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A fundamental problem in quantum information is to explore what kind of quantum correlations is
responsible for successful completion of a quantum information procedure. Here we study the roles of
entanglement, discord, and dissonance needed for optimal quantum state discrimination when the latter is
assisted with an auxiliary system. In such process, we present a more general joint unitary transformation
than the existing results. The quantum entanglement between a principal qubit and an ancilla is found to be
completely unnecessary, as it can be set to zero in the arbitrary case by adjusting the parameters in the
general unitary without affecting the success probability. This result also shows that it is quantum
dissonance that plays as a key role in assisted optimal state discrimination and not quantum entanglement.
A necessary criterion for the necessity of quantum dissonance based on the linear entropy is also presented.
PACS numbers: 03.65.Ta, 03.67.Mn, 42.50.Dv.

A
n important distinctive feature of quantum mechanics is that quantum coherent superposition can lead to
quantum correlations in composite quantum systems like quantum entanglement1, Bell nonlocality2 and
quantum discord3,4. Quantum entanglement has been extensively studied from various perspectives, and

it has served as a useful resource for demonstrating the superiority of quantum information processing. For
instance, entangled quantum states are regarded as key resources for some quantum information tasks, such as
teleportation, superdense coding and quantum cryptography5.

In contrast to quantum entanglement, quantum discord measures the amount of nonclassical correlations
between two subsystems of a bipartite quantum system. A recent report regarding the deterministic quantum
computation with one qubit (DQC1)6,7 demonstrates that a quantum algorithm to determine the trace of a unitary
matrix can surpass the performance of the corresponding classical algorithm in terms of computational speedup
even in the absence of quantum entanglement between the the control qubit and a completely mixed state.
However, the quantum discord is never zero. This result is somewhat surprising and it has engendered much
interest in quantum discord in recent years. In particular, it has led to further studies on the relation of quantum
discord with other measures of correlations. Moreover, it has been shown that it is possible to formulate an
operational interpretation in the context of a quantum state merging protocol8,9 where it can be regarded as the
amount of entanglement generated in an activation protocol10 or in a measurement process11. Also, a unified view
of quantum correlations based on the relative entropy12 introduces a new measure called quantum dissonance
which can be regarded as the nonclassical correlations in which quantum entanglement has been totally excluded.
For a separable state (with zero entanglement), its quantum dissonance is exactly equal to its discord.

It is always interesting to uncover non-trivial roles of nonclassical correlations in quantum information
processing. The quantum algorithm in DQC1 has been widely regarded as the first example for which quantum
discord, rather than quantum entanglement, plays a key role in the computational process. Moreover, a careful
consideration of the natural bipartite split between the control qubit and the input state reveals that the quantum
discord is nothing but the quantum dissonance of the system. This simple observation naturally leads to an
interesting question: Can quantum dissonance serve as a similar key resource in some quantum information
tasks? The affirmative answer was shown in an interesting piece of work by Roa, Retamal and Alid-Vaccarezza13

where the roles of entanglement, discord, and dissonance needed for performing unambiguous quantum state
discrimination assisted by an auxiliary qubit14,15 was studied. This protocol for assisted optimal state discrimina-
tion (AOSD) in general requires both quantum entanglement and discord. However, for the case in which there

OPEN

SUBJECT AREAS:
QUANTUM

INFORMATION

THEORETICAL PHYSICS

QUANTUM MECHANICS

QUBITS

Received
3 January 2013

Accepted
13 June 2013

Published
4 July 2013

Correspondence and
requests for materials

should be addressed to
F.-L.Z. (flzhang@tju.

edu.cn) or J.-L.C.
(cqtchenj@nus.edu.sg)

SCIENTIFIC REPORTS | 3 : 2134 | DOI: 10.1038/srep02134 1



exist equal a priori probabilities, the entanglement of the state of
system-ancilla qubits is absent even though its discord is nonzero,
and hence the unambiguous state discrimination protocol is imple-
mented successfully only with quantum dissonance. This protocol
therefore provides an example for which dissonance, and not entan-
glement, plays as a key role in a quantum information processing
task.

