to 

substrate ratio of 120 (w/w, based on specific activity of the 

native BSAO). After tryptic digestion, samples were centri-

fuged at 14000× g for 10 minutes and exposed to an external 

magnet for 30 minutes to remove SAMN. Finally, the super-

natant were dried under a vacuum, dissolved in 20 µL of 0.1% 

formic acid, and analyzed by liquid chromatography coupled 

with tandem mass spectrometry (LC-MS/MS) using a 6520 

Q-TOF mass spectrometer, which was coupled on-line with 

a 1200 series high-pressure liquid chromatography system 

through a Chip Cube Interface (Agilent Technologies, CA). 

Each sample (4 µL) was loaded onto a C18 large capacity 

chip-column that integrated a 160 nL capacity trap-column, 

an RP column (75 µm × 150 mm), connection capillaries, 

and a nanospray emitter. Solvent A was water/formic acid 

0.1% and solvent B was acetonitrile/formic acid 0.1%. 

Peptides were separated with a linear gradient of 0%–50% 

of solvent B in 50 minutes at a flow rate of 0.3 µL min-1. 

Mass spectra were acquired in a data-dependent mode; 

tandem mass spectra of the four most intense ions were 

acquired for each MS scan, which ranged from 350–3000 Da. 

The scan speed was set to 2 MS spectra s-1 and 2 MS/MS 

spectra s-1. Capillary voltage was set to 1850 V and drying 

gas to 5 L s-1. Raw data files were converted into Mascot 

generic format (MGF) files using MassHunter Qualitative 

analysis software (Agilent Technologies, Santa Clara, CA). 

MGF files were analyzed using Mascot Search Engine server 

version 2.3 (Matrix Science, London, UK). Spectra were 

searched against the SwissProt database (May 2011 version, 

Taxonomy Mammalia, 65453 entries) with the following 

parameters: enzyme specificity was set to trypsin with up to 

two missed cleavages, and peptide and fragment tolerance 

were set to 6 ppm and 0.05 Da, respectively. Oxidation of 

methionine was selected as a modification variable. Based on 

the search against the corresponding randomized database, 

false discovery rates (FDR) of 0.1% were calculated. Only 

identified peptides with a confidence of $99% were used to 

quantify the amount of BSAO bound to nanoparticles.

Enzyme activity measurements
A spectrophotometric assay was used to measure the 

activity of amine oxidase free in solution and immobi-

lized on SAMNs. Initial rate measurements were carried 

out according to the peroxidase-coupled assay reported 

by Stevanato et  al.29 The H
2
O

2
 produced during spermine 

oxidation was continuously monitored by the change of 

absorbance at 555  nm, under continuous stirring, using 

an extinction coefficient, ε, of 2.2 ×  104 M-1cm-1. Unless 

otherwise specified, all experiments were carried out in air-

saturated solutions of 20 mM HEPES (4-(2-hydroxyethyl)-1-

piperazine-ethanesulfonic acid), pH 7.5, at room temperature 

(22°C ± 1°C) in the presence of 0.1 mM EDTA. Protein con-

centration was measured according to the Bradford method,30 

which uses bovine serum albumin as a standard.

Data analysis
Catalytic constant (k

c
) and catalytic efficiency (k

c
/K

M
) were 

calculated from the V
max

 and K
M

 values and were obtained 

by nonlinear best fit of experimental data on Michaelis–

Menten equation and by assuming a BSAO molecular mass 

of 170 kDa.31

Experimental data were fitted using the Sigma Plot pro-

gram (v. 10.0; Jandel Scientific, San Rafael, CA).

Results
Nanoparticles resuspension  
in different media
In order to characterize the nanoparticle’s surface, stable 

colloidal water suspensions are a necessity. In the present case, 

maghemite nanoparticles were synthesized according to an 

innovative method11,12 and suspended in bidistilled water using 

an ultrasonic bath (mod. 221 at 48 kHz, 50 W; Bransonic). 

Upon ultrasound application, suspensions were sampled and 

the absorbance was read every 30 minutes. It was found that, 

by measuring the increase of suspension absorbance during 

sonication, the dispersion exhibited exponential behavior. 

As previously described, the first order kinetic constants 

were in the range 10–100 mg L-1 and independent of the 

nanoparticles’ concentration.12 In water, the dispersion kinetic 

constant resulted in 0.85 ± 0.055 h-1. The colloidal suspension 

of maghemite nanoparticles was stable for more than 6 months 

without precipitation or aggregation phenomena.

