
ScanFold 2.0: a rapid approach for
identifying potential structured RNA
targets in genomes and transcriptomes
Ryan J. Andrews1,*, Warren B. Rouse2,*, Collin A. O’Leary2,
Nicholas J. Booher3 and Walter N. Moss2

1 Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
2 The Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State
University, Ames, Iowa, United States

3 Infrastructure and Research IT Services, Iowa State University, Ames, IA, United States
* These authors contributed equally to this work.

ABSTRACT
A major limiting factor in target discovery for both basic research and therapeutic
intervention is the identification of structural and/or functional RNA elements in
genomes and transcriptomes. This was the impetus for the original ScanFold
algorithm, which provides maps of local RNA structural stability, evidence of
sequence-ordered (potentially evolved) structure, and unique model structures
comprised of recurring base pairs with the greatest structural bias. A key step in
quantifying this propensity for ordered structure is the prediction of secondary
structural stability for randomized sequences which, in the original implementation
of ScanFold, is explicitly evaluated. This slow process has limited the rapid
identification of ordered structures in large genomes/transcriptomes, which we seek
to overcome in this current work introducing ScanFold 2.0. In this revised version of
ScanFold, we no longer explicitly evaluate randomized sequence folding energy, but
rather estimate it using a machine learning approach. For high randomization
numbers, this can increase prediction speeds over 100-fold compared to ScanFold
1.0, allowing for the analysis of large sequences, as well as the use of additional
folding algorithms that may be computationally expensive. In the testing of ScanFold
2.0, we re-evaluate the Zika, HIV, and SARS-CoV-2 genomes and compare both the
consistency of results and the time of each run to ScanFold 1.0. We also re-evaluate
the SARS-CoV-2 genome to assess the quality of ScanFold 2.0 predictions vs several
biochemical structure probing datasets and compare the results to those of the
original ScanFold program.

Subjects Biochemistry, Bioinformatics, Genomics, Molecular Biology, Virology
Keywords RNA, Motif discovery, RNA structure, Genome annotation, Sequence analysis

INTRODUCTION
Interest in RNA has, arguably, never been higher. RNA plays key regulatory roles in all
organisms including human pathogens such as HIV, Zika, and SARS-CoV-2 (Cao et al.,
2021; Li et al., 2018; Watts et al., 2009). Furthermore, since both the viral vector and the
most efficacious preventative modality for COVID-19 both consist of RNA, interest in
RNA as both a therapeutic agent and target is surging (Bhat, Karve & Anderson, 2021;
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Damase et al., 2021). Significantly, in both its biological function and potential for
targeting, RNA secondary structure plays key and diverse roles (Andrzejewska, Zawadzka
& Pachulska-Wieczorek, 2020; Disney, 2019; Hargrove, 2020; Meyer et al., 2020; Szabat
et al., 2020; Wan et al., 2011). For example, in processes such as RNA splicing and
posttranscriptional gene regulation, secondary structures can vary the distances between or
accessibility of various regulatory elements in RNA (Andrzejewska, Zawadzka &
Pachulska-Wieczorek, 2020; Jiang & Coller, 2012; Li et al., 2014), as well as provide
specific platforms for recognition by regulatory molecules (e.g., proteins and noncoding
RNAs (Law et al., 2006; Sanchez de Groot et al., 2019; Yang et al., 2020)). Secondary
structures are also found within long noncoding RNAs (Andrzejewska, Zawadzka &
Pachulska-Wieczorek, 2020; Chillon & Marcia, 2020; McCown et al., 2019; Somarowthu
et al., 2015) and in the coding regions of mRNAs, where there is increasing awareness of
their roles in modulating translation and protein folding (Andrzejewska, Zawadzka &
Pachulska-Wieczorek, 2020; Faure et al., 2016; Faure et al., 2017; Mauger et al., 2019;
Mustoe et al., 2018).