In this work, we show more generally that quantum entanglement
is not even necessary for AOSD. Moreover, we look at the roles of
correlations in the AOSD under the most general settings by con-
sidering a generic AOSD protocol. We also show that only disson-
ance in general is required for AOSD and quantum entanglement is
never needed.

Results
The general AOSD protocol. Suppose Alice and Bob share an
entangled two-qubit state fj i~ ffiffiffiffiffiffi

pz
p

yz

�� �
0j icz

ffiffiffiffiffiffi
p{
p

y{j i 1j ic (see
Fig. 1), where p6 g [0, 1] and p1 1 p2 5 1, jy6æ are two
nonorthogonal states of the qubit of Alice (system qubit S), and
{j0æc, j1æc} are the orthonormal bases for the one of Bob (qubit C).
The reduced state of system qubit r 5 p1jy1æ Æy1j1 p2jy2æÆy2j is
a realization of the model in13 in which a qubit is prepared in the two
nonorthogonal states jy6æ with a priori probabilities p6. To
discriminate the two states jy1æ or jy2æ unambiguously, the
system is coupled to an auxiliary qubit A, prepared in a known
initial pure state jkæa. Under a joint unitary transformation U
between the system and the ancilla, one obtains

U yz

�� �
kj ia~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2

q
0j i 0j iazaz Wj i 1j ia, ð1aÞ

U y{j i kj ia~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a{j j2

q
1j i 0j iaza{ Wj i 1j ia, ð1bÞ

where jWæ 5 cos bj0æ 1 sin beidj1æ, {j0æ, j1æ} and {j0æa, j1æa} are the
bases for the system and the ancilla, respectively. The probability
amplitudes a1 and a2 satisfy a�za{~a, where a 5 Æy1jy2æ 5

jajeih is the priori overlap between the two nonorthogonal states.
The unitary transformation can be constructed by performing an
operation W~ zj i 0h jz {j i 1h jð Þ6 0j ia 0h jz Wj i 0h jz �W

�� � 1h j
� �

6

1j ia 1h j on the original one in Ref. 13, where +j i~ 0j i+ 1j ið Þ
� ffiffiffi

2
p

and �W
�� �~sin b 0j i{cos beid 1j i. It has the form as

U~
1

1{ aj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2

q
0j i 0j iazaz Wj i 1j ia

� 	


h~yz a kh jj z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a{j j2

q
1j i 0j iaza{ Wj i 1j ia

� 	
h~y{ a kh jj

�
zV,

where ~y+i~ y+

�� �
{ y+

�� �
y+ y+

��� ��� are the components of jy6æ
orthogonal to y+

�� �
, andV~ Uzj i 0h ja �k

� ��z U{j i 1h ja �k
� ��, with U+j i

being two arbitrary states orthogonal to the right hands of Eq. (1) and
U{ Uzjh i~0, and a

�k kj
� �

a~0. Obviously, only the terms with

h~y+ja kh j have effect on the initial state jy6æjkæa.
The state of the system-ancilla qubits is given by

rSA~pzU yz

�� �
yz

� ��6 kj ia kh j
� �

U{

zp{U y{j i y{h j6 kj ia kh j
� �

U{,
ð2Þ

which depends on b and d, and it is generally not equivalent to the
corresponding one in13 under local unitary transformations unless
jWæ 5 j1æ. The state discrimination is successful if the ancilla col-
lapses to j0æa. This occurs with success probability given by

Psuc~Tr s6 0j ia 0h j
� �

rSA


 �
~pz 1{ azj j2

� �
zp{ 1{ a{j j2

� �
,

ð3Þ

where s is the unit matrix for the system qubit. Without loss of
generality, let us assume that p1 # p2 and denote �a~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pz=p{

p
.