Beside SAMN stability in water, the biotechnological 

applications of magnetic nanoparticles are supposed to be 

carried out in buffered solutions. According to previous 

research on the stabilizing/destabilizing effects of different 

cations and anions on iron oxide nanoparticle suspensions,32 

the dispersion process of our bare SAMNs was carried out 

in 50 mM tetramethylammonium perchlorate. Under these 

conditions, colloidal SAMN dispersions were stable and 

further experiments on the dispersion process of SAMN were 

performed using the same experimental conditions.
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RITC binding to nanoparticle surface
Preliminary experiments showed that the SAMN surface is 

able to selectively interact with different organic molecules 

and enzymes. For example, SAMNs are able to interact 

directly with avidin, but not with bovine serum amine 

oxidase. This suggests some kind of recognition process 

between SAMN surface and protein molecules, which will 

be explored elsewhere.

In order to improve our knowledge of maghemite 

nanoparticles’ surface properties, various fluorescent dyes, 

characterized by similar structures and different functional 

groups, were tested (Figure 1).

Maghemite nanoparticles (100 mg L-1) were dispersed in 

50 mM tetramethylammonium perchlorate, pH 7.0, and were 

incubated with the fluorescent probe (10 µM). The test tube 

was gently shaken for one hour at room temperature. After 

the incubation period, nanoparticles were separated using an 

external magnetic field. The supernatant was checked at the 

maximum absorbance wavelength of the probe, as reported 

in Table 1.33

A significant fluorophore absorbance reduction was mea-

sured only when nanoparticles were incubated in the pres-

ence of RITC. No reduction of the absorbance was detected 

with other fluorescent probes. This suggests that only RITC 

is able to bind to the nanoparticle’s surface. This indicates 

that the coexistence of isothiocyanate and an amino group 

on the molecule is necessary to anchor the molecule to the 

surface of the SAMN.

The binding phenomenon between maghemite nanoparticles 

and RITC is completed within a few minutes and forms a stable 

suspension of the fluorescent magnetic complex.

RITC binding on maghemite surface was determined 

as a function of fluorescent probe concentration, in the 

range 10–100 µM, in 50 mM tetramethylammonium per-

chlorate, at pH 7. RITC concentrations above 100 µM were 

not considered because the probe is not soluble above this 

concentration. In the concentration range explored, the 

amount of the bound probe on the nanoparticle’s surface 

depended on its concentration in the solution. Experimental 

data were analyzed according to the Langmuir isotherm 

model34 and the maximum-loading capacity, q
max

, was 

0.14 mg RITC mg-1 SAMN. A Langmuir binding constant, 

K
L
, of 61.7 mL mg-1 was calculated. The result corresponded 

to 533 RITC molecules per nanoparticle.

After washing and freeze-drying, the adduct formed 

with maghemite nanoparticles and RITC (SAMN–RITC) 

was studied using FTIR spectroscopy. In Figure 2, the FTIR 

spectra of the SAMN–RITC complex, as well as that of the 

maghemite nanoparticle and the free RITC, are reported. 

As shown in the figure, the comparison between the spectra 

of the free RITC and of the SAMN–RITC complex showed 

the relevant broadening of FTIR bands at 1412 cm-1, which 

is attributable to CH
2
 bending of -N-(CH

2
-CH

3
)

2
 groups,35 

inset of Figure 2. Furthermore, the disappearance of the FTIR 

band at 2030–2150 cm-1 was observed and attributed to the 

isothiocyanate group.36 In contrast with the other probes 

HO O O O

O

O

O

O OH

OH

OH

O

O

N
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NCS
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Figure 1 Structures of the fluorescent dyes used as probes for nanoparticle surface properties.
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tested, this suggests the involvement of the -N=C=S moiety 

in the binding and confirms its responsibility in specific 

interaction with RITC.

SAMN–RITC was compared with free rhodamine 

and the fluorescence characteristics were determined. The 

SAMN–RITC complex is fluorescent and shows an excitation 

and emission spectra similar to unbound RITC. With respect to 

the free fluorophore, a quantum yield of 8.9% ± 1.3% was esti-

mated for the immobilized RITC, which is sufficient to apply 

the developed material as a magnetic fluorescent probe.