Unsurprisingly, there is great interest in gaining additional structure-function
knowledge about RNA (particularly as related to human health) and in therapeutically
modulating RNA biology via its secondary structure. Both tasks require the identification
of robust structural models of RNA folding which, for large genomes/transcriptomes, is an
immense challenge. Several rapid and robust algorithms for RNA secondary structure
prediction are available (Lorenz et al., 2011; Reuter & Mathews, 2010; Zuker, 2003) as well
as powerful methods for assessing the phylogenetic significance of structure (Manfredonia
et al., 2020; Rivas, Clements & Eddy, 2017, 2020). Similarly, there have been great advances
in approaches for high-throughput probing of RNA secondary structure (Mitchell,
Assmann & Bevilacqua, 2019; Regulski & Breaker, 2008; Smola & Weeks, 2018; Strobel,
Yu & Lucks, 2018; Tomezsko, Swaminathan & Rouskin, 2021). Despite this, a major
challenge that hampers efforts to understand and target RNA secondary structure, is the
determination of which fragments form extremely stable, and likely functional structures.

Early on, it was noted that functional RNA structures have a sequence-ordered
stability bias. That is to say, the predicted folding free energy of functional RNA is lower
than that of randomized sequences (Clote et al., 2005; Moss, 2018; Qu & Adelson, 2012).
This bias is quantified via the thermodynamic z-score, which reports the difference
between the predicted minimum free energy (MFE) of folding for a native/ordered RNA
and the expected MFE based on the nucleotide content alone (i.e., the native sequence is
shuffled and refolded multiple times to calculate the mean and standard deviation of
expected MFEs). The native MFE is subtracted from the expected and the resulting value is
divided by the standard deviation (Eq. (1)) indicating the number of standard deviations
more or less stable the native secondary structure is vs that predicted by nucleotide
content (i.e., negative values indicate significantly ordered stability) (Andrews, Baber &
Moss, 2017; Clote et al., 2005). Mono- vs di-nucleotide shuffling can affect the calculation
of z-scores (Forsdyke, 2007). Dinucleotide shuffling preserves the nearest-neighbor
nucleotides (i.e., nucleotides that can stack in helices) that are used in MFE calculations
(Gesell & Washietl, 2008). Mononucleotide shuffling on the other hand, abolishes this
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pattern, and can potentially overestimate the magnitude of the z-score (Gesell & Washietl,
2008); however, our original analysis of shuffling methods used in ScanFold (Andrews,
Roche &Moss, 2018), found little difference in predicted ordered structure and, indeed that
mono-nucleotide results were slightly better supported by available data.

ScanFold 2.0 (SF2) uses the same approaches as ScanFold 1.0 (SF1) without the
need for explicit MFE calculations of randomized sequences to determine thermodynamic
z-scores. To bypass the computationally expensive explicit z-score calculations, we have
implemented a machine learning approach: Google’s publicly available TensorFlow
algorithm (Abadi et al., 2016a, 2016b). TensorFlow was trained using 20 different sequence
features including: sequence length, GC percentage, CG ratio, AU ratio, and the frequency
of 16 different dinucleotide types. Using these features, both mono- and dinucleotide
shuffling models were generated. SF2 uses these models to estimate the randomized MFEs
and standard deviations needed to calculate thermodynamic z-scores for all windows. This
new version of ScanFold still uses the same algorithm to highlight local structural
features, ScanFold-Fold (Andrews, Baber & Moss, 2020; Andrews, Roche & Moss, 2018),
which is now the rate limiting step of the program. This improvement has led to an
increase in computational speeds of at least 10×, and in some cases increases of over 100×
(File S1). This new tool is available for download on GitHub (https://github.com/moss-lab/
ScanFold2.0) or for use through a webserver hosted at: https://mosslabtools.bb.iastate.edu/
scanfold2.

METHODS
TensorFlow training of z-score model
An overview of the training process can be seen in Fig. 1. A total of 836,377 representative
sequences were generated to be used for training. Sequence lengths were between 60
and 200 nt (based on typical ScanFold window sizes (Andrews, Baber & Moss, 2020;
Andrews, Roche & Moss, 2018)) in 20 nt increments. To represent as many potential
sequence types as possible, dinucleotide frequencies for all 16 dinucleotide types were
set to vary between 0% and 45%, averaging ~6.3% across all sequences. Native MFEs,
mean of 100 randomized MFEs (MFE), and their standard deviations (r) were calculated
for all sequences using RNAfold version 2.4.18 (Lorenz et al., 2011). Two different
randomization procedures were used to train the algorithm: mononucleotide and
dinucleotide shuffling (Andrews, Baber &Moss, 2020; Andrews, Roche &Moss, 2018; Gesell
& Washietl, 2008). Twenty different training features were also collected for each sequence
including: sequence length, GC percent, AU ratio, GC ratio, and all 16 dinucleotide
frequencies.