The analysis of the optimal success probability can be divided into
two cases: (i) aj jv�a, Psuc is attained for azj j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p{=pz

4
p ffiffiffiffiffi

aj j
p

; (ii)
�aƒ aj jƒ1, Psuc is attained for ja1j 5 1 (or equivalently ja2j 5 jaj).
One has

Psuc,max~1{2
ffiffiffiffiffiffiffiffiffiffiffiffi
pzp{
p

aj j, for case(i) , ð4aÞ

Psuc,max~ 1{ aj j2
� �

p{, for case(ii): ð4bÞ

Before proceeding further to explore the roles of correlations in the
AOSD, we make the following remarks.

Remark 1. State discrimination of a subsystem in a reduced mixed
state has practical interest in conclusive quantum teleportation
where the resource is not prepared in a maximally entangled state
(see Refs. 16–18). In the conclusive teleportation protocol, the sender
Alice possesses an arbitrary one-qubit state jQæAlice 5 aj0æ 1 bj1æ, and
she shares a non-maximally entangled state jY1(h)æ 5 cos hj00æ 1

sin hj11æ with the receiver Bob. Under the protocol, one has

Ytelj i~ Qj iAlice6 Yz hð Þj i

~
1
2
f Yz hð Þj i6 Qj iBobz Y{ hð Þj i6sz Qj iBobz

Wz hð Þj i6sx Qj iBobz W{ hð Þj i6 {isy
� �

Qj iBobg,

where jY6(h)æ 5 cos hj00æ 6 sin hj11æ, jW6(h)æ 5 sin hj01æ 6 cos
hj10æ, and sx, sy, sz are Pauli matrices. The concurrences19 of the
states jY6(h)æ and jW6(h)æ are all equal to C~ sin 2hj j. The states
jY6(h)æ are orthogonal to the states jW6(h)æ, but {jY1(h)æ, jY2(h)æ}
(or {jW1(h)æ, jW2(h)æ}) are not mutually orthogonal. To teleport the
unknown state jQæAlice from Alice to Bob with perfect fidelity (equals
to 1), state discrimination16–18 is generally required. It should also be
noted that only the maximally entangled states (with h 5 p/4) can
realize the perfect teleportation with unit success probability.

Remark 2. Through quantum teleportation, we see that our model
recover the scheme in13, in which the principal qubit is randomly
prepared in one of the two pure states jy1æ or jy2æ. Let us conisder
replacing the entangled resource jY1(h)æ by maximally entangled
states randomly prepared with a probabilities as {p1 : Yz

p
4

� ��� �
,

p2 : Y{
p
4

� ��� �
, p3 : Wz

p
4

� ��� �
, p4 : W{

p
4

� ��� �
}. Although they are all

maximally entangled states and each of them is a resource for perfect
teleportation, perfectly faithful teleportation cannot be realized in
this case. It can be shown that the fidelity of teleportation is the
one corresponding to the average state16

Figure 1 | The General AOSD Protocol Illustration. Alice and Bob share a

pure entangled state | fæ of qubits S and C. To discriminate the two

states | y1æ or | y2æ of S, Alice performs a joint unitary transformation U
between qubits S and A, followed by two independent von Neumann

measurements on the two qubits. Her state discrimination is successful if

the outcome of A is 0, but unsuccessful if outcome 1.
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rres~p1jYz

p

4

� �
ihYz

p

4

� �
jzp2jY{

p

4

� �
ihY{

p

4

� �
j

zp3jWz

p

4

� �
ihWz

p

4

� �
jzp4jW{

p

4

� �
ihW{

p

4

� �
j:

Consequently, the amount of entanglement contributing to tele-
portation is not just the average value of the entanglement which is
p1C Yz

p
4

� ��� �� �
zp2C Y{

p
4

� ��� �� �
zp3C Wz

p
4

� ��� �� �
zp4C W{

p
4

� ��� �� �
,

but the entanglement of the average state as C rresð Þ. Therefore the
amount of entanglement available depends crucially on the know-
ledge of the entangled state. The amount of quantum entanglement
that is needed for the AOSD scheme considered here, as well as
the one in Ref. 13, refers to the entanglement of the average state,
C rSAð Þ, and not to the average value of the entanglement as
pzC U yz

�� �
kj ia

� �
zp{C U y{j i kj ia

� �
.