In order to improve our knowledge about the binding 

properties of RITC on SAMN’s surface, it has been observed 

that the pH was fundamentally important in regulating the 

amount of adsorbed molecules. We have tested SAMN’s 

capability in binding RITC in the pH range 2–10  in 

50  mM tetramethylammonium perchlorate. The results 

in Figure  3  show that the phenomenon is well described 

by a sigmoidal behavior. This suggests the existence of 

two different binding modalities, in acidic and basic pH 

extremities, respectively. In particular, we observed that 

the ability of RITC to interact with nanoparticles increases 

at acidic pH values. The amount of bound RITC at pH 4.0 

was about 500 molecules per nanoparticle and the amount 

of bound RITC at basic pH values (pH 10.0) decreases to 

about 150 molecules per nanoparticle.

These data offer a new perspective about the behavior of 

RITC adsorption on SAMN surface that involves not only 

electrostatic interactions. In fact, at acidic pH, we observed 

the highest amount of bound molecules per nanoparticle. 

From a purely electrostatic point of view, we should observe 

a repulsive interaction between RITC and SAMN surface, 

because both the species are protonated at low pH.

The complexing ability of thiocyanate and isothiocyanate 

group toward iron(III) is well known. In order to obtain further 

information on the influence of the isothiocyanate group on 

the binding phenomenon, we prepared three different RITC 

Table 1 Optical characteristics of fluorescent dyes used to test maghemite nanoparticle surface properties

Fluorescent probe Molar extinction 
coefficient (m-1cm-1)

Excitation  
wavelength (nm)

Emission  
wavelength (nm)

Quantum yielda

Fluorescein 65,000 494 520 0.79
Fluorescein isothiocyanate 65,000 494 520 0.79
Rhodamine B 106,000 554 580 0.49
Rhodamine B isothiocyanate 106,000 554 580 0.49
Rhodamine 110 90,000 498 520 0.9

Note: aThe quantum yield was determined in ethanol.33
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Figure 2 FTIR spectra of bare maghemite nanoparticles, rhodamine B isothiocyanate and SAMN–RITC complex. Samples were lyophilized, homogenized with KBr powder, 
and pelleted by an 8.0 ton hydraulic press. (—) SAMN, (---) RITC; (⋅⋅⋅⋅⋅⋅⋅⋅) SAMN–RITC. Inset: Comparison of FTIR spectra of RITC and SAMN–RITC complex in the region 
1365–1000 cm-1. (—), RITC; (⋅⋅⋅⋅⋅⋅⋅⋅), SAMN–RITC.
Abbreviations: SAMN, surface-active maghemite nanoparticles; RITC, rhodamine B isothiocyanate; KBr, potassium bromide; FTIR, Fourier-transform infrared.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2254

Sinigaglia et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

derivatives (Table 2) formed by the condensation of different 

primary amines to the isothiocyanate group of the fluorescent 

probe, namely ethylenediamine, glycine, and 2-aminoethanol, 

and characterized by differently functional terminal groups. 

As shown in Table 2, the best binding properties were evi-

denced by the ethanolamine-RITC derivative, both at pH 7.0 

and at pH 10.0. Possibly due to the chelating properties of 

-COOH, –OH, and –NH
2
, all three RITC derivatives that 

are used provide an anchoring function with respect to under 

coordinated iron sites on the nanoparticle’s surface.37

It should be noted that the role of hydrophobic interac-

tions between the RITC and nanoparticles was studied in the 

presence of a surfactant (0.1% sodium dodecylsulfate) and no 

variation of the binding process was noted and there was no 

evidence of hydrophobic interaction (data not shown).

Surface coating of maghemite 
nanoparticles with RITC and bovine 
serum amine oxidase
BSAO is a copper enzyme with a molar weight of approxi-

mately 170  kDa.31 It is a redox-protein that oxidatively 

deaminates polyamines containing primary amine groups 

(putrescine, spermidine and spermine) with the concomitant 

production of hydrogen peroxide, the corresponding alde-

hydes, and ammonia.17,24

Preliminary experiments showed that BSAO cannot 

bind directly on the surface of SAMNs. Thus, in order to 

immobilize BSAO on SAMNs surface, RITC was used as 

a spacer-arm. This presents the isothiocyanate functionality 

pH
2 4 6 8 10

B
o

u
n

d
 R

IT
C

 (
µ

M
)

0

1

2

3

4

5

Figure 3 RITC binding to maghemite nanoparticle surface as a function of pH.
Note: Experiments were carried out in 50 mM tetramethylammonium perchlorate 
in the presence of 10 µM RITC and 100 mg L-1 SAMN, measuring the decrease of 
solution absorbance at 554 nm.
Abbreviations: SAMN, surface-active maghemite nanoparticles; RITC, rhodamine B  
isothiocyanate.