All 20 features were used during training of MFE and standard deviation (r) models.
The mean MFE and STD models are Keras sequential, with one preprocessing
normalization layer, and two hidden layers: Rectified Linear Unit (ReLu) and sigmoid.
RNAfold is used to calculate MFEs, while MFE and standard deviation (r) models are
invoked separately for z-score calculation (Eq. (1)). All training code was run through
Google Colab (Bisong, 2019) and can be viewed and run directly in the corresponding
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python notebook (File S2) or using our fully functional google colab page (https://colab.
research.google.com/github/moss-lab/ScanFold2.0/blob/main/SF2_notebook.ipynb).

z � score ¼ MFE �MFE
r

(1)

Updates to ScanFold 2.0 and integration in the webserver
To make the use of SF2 more user-friendly, it has been incorporated into the Moss Lab
Tools webserver (https://mosslabtools.bb.iastate.edu/scanfold2). Similar to SF1, any
sequence longer than the chosen window size can be uploaded (or pasted) in FASTA
format, all parameters can be set by the user, and the scan can be started by clicking the
submit button at the bottom of the page. Once the prediction is complete the results are
output in an Integrative Genomics Viewer (IGV.js) window (Robinson et al., 2020)
and made available for download as a zip file.

Figure 1 Schematic of ScanFold 2.0 training procedure. Representative sequences were generated for a
range of lengths (between 60 and 200 nt) and dinucleotide frequencies. These sequences were shuffled
and analyzed using RNAfold to determine their MFEs, mean MFEs and respective standard deviations.
Mean MFEs and standard deviations were then combined with 18 sequence composition features to
comprise all 20 training features. These 20 features were used to generate mean MFE and standard
deviation models. Full-size DOI: 10.7717/peerj.14361/fig-1
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Testing of ScanFold 2.0 vs ScanFold 1.0
SF2 was tested to determine its accuracy and speed compared to that of SF1. Testing was
performed on HIV-1, Zika, and SARS-CoV-2 genomes, which had been previously
analyzed using SF1 (Andrews, Baber &Moss, 2020; Andrews et al., 2021; Andrews, Roche &
Moss, 2018). To ensure that our testing was comprehensive we compared SF2 mono-
and dinucleotide shuffling results to those of SF1 mono- and dinucleotide shuffling using
100, 1,000, and 10,000 randomizations for each genome. The results of all output CT
files (i.e., −2, −1, and No Filter z-scores) from both versions of ScanFold were compared
using an in-house python script, ct_compare.py (Andrews et al., 2021; https://github.com/
moss-lab/SARS-CoV-2). This comparison allowed us to evaluate the percent of paired
nucleotides and the percent similarity or consistency between the output files of both
versions of ScanFold as well as determine the improvements in speed for each run.
Additionally, we were able to compare the outputs from SF1 (mono- vs dinucleotide
shuffling and different number of randomizations) and the outputs of SF2 (mono- vs
dinucleotide shuffling) to themselves to evaluate their performance using different
shuffling methods. In total, 13 different comparisons were completed for each genome.
All accuracy and speed results can be found in File S1.

ROC curve analysis
Receiver Operating Characteristic (ROC) curve analysis was performed on ScanFold-

Fold results for SF1 mono- and dinucleotide shuffling using 100 and 10,000
randomizations as well as SF2 mono- and dinucleotide shuffling models following a
previously establish protocol (Andrews et al., 2021). Briefly, reactivity value thresholds
were sequentially set from the lowest to highest value at 1% intervals (i.e., 0–100%
constrained) for various SHAPE and DMS reactivity datasets generated from SARS-CoV-2
probing experiments (Huston et al., 2021; Lan et al., 2021; Manfredonia et al., 2020; Sun
et al., 2021). The −1 z-score CT files from SF1 and SF2 were cross referenced to the
constrained reactivity threshold datasets and used to find the true positive rate (TPR) and
false positive rates (FPR) for each comparison. In this analysis, the TPR and FPR are
represented by Eqs. (2) and (3) below:

TPR ¼ TP
TP þ FNð Þ (2)

FPR ¼ FP
FP þ TNð Þ (3)