We are now ready to investigate the roles of correlations in the
AOSD. To this end, let us first calculate the concurrence of rSA:

C rSAð Þ~2 Y2
z sin2 bzY2

{ cos2 b{



2YzY{ sin b cos b cos hzdð Þ�1=2,
ð5Þ

with Y+~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a+j j2

q
a+j p+j . When b 5 p/4 and d 5 0, Eq. (5)

reverts to the result in13.
Let us impose the constraint C rSAð Þ~0 for any a, a1 and p1. It is

then easy to see that

d~{h, b~arctan Y{=Yzð Þ : ð6Þ

Based on Eq. (6), state (2) is a separable state as

rSA~ g1j i g1h j6 0j ia 0h jz Wj i Wh j6 g2j ia g2h j, ð7Þ

where jg1æ and jg2æa are two unnormalized states as

g1j i~
ffiffiffiffiffiffiffiffiffiffiffiffi
pzp{
p

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2

q
a{ 0j i{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a{j j2

q
az 1j i

� 	
,

g2j ia~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2

zzY2
{

q
Z 0j iaz

Zaz

azj j 1j ia:

ð8Þ

where Z~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pz azj j2zp{ a{j j2

q
.

Note that the state (2) has rank two, and it is really the reduced
state of the following tripartite pure state

Yj i~ ffiffiffiffiffiffi
pz

p U yz

�� �
kj ia

� �
0j icz

ffiffiffiffiffiffi
p{

p U y{j i kj ia
� �

1j ic: ð9Þ

Its discord can be derived analytically as D(rSA) 5 S(rA) 2 S(rSA) 1

E(rSC) 5 S(rA) 2 S(rC) 1 E (rSC) using the Koashi-Winter iden-
tity20, where S(r) is the von Neumann entropy, E(rSC) is the entan-
glement of formation19 between the principal system and the qubit C.
The explicit expression for the discord is

D rSAð Þ~H tAð Þ{H tCð ÞzH tSCð Þ, ð10Þ

where

H xð Þ~{
1z

ffiffiffiffiffiffiffiffiffiffi
1{x
p

2
ln

1z
ffiffiffiffiffiffiffiffiffiffi
1{x
p

2
{

1{
ffiffiffiffiffiffiffiffiffiffi
1{x
p

2
ln

1{
ffiffiffiffiffiffiffiffiffiffi
1{x
p

2
, tA

is the tangle between A and SC, tC is the tangle between C and SA, and
tSC~C2 rSCð Þ is the concurrence between S and C in the state rSC.
One can obtains

tA~tSAz4pzp{ azj j2z a{j j2{2 aj j2
� �

, ð11aÞ

tC~4pzp{ 1{ aj j2
� �

, ð11bÞ

tSC~tS{tSA{t Yj ið Þ, ð11cÞ

with tS the tangle between S and AC, tSA~C2 rSAð Þ, and t(jYæ) the
three-tangle21. The tangle between S and AC is given by

tS~4 p{ a{j j2zpz azj j2
� �

p{ 1{ a{j j2
� �

cos2bz

�

pz 1{ azj j2
� �

sin2b
�
zpzp{ 1{ azj j2

� �
1{ a{j j2
� ��

,
ð12Þ

and the three-tangle is

t Yj ið Þ~4pzp{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a{j j2

q
az cos bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2

q
a{ sin beid

����
����

2

:ð13Þ

Dissonance for cases (i) and (ii). For case (i), upon the substitution
azj j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p{=pz

4
p ffiffiffiffiffi

aj j
p

, p2 5 1 2 p1, and Eqs. (6)(11)(12)(13) into
Eq. (10), one has the analytical expression for the dissonance, which
depends only on jaj and p1. In Fig. 2, we plot the curves of the
dissonance versus jaj for p1 5 1/2, 1/4, 1/8, respectively (see the
curves with D(rSA) . 0). For case (ii), because ja1j5 1, one has b 5

p/2 and the state rSA is

rSA~ 1j i 1h j6ra, ð14Þ

with ra 5 p1j1æaÆ1j 1 p2jmæaÆmj, mj ia~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ aj j2

q
0j iaza{eid 1j ia.