Table 2 Binding of RITC derivatives to bare maghemite 
nanoparticles

RITC-derivative Number of bound μmol 
RITC per g nanoparticle

Experimental conditions
pH 7.0 pH 10.0

None 2.5 1
-NH-CH2-NH2

2 5

-NH-CH2-CH2-COOH 11 7

-NH-CH2-CH2-OH 17 12

Note: The binding process was carried out in 50 mM tetramethylammonium 
perchlorate in the presence of 100 mg/L maghemite nanoparticles.

to which primary amino groups of the enzyme molecule can 

be covalently linked.

The binding reaction was performed by adding 11 µM 

BSAO in 0.1 M KCl, pH 7.0, to a suspension containing 5 g 

L-1 SAMN, which were previously covered by 29.1 µmol 

RITC g-1 SAMN. The solution was stirred overnight at 4°C. 

The unbound enzyme was removed by repeated nanoparticle 

washing cycles with the aid of an external magnetic field. 

After three washing cycles, the activity of the immobilized 

enzyme was constant and no detectable enzyme release was 

observed in the solution. The enzyme-bound nanoparticles 

could be used for the preparation of magnetically recoverable 

fluorescent nanocatalyst.

Transmission electron micrographs show the coating of 

BSAO on SAMN–RITC, which forms a less electron-dense 

shell that covers the iron oxide nanoparticles. The average 

shell thickness ranges from 6–8 nm (Figure 4).

Figure 4 TEM image of maghemite nanoparticles derivatized with RITC and with 
immobilized BSAO (SAMN–RITC–BSAO).
Abbreviations: BSAO, bovine serum copper-containing amine oxidase; SAMN, 
surface-active maghemite nanoparticles; RITC, rhodamine B isothiocyanate; TEM, 
transmission electron microscopy.
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By comparing the trypsin digestion of native and bound 

enzymes, the amount of immobilized BSAO on SAMNs 

was determined by mass spectrometry and characterized 

by the same enzymatic activity, as reported in the Materials 

and methods section of this research. The digestion yielded 

42% sequence coverage between the two samples (Figure 5). 

The ten most abundant common peptides, characterized by a 

score .35 (P , 0.01) and accounting for about 22% of the 

sequence coverage, were quantitatively compared to calculate 

the specific activity of bound BSAO (Table 3). The aggregate 

signal of the ten peptides from maghemite-bound BSAO was 

2.85 times higher than the aggregate signal of the EIC from 

the free protein with the same activity.

After immobilization, enzyme activity was calculated by 

measuring the rate of amine oxidase-catalyzed oxidation of 

spermine. The initial reaction rate was measured as a func-

tion of substrate concentration determining the hydrogen 

peroxide production in the presence of free or immobilized 

enzymes. Measurements of immobilized enzyme activity were 

performed by stirring. Under our experimental conditions, the 

reaction rate was independent of the stirring rate. This indicates 

that the kinetic of the reaction is not diffusion-controlled. 

Table 4 shows the kinetic parameters obtained by measuring 

the activity of native and immobilized BSAO. In the case of 

nanoparticles without rhodamine coating, no enzyme activity 

Figure 5 Amino acid sequence coverage of native and bound BSAO.
Notes: Bold letters indicate amino acid total sequence coverage (42%) obtained after trypsin digestion and analysis by MS/MS mass spectrometry of nanoparticle-bound 
BSAO. Underscore, bold letters indicate the amino acid sequences that were used for relative quantification of nanoparticle-bound BSAO.
Abbreviations: BSAO, bovine serum copper-containing amine oxidase; MS/MS, tandem mass spectroscopy.

associated with nanoparticles was detected. The comparison of 

the enzymatic activity of BSAO bound to SAMN–RITC or free 

in solution, under the same experimental conditions, indicates 

that BSAO was successfully immobilized on the magnetically 

drivable fluorescent SAMN, displaying detectable catalytic 

activity on spermine (k
c
 = 14.4 min-1). Immobilized BSAO 

shows a catalytic constant of about 30% of the value shown by 

native BSAO, corresponding to 0.81 IU g-1 SAMN. The value 

of the enzyme Michaelis constant, K
M

, was almost doubled 

upon binding. Correspondingly, the binding process led to a 

sixfold decrease of the BSAO catalytic efficiency, k
c
/K

M
.