The true positive (TP) is defined as being paired in the ScanFold −1 z-score CT file and
paired at the defined reactivity threshold. The false negative (FN) is defined as being paired
in the ScanFold −1 z-score CT file and unpaired at the reactivity threshold. The false
positive (FP) is defined as being unpaired in the ScanFold −1 z-score CT file and paired at
the reactivity threshold. The true negative (TN) is defined as being unpaired in the
ScanFold −1 z-score CT file and unpaired at the given reactivity threshold. When the
reactivity threshold is set to 0%, the TPR and FPR will equal zero, and when the reactivity
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threshold is set to 100%, the TPR and FPR will equal one. Thus, if a ScanFold predicted
RNA secondary structure model is truly random, when compared to increasing
reactivity thresholds from a probing data set, then the TPR and FPR will increase
proportionately and produce a linear trend in the plot and a small area under the curve
(AUC). However, if the ScanFold predicted RNA secondary structure model agrees with
the reactivity data set, the TPR will initially rise faster than the FPR, producing a curve on
the plot and therefore a larger AUC. This allows for a quantitative assessment and
comparison of each ScanFold predicted model’s ability to fit the data via their respective
AUCs. All the ROC and AUC analyses can be found in File S3.

RESULTS AND DISCUSSION
Comparing time and accuracy of ScanFold 2.0 vs ScanFold 1.0
SF2 requires significantly less time than SF1 using only 100 randomizations, with increases
in speed being even greater when compared to SF1 using 1,000 and 10,000 explicitly
shuffled RNA sequences for z-score calculations. In both cases, increasing sequence length
does increase the time needed, but this effect is seen to a lesser degree in SF2. When
comparing the times, SF1 using 100 randomizations with mononucleotide shuffling takes
8.70, 1.02, and 1.75 h to complete all predictions for SARS-CoV-2, HIV, and Zika,
respectively (Table 1). SF2 on the other hand reduces these times to 2.64, 0.27, and 0.35 h
for SARS-CoV-2, HIV, and Zika, respectively (Table 2). This decrease in time for SF2 is
greater for higher randomization numbers and dinucleotide shuffling (Tables 1 and 2).
For SF2, the scanning step is now the fastest step in the process, taking only 0.27, 0.07, and
0.09 h for SARS-CoV-2, HIV, and Zika, respectively (Table 2). Importantly, increased
speed does not come at the cost of reduced accuracy.

Gross comparisons of the percent of predicted pairs by SF1 and SF2 using 100, 1,000,
and 10,000 randomizations with mononucleotide shuffling displays an average difference
of 2.00% (0.03% to 4.5%) between all z-score cutoffs across the three genomes analyzed,
regardless of the number of randomizations. HIV is the most consistent between versions,
displaying less than a 1.25% difference in −2 z-score pairs, 3.2% difference in −1 z-score
pairs, and 0.5% difference in all pairs (no filter) across all randomizations (File S1). In a
similar analysis, it is also seen that the percent similarity or consistency of paired
and unpaired nucleotides between SF1 and SF2 using mononucleotide shuffling is

Table 1 Time required for SF1 runs using different shuffling methods and number of randomizations to finish. The time required to finish runs
for both versions of ScanFold were evaluated using different shuffling methods and number of randomizations. All times are reported in hours.

Total time (h) 100 randomizations Total time (h) 1,000 randomizations Total time (h) 10,000 randomizations

SARS SF1 Mono 8.70 21.28 164.17

HIV SF1 Mono 1.02 4.58 32.85

Zika SF1 Mono 1.75 4.15 36.55

SARS SF1 Di 7.50 22.07 134.00

HIV SF1 Di 0.95 4.48 35.58

Zika SF1 Di 1.25 4.67 38.53
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quite high, with the average difference being only 4.01% (1.11% to 6.29%) between all
z-score cutoffs across the three genomes analyzed (File S1). Here, HIV shows some of the
best results with only the no filter cutoff reaching a 6.24% difference, and z-score cutoffs of
−2 and −1 being only 1.42% and 4.7% different, respectively (Fig. 2).