The state (14) is clearly a direct-product state hence its dissonance is
zero. In Fig. 2, for case (ii), we also plot the curves of dissonance
versus jaj for the same p1’s (see the curves with D(rSA) 5 0). Fig. 2
shows that dissonance is a key ingredient for AOSD other than

Figure 2 | Quantum dissonance in the AOSD. We plot the dissonance

versus | a | , for p1 5 1/2 (solid line), 1/4 (dashed line), and 1/8 (dot-dashed

line). Dissonance is greater than zero for case (i), and is zero for case (ii).

The critical point for D(rSA) 5 0 occurs at aj j~�a.

Figure 3 | Geometric picture for optimal success probability based on
POVM strategy. The sides OAj j~ ffiffiffiffiffiffi

pz
p

, OBj j~ ffiffiffiffiffiffi
p{
p

, the angle c 5 arccos

| a | , and AC H OB, BD H OA, EB H OB, EA H OA. For aj jv�a, the point E

locates inside of the angle%AOB; for aj j§�a, the point E coincides with the

point B for p1 , p2 (or A for p1 . p2).

www.nature.com/scientificreports
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entanglement for case (i), and that the classical state can accomplish
the task of AOSD for case (ii).

Geometric picture. It can be observed that the optimal success
probability Psuc,max in Eq. (4) can be analyzed in two different
regions: aj jv�a and aj j§�a. Here based on the positive-operator-
valued measure (POVM) strategy15, we provide a geometric picture
of Psuc,max. Since the success probability, the concurrence and the
discord of state rSA under the constraints in Eq. (6) are all
independent of the phase h of a, one can simply set h 5 0, and
regard the states jy6æ as two unit vectors in R2 with the angle c 5

arccos jaj between them. The square roots of the a priori
probabilities, i.e.,

ffiffiffiffiffiffi
pz
p

and
ffiffiffiffiffiffi
p{
p

, behave like wave amplitudes,
and the effects of the coherence can be seen from the states jfæ and
jYæ. In Fig. 3, we plot two vectors OA

�!
and OB

�!
with %BOA~c to

denote
ffiffiffiffiffiffi
pz
p

yz

�� �
and

ffiffiffiffiffiffi
p{
p

y{j i, respectively. The two POVM
elements that identify the states

ffiffiffiffiffiffi
p+
p

y+

�� �
can be implemented as

P+~r+ ~y+ih~y+

�� ��=ðh~y+
~y+i
�� Þ, with r6 $ 0. The vectors AC

�!
and

BD
�!

correspond to the unnormalized states ~y+i
�� with the

coefficients {
ffiffiffiffiffiffi
p+
p

. The third POVM element giving the
inconclusive result is P0~ s{Pz{P{. The elements P6,0 are
required to be positive - this is a constraint on the POVM strategy.
Finally, the probability of successful discrimination is PPOVM 5

(r1p1 1 r2p2)(1 2 jaj2), which is

PPOVM~ OA
�!

{OB
�!� �

: r{ BD
�!

{rz AC
�!� �

: ð15Þ

When aj jv�a, the optimal PPOVM is attained at r+~

1{cos c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p+=p+

p� ��
sin2 c. The vectors r{ BD

�!
~ EA
�!

and rz AC
�!

~ EB
�!

, where E is the intersection point of AE and BE (see Fig. 3).
The maximum value of PPOVM is the square of jABj, nanmely
PPOVM~ ABj j2~1{2

ffiffiffiffiffiffiffiffiffiffiffiffi
pzp{
p

aj j, which recovers Eq. (4a). When
aj j~�a, the point E coincides with B for p1 , p2 (or A for p1 .

p2), for the optimal PPOVM one has r2 5 1 (or r1 5 1) and PPOVM 5

p2(1 2 jaj2). For aj j~�a and p1 , p2, E lies outside of the angle

%AOB and EB
�!

is opposite to AC
�!

. Consequently, we do not get a
physically realizable value of r1. The optimal PPOVM strategy then
occurs at r2 5 1 and r1 5 0 (i.e., E coincides with B), one has

PPOVM~{OB
�!:BD

�!
~p{ 1{ aj j2

� �
, which is Eq. (4b).