The system SAMN–RITC–BSAO was removed from the 

solution by application of an external magnet. Monitoring 

the disappearance of fluorescence from the assay solution 

and activity measurements were repeated. This shows that 

SAMN–RITC–BSAO maintains its catalytic activity over 

repeated washing cycles.

Discussion
In order to test bare maghemite surface properties, we utilized 

different fluorescent probes. Among the probes reported in 

Figure 1, only RITC was able to bind to the nanoparticle 

surface. The comparison of fluorophore molecule structures 

indicates that multiple possible interaction sites belong-

ing to RITC could interact with the surface of maghemite 
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2030–2150 cm-1, is attributable to the isothiocyanate group. 

This suggests the involvement of these functionalities in the 

binding. These results suggest a multiple point binding that 

involves, in addition to the -S=C=N functionality, the tertiary 

amino groups of the RITC xanthene condensed rings. This is 

in contrast to the other probes tested that do not contain these 

two functionalities at the same time. Thus, the presence of the 

-S=C=N moiety on the fluorescent molecule had a positive 

effect on nanoparticle binding. Nevertheless, this chemical 

functionality is not sufficient to guarantee a stable adduct 

formation, as observed by incubating SAMN with fluorescein 

isothiocyanate. The tertiary amino groups of the RITC xanthene 

condensed rings, as indicated by the broadening of the FTIR 

band at 1412 cm-1, are not able to guarantee a stable adduct for-

mation without the concomitant participation of isothiocyanate, 

as demonstrated by experiments with rhodamine B. In order to 

verify the involvement of the isothiocyanate group already evi-

denced by FTIR spectroscopy, three different amines have been 

bound to RITC (glycine, ethylene-diamine, and ethanolamine). 

Modified RITC molecules have been incubated with nanopar-

ticles in 50 mM tetramethylammonium perchlorate and tested 

at pH 7.0 and 10.0. The amount of modified RITC molecules 

interacting with nanoparticles depends on the modification 

of the isothiocyanate group. This influences the ability of the 

fluorescent probe to interact with the nanoparticle’s surface and 

confirms the role of the isothiocyanate group in the binding, 

even if modified as a thiorurea.

The peculiarities of RITC allow the interaction with 

maghemite nanoparticle surface and the formation of 

a stable adduct (SAMN–RITC). This magnetic nanomate-

rial adduct was stable across a wide pH range, even if the 

number of RITC molecules bound to the surface of SAMN 

was dependent on pH.

Exploiting the chemical properties of the isothiocyanate 

functionality, this paper describes the surface modification 

of BSAO that was covalently bound to RITC to develop a 

Table 3 The ten most abundant 10 common peptides obtained after trypsin digestion of native and SAMN bound BSAO

Peptide number Score Bound BSAO Native BSAO Bound/free

  1.  YLYLASK 36 747655 132977
  2.  ALDPADWTVQK 67 7693036 10761424
  3.  GGPYLHPVGLELLVDHK 55 11988500 17391553
  4.  YMDSGFGMGYFATPLIR 101 9442405 4823422
  5.  ALDPADWTVQKVFFQGR 44 1239335 539496
  6.  KQLETEEQAAFPLGGASPR 87 13640798 9686214
  7.  SQVPPGPTPPLQFHPQGPR 63 113110365 15533939
  8.  IQTVSFAGGPMPQNSPMER 132 44140030 11272321
  9.  LAYEISLQEAGAVYGGNTPAAMLTR 169 3758314 1981715
10. HH SDFLSHYFGGVAQTVLVFR 41 4856416 1648758
Sum 210616854 73771819 2.85

Table 4 Kinetic parameters of native and SAMN-bound BSAO

Enzyme form Kinetic parameters

KM (μM) kc (min-1) kc/KM (μM-1 min-1)

Native BSAO 7.4 46.8 6.3
SAMN–RITC–BSAO 14.0 14.4 1.0

Abbreviations: BSAO, bovine serum copper-containing amine oxidase; SAMN, 
surface-active maghemite nanoparticles; RITC, rhodamine B isothiocyanate.

nanoparticles. A possible interaction with the carboxyl groups 

was studied by comparing the behavior of fluorescein probe 

in 50 mM tetramethylammonium perchlorate, as suggested in 

the literature.38 At neutral pH, the carboxyl group is negatively 

charged. The probe was incubated with nanoparticles as 

illustrated above. In this case, no binding was observed. This 

suggests that the probe, at pH 7.0, did not interact with the 

nanoparticle surface. It can also be deduced that the carboxyl 

group is not involved in the binding of RITC.