The same analyses were carried out between SF1 and SF2 using dinucleotide shuffling.
Comparing the percentage of predicted paired nucleotides using 100, 1,000, and 10,000
randomizations with dinucleotide shuffling displays an average difference of 5.26%
(0.57% to 10.26%) between all z-score cutoffs across the three genomes analyzed. HIV
showed the least variance with a 4.38% difference in −2 z-score pairs, an 8.72% difference
in −1 z-score pairs, and a 1.85% difference in all (no filter) pairs across all randomizations
(File S1). The percent similarity or consistency in the paired and unpaired nucleotides
between SF1 and SF2 using dinucleotide shuffling is again quite high, especially for
structures within the significant z-score cutoffs of −2 and −1, with the average difference
being 10.42% (4.71% to 20.64%) between all z-score cutoffs across the three genomes
analyzed (File S1). Here, HIV shows some of the best results with only the no filter cutoff

Figure 2 SF1 and SF2 comparisons of HIV results. Comparison of SF1 and SF2 percent similarity in
paired and unpaired nucleotides using mono and dinucleotide shuffling with 100, 1,000, and 10,000
randomizations. (A) HIV percent similarity in −2 z-score results. (B) HIV percent similarity in −1 z-score
results. All comparison were done using SF1 results as the reference and SF2 results as the target for
comparison. Full-size DOI: 10.7717/peerj.14361/fig-2

Table 2 Time required for each step of SF2 to run, total SF2 run time, and increase in SF2 speeds compared to SF1. The time required to finish
SF2 scanning step, folding step, and both steps were evaluated using different shuffling methods. Increase in speed was calculated by dividing SF1
total run time for each shuffling technique at each number of randomizations by SF2 total run time. All times are reported in hours.

Scan time (h) Fold time (h) Total time (h) Speed increase
100 rand.

Speed increase
1,000 rand.

Speed increase
10,000 rand.

SARS SF2 Mono 0.27 2.37 2.64 3.30× 8.06× 62.19×

HIV SF2 Mono 0.07 0.20 0.27 3.78× 16.96× 121.67×

Zika SF2 Mono 0.09 0.27 0.35 5.00× 11.86× 104.43×

SARS SF2 Di 0.33 1.67 2.00 3.75× 11.04× 67.00×

HIV SF2 Di 0.07 0.17 0.24 3.96× 18.67× 148.25×

Zika SF2 Di 0.09 0.23 0.32 3.91× 14.59× 120.41×
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reaching a 20.64% difference, and z-score cutoffs of −2 and −1 being only 4.82% and
10.16% different, respectively (Fig. 2). Notably, when comparing the predictions to
biochemical probing data, all approaches showed consistency with experimental results
(Fig. 3).

Mono vs Di nucleotide shuffling of ScanFold 2.0
When comparing SF1 and SF2 results for mononucleotide shuffling there is an average
difference in percent paired of 2.00% (0.03% to 4.5%) and in the majority of cases SF2
is predicting more pairs than SF1. For all results other than HIV and SARS-CoV-2 all
pairs (no filter), SF2 consistently predicts more pairs than SF1. When comparing SF1 and
SF2 results for dinucleotide shuffling, there is an average difference of 5.26% (0.57% to
10.26%) and similar to mononucleotide shuffling, all results other than Zika no filter
(all pairs), show that SF2 is always predicting slightly more pairs. These small differences
serve as evidence that SF1 and SF2 are producing an almost identical number of pairs
when the same shuffling method is used (File S1).

When comparing the results of SF1 mononucleotide shuffling to SF1 dinucleotide
shuffling, on average, mononucleotide shuffling finds more pairs than dinucleotide
shuffling, but this does not always hold true—as is the case with all iterations of Zika
results for all pairs (no filter; Fig. S1). For SF1, the smallest difference between results is
seen in Zika (all pairs), where dinucleotide shuffling finds 0.72% more pairs than
mononucleotide, while the largest difference is seen in Zika −1 z-score pairs, where
mononucleotide shuffling predicts 8.65% more pairs than dinucleotide (Table S1 and
Fig. S1). SF2 comparisons show a split between which shuffling method predicts more
pairs. In the case of Zika, the same trend seen for SF1 holds true for SF2, with
mononucleotide shuffling finding more pairs than dinucleotide shuffling for all cutoffs
other than all pairs. For HIV, SF2 dinucleotide shuffling finds more pairs than
mononucleotide shuffling at all z-score cutoffs, but for SARS-CoV-2, dinucleotide
shuffling finds more pairs than mononucleotide shuffling only at the −2 z-score cutoff.
Here, the smallest difference in SF2 is seen in the SARS-CoV-2 results for all pairs where
mononucleotide shuffling finds 0.36% more pairs than dinucleotide, and the largest
difference is seen in Zika results for −1 z-score pairs where mononucleotide shuffling finds
3.13% more pairs than dinucleotide (Table S1 and Fig. S1). These small variations between
the shuffling methods provide further evidence that SF1 and SF2 are performing similarly
in identifying ordered structure, and that the shuffling technique used does not influence
the results to a high degree.