Discussion
In summary, based on a sufficiently general AOSD protocol, we
found that the entanglement between the principal qubit and the
ancilla is completely unnecessary. Moreover, this quantum entangle-
ment can be arbitrarily zero by adjusting the parameters in the joint
unitary transformation without affecting the success probability.
Theoretically, this fact clearly indicates that dissonance plays a key
role in assisted optimal state discrimination other than entangle-
ment. Experimentally, the absence of entanglement can be more
easily observed because there is no restriction on the a priori pro-
babilities. In Fig. 4, we present a realization of the unitary trans-
formation U in Eq. (1) for the initial states jy1æ 5 j0æ,
y{j i~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ aj j2

q
1j iza 0j i and jkæa 5 j0æa by using single-qubit

gates and two-qubit controlled-unitary gates. These gates can be
demonstrated experimentally in many systems23,24 in recent years.
The success probability of state discrimination is determined by steps
(i) to (iii), which transform the system-ancilla state into

yz

�� �
kj ia?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2

q
0j i 0j iazaz 0j i 1j ia, ð16aÞ

y{j i kj ia?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a{j j2

q
1j i 0j iaza{ 0j i 1j ia: ð16bÞ

It is not affected by the controlled-UW in step (iv), which can adjust
the correlations in state (2).

Let us also reiterate a necessary criterion for the requirement of
dissonance in AOSD based on linear entropy. Under the general
protocol, Alice and Bob share the entangled state jfæ, encoded in
the basis of the polarization of the qubit, Bob can acquire knowledge
of the linear entropy SL rð Þ of Alice’s qubit. If SL rð Þw1=2, he can be
sure that Alice needs dissonance for her AOSD (see Fig. 5). Finally,
we would like to mention that local distinguishability of multipar-
tite orthogonal quantum states was studied in Ref. 22 where again
the local discrimination of entangled states does not require any
entanglement.
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Figure 4 | Realization of the General Unitary Transformation. For the

initial states | y1æ 5 | 0æ, y{j i~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ aj j2

q
1j iza 0j i and | kæa 5 | 0æa, the

unitary transformation U in Eq. (1) can be realized in four steps: (i)

controlled-UA with the system S being the control qubit; (ii) controlled-US

where the system S is controlled by the ancilla A; (iii) local unitary VA on

the auxiliary qubit; (iv) controlled-UW with the same control qubit and

target as the second step. The single qubit operations UA~ wAj ia
0h jz �wA

�� �
a

1h j, US~ wSj i 0h jz �wS

�� �
1h j, VA~ wVj ia 0h jz �wV

�� �
a

1h j, and

UW~ Wj i 0h jz �W
�� � 1h j, with wAj ia~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2
� �

1{ a{j j2
� �q

0j iaz
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
azj j2z a{j j2{2 aj j2

q
1j iaÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ aj j2

q
, wSj i~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ a{j j2

q
a�z 0j iz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ azj j2

q
a�{ 1j iÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
azj j2z a{j j2{2 aj j2

q
, and wVj ia~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{ azj j2
q

0j iazaz 1j ia. Here, the states with a bar, �wA

�� �
a
, �wS

�� �
a
, and

�wV

�� �
a
, denote (isy,a | wAæa)*, (2isy | wSæ)*, and (isy,a | wVæa)*.

Figure 5 | Necessary criterion for requiring dissonance in AOSD based
on linear entropy or purity. The linear entropy reads

SL rð Þ~2{2 Trr2~4pzp{ 1{ aj j2
� �

, and the purity P rð Þ~1{SL rð Þ.
For a given amount of | a | , when SL rð Þƒ4 1{ aj j2

� �
aj j2
.

1z aj j2
� �2

, the

dissonance for the AOSD is zero (see the region below the dashed line). we

note that Smax
L rð Þ~1=2 when aj j~1

� ffiffiffi
3
p

. This means that if SL rð Þw1=2,

then the dissonance is necessarily needed for the AOSD.
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