The adduct formed with maghemite nanoparticles and RITC 

(SAMN–RITC), after washing and freeze-drying, was studied 

by FTIR spectroscopy. It is known that the major absorption 

bands of iron oxides locate in the region 400–800  cm-1 

(Figure 2). In this case, the distinctive features of maghemite 

(bands at 445 and 630  cm-1) indicate cation vacancies.39,40 

Furthermore, the comparison between the spectra of free RITC 

and of SAMN–RITC shows absorption bands at 2030–2150, 

1589, 1412, 1345, 1274, 1249, and 1180 cm-1 (Figure 2). These 

bands are attributable to the isothiocyanate group, the stretch-

ing vibrational mode of C=C in benzene rings, the bending 

vibration of CH
2
 in -N-(C

2
H

5
)

2
, the vibration of C-N-linked 

benzene ring, the vibration of C-O of COOH, the vibration of 

C-N in -N-(C
2
H

5
)

2
 group, and the asymmetric stretch vibration 

of C-O-C, respectively.35 No apparent changes were found in 

absorption bands at 1589, 1345, 1274, 1249, and 1180 cm–1. 

Conversely, the relevant broadening of FTIR vibration at 

1412 cm-1, attributable to CH
2
 bending of -N-(C

2
H

5
)

2
 groups 

(inset of Figure 2) and the disappearance of the FTIR band at 
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magnetically controllable rhodamine-based nanocatalyst. The 

immobilization, as a monomolecular layer, allows an improved 

performance of the enzyme by retaining its catalytic activity 

towards the oxidation of spermine for more than ten days. 

In tumor cells, the prepared fluorescent magnetically driv-

able nanocatalyst could be easily used to produce cytotoxic 

products, hydrogen peroxide, and aldehydes, due to the high 

concentration of endogenous polyamines (spermine or sper-

midine) or, alternatively, to remove spermine and other BSAO 

substrates from aqueous solutions. The presence of the nano-

catalyst can be conveniently monitored by its fluorescence. 

Moreover, the nanocatalyst can be quickly removed by the 

application of an external magnet and re-used without loss 

of the catalytic efficiency. The results demonstrate that the 

polyamine-degrading enzyme BSAO is a very good candidate 

to develop a magnetic fluorescent adduct. These results can be 

used in further investigations of BASO’s therapeutic potential 

in mice-bearing tumors of various human origins. We expect 

that these studies will suggest new strategies to potentiate the 

killing of cancer cells using BSAO, which might be essential 

for discovering a novel anticancer therapy.

Magnetic nanomaterials are generally used as theranostic 

tools as drug carriers, in hyperthermia treatment, or as con-

trast agent in MRI.41,42

The novelty of the present approach is represented by 

the possibility to drive the catalytic activity of an enzyme, 

BSAO, with an easily magnetically removable, fluorescent-

detectable nanocomposite that is able to transform enzy-

matic products into cytotoxic molecules in tumor cells. The 

advantages of this new strategy are its high specificity due 

to enzyme substrate accumulation in tumor cells, the ease 

of detectability by fluorescence imaging and targeting, and 

removability by magnetic field application.

Alternatively, the SAMN–RITC–BSAO adduct could 

be used as a magnetically drivable nanoreactor to reduce 

polyamine content of common foodstuffs in an attempt to 

reduce the polyamine intake in cancer patients. As previ-

ously shown by Bardocz et  al,43 some food ingredients 

contain large quantities of polyamines and preliminary 

clinical trials performed in metastatic hormone-refractory 

prostate cancer patients have revealed the feasibility of a 

nutrition therapy based upon a 6-month polyamine-reduced 

diet.44,45

In conclusion, it is worth pointing out that the produc-

tion process is very cheap and, by not involving organic 

solvents surfactants or particular capping strategies, it can 

be considered a “green chemistry” product. Nevertheless, the 

favorable magnetic properties of the material are guaranteed 

by optimizing the magnetic material/organic shell ratio.
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