As additional evidence that the shuffling method does not have a large impact on
results, we analyzed the percent consistency in pairing between SF1 and SF2 using 100,
1,000, and 10,000 randomizations with both shuffling methods. Here, we observe that SF2
mono- and dinucleotide results are generally consistent (within 5–10%) with that of SF1
mono- and dinucleotide results across all three genomes, with HIV demonstrating the
most consistency (Fig. 2). The general trend among the three genomes shows the more
stringent −2 and −1 z-score predictions are always within 10–12% consistency of each
other regardless of shuffling or randomization, while the no filter pairings often showmore
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Figure 3 ROC analysis of SF1 and SF2 results. ROC analysis of six different in vivo and in vitro SHAPE and DMS biochemical probing dataset of
the SARS-CoV-2 genome. (A) Plot of the initial ROC analysis curve with the AUC for SF1 using mono and dinucleotide shuffling at 100 and 10,000
randomization and SF2 results using mono and dinucleotide shuffling for Lan et al. (2021) DMS in vivo dataset. SF1 mononucleotide with
100 randomizations in blue (AUC = 0.776), SF1 mononucleotide with 10,000 randomizations in orange (AUC = 0.773), SF1 dinucleotide with
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variation (File S1). All comparisons indicate little benefit of using dinucleotide over
mononucleotide shuffling, as the percent consistency between these methods in both
SF1 and SF2 predictions are on average 7.53% different (1.85% to 18.27%) and, when
looking at just SF2 using both methods, predictions are on average 4.79% different (1.96%
to 9%) (File S1). The differences associated with SF1 and SF2 mononucleotide and
dinucleotide shuffling can most likely be equated to the differences in z-scores (Fig. S2 and
File S4). The box and whisker plot in Fig. S2 show that for SF2, the average z-scores
are consistently lower for both shuffling methods compared to that of SF1, and the
differences in z-scores between the two shuffling methods is also much smaller for SF2
(average difference of −0.019) compared to that of SF1 (average difference of −0.363)
(Table S2 and File S4). The lower overall z-score of SF2 is potentially causing the
differences in percent paired and percent similarity or consistency that is seen between the
shuffling methods when comparing SF1 and SF2. Regardless of the differences in percent
paired, percent similarity or consistency, and z-score, the results of mononucleotide
and dinucleotide shuffling for SF2 are similar to SF1 as shown by the agreement of
biochemical probing data (Fig. 3).

ROC analysis of SARS-CoV-2
As another layer of validation, we followed an established protocol (Andrews et al., 2021)
to perform a receiver operator characteristic (ROC) analysis on the SARS-CoV-2 genome
predictions. We compared SF1 and SF2 results using 100 to 10,000 randomizations
with both shuffling methods, to six different SHAPE and DMS biochemical probing
datasets (Huston et al., 2021; Lan et al., 2021; Manfredonia et al., 2020; Sun et al., 2021).
Here, the effect of increasing the stringency of reactivity cutoffs, which considers whether a
site is to be paired in the model, provides a measure of the consistency of probing data
compared to ScanFold models (see Material and Methods and (Andrews et al., 2021)).
We initially compared the SF1 results using both shuffling methods with 100 and
10,000 randomizations and the SF2 results using both shuffling methods to the Lan et al.
(2021) in vitro DMS data. The ROC analysis showed that all SF1 and SF2 results clustered
into the same curve with almost identical area under the curve (AUC) values (Fig. 3A).
The ROC analysis of SF1 and SF2 results using 100 randomizations and both shuffling
methods was repeated on all six probing datasets. SF2 predictions match the curves of
both the previous analysis and all SF1 results obtained in this study (Fig. 3B). After
calculating the area under the AUC for each set of results, all were found to be above 0.5,
indicating global consistency of the data with SF1 and SF2 results. AUC values for SF2

Figure 3 (continued)
100 randomizations in gray (AUC = 0.759), SF1 dinucleotide with 10,000 randomizations in yellow (AUC = 0.758), SF2 mononucleotide in black
(AUC = 0.780), and SF1 dinucleotide in green (AUC = 0.773). (B) Plot of the ROC analysis with the AUC for SF1 using mono and dinucleotide
shuffling at 100 randomizations and SF2 results using mono and dinucleotide shuffling for all probing datasets. All SF1 and SF2 results for Lan
et al. (2021) DMS in vivo in blue (AUC = 0.759–0.780), Manfredonia et al. (2020) DMS in vitro in yellow (AUC = 0.722–0.741), Sun et al. (2021)
SHAPE in vivo in green (AUC = 0.725–0.748), Manfredonia et al. (2020) SHAPE in vitro in orange (AUC = 0.677–0.691), Manfredonia et al.
(2020) SHAPE in vivo in gray (AUC = 0.660–0.678), and Huston et al. (2021) SHAPE in vivo in black (AUC = 0.622–0.633).

Full-size DOI: 10.7717/peerj.14361/fig-3
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ranged from a minimum value of 0.629 for comparison of SF2 dinucleotide to in vivo
SHAPE dataset (Huston et al., 2021) to a maximum value of 0.780 for comparison of SF2
mononucleotide to in vivo DMS dataset (Lan et al., 2021). No large differences were
observed when comparing any of the AUC values between SF1 or SF2 and the respective
datasets. These findings indicate that, similar to SF1, SF2 is detecting the most robust local
elements that do not vary between experimental conditions.

Selection of ScanFold parameters
As with all scanning window analyses, it is important to understand the impact of selecting
different window and step sizes. In general, the use of 120 nt windows has been found
to be optimal as it allows for the identification of local structures and reduces the
prediction of spurious longer-range interactions (Lange et al., 2012). In previous studies,
we have found that window sizes from 60–150 nt yield the results most consistent with
structures informed by probing data (Andrews, Baber & Moss, 2020; Andrews et al., 2021;
Andrews, Roche & Moss, 2018). By decreasing the window size, the predicted structures
will be smaller overall, as no structure larger than the window will be found, which
can aid in predicting smaller local structures. For detection of larger structures, using a
window size up to 600 nt has been shown to successfully identify larger structures in the
HIV genome (Andrews et al., 2021; Andrews, Roche & Moss, 2018), however, we would
recommend this as a separate analysis; larger window sizes (>200 nt) tend to predict
multiple structures per window, leading to a loss of fidelity when determining which
specific structures yielded unusual stability metrics (see Supplemental of Andrews et al.,
2021). Therefore, a 120 nt window is ideal, unless one is specifically interested in smaller or
larger structures. The other important consideration is step size. Using a single nucleotide
step size provides the highest resolution scans and the most robust data, as each nucleotide
is refolded across all potential overlapping windows. Larger steps can “cut into” structured
regions leading to less windows for analysis and more ambiguous results. With the added
speed of SF2, a 1-nt step size is now possible for longer sequences. For most applications, a
120 nt window, 1-nt step size, and mononucleotide shuffling are recommended. When
interpreting the ScanFold results, the z-score cutoff is an important value to consider.
The use of a strict −2 z-score cutoff provides structures with the most potential to be
ordered for stable folding, whereas a −1 cutoff yields more, less significantly ordered,
structures for consideration. Regardless, ScanFold predictions should be considered initial
structural hypotheses ahead of additional work (e.g., comparative analyses, structure
probing, and functional assays).

CONCLUSION
SF2 produces effectively indistinguishable results to that of SF1 in a fraction of the time.
The implementation of a machine learning approach has also eliminated the need to
optimize the number of randomizations for each scan. Based on our results, we see that
SF2 using the dinucleotide shuffling model tends to produce results more similar to
mononucleotide than SF1; however, both SF1 and SF2 results are generally similar to each
other, with slight bias toward lower z-scores in SF2 arising from the very large training data
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sets used (likely reflecting more accurate z-score values). ROC analysis using several
SHAPE and DMS datasets against SF1 and SF2 predictions also suggests that, regardless of
the model, SF2 detects robust structural elements that persist between experimental
conditions. Here, we have demonstrated that the improved SF2 algorithm performs
similarly to SF1 but in a fraction of the time. Although this analysis was focused on
viral genomes, SF2 has general applicability for any RNA sequence of interest. We hope
that this improved speed can provide the RNA community with a fast, accurate, and
user-friendly tool that will help in finding potentially functional structures across any gene
or transcript of interest and drive forward RNA research.
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