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Abstract: The structural properties of novel melt-spun polymer optical fibers (POFs) are investigated
by small-angle X-ray scattering. The amorphous PMMA POFs were subjected to a rapid cooling
in a water quench right after extrusion in order to obtain a radial refractive index profile.
Four fiber samples were investigated with small-angle X-ray scattering (SAXS). The resulting
distance-distribution functions obtained from the respective equatorial and meridional SAXS data
exhibit a real-space correlation peak indicative of periodic cross-sectional and axial variations
in the scattering density contrast. Simple model calculations demonstrate how the structural
information contained particularly in the equatorial distance distribution function can be interpreted.
The respective results are qualitatively verified for one of the fiber samples by comparison of the
model curve with the measured SAXS data. Eventually, the study confirms that the cross-sectional
variation of the (scattering-) density is the main reason for the formation of radial refractive-index
profiles in the POFs.

Keywords: material characterization; polymer optical fiber; graded-index profile; fiber fabrication;
nanostructure; measurement technique; scattering; melt-spinning

1. Introduction

Polymer optical fibers (POF), mostly made from poly-methyl methacrylate (PMMA), provide
a robust and cost-effective alternative to glass fibers for short-reach data communication, but also
in illumination and sensing applications [1]. Their main advantage is the relatively large diameter
of up to several millimeters, which makes handling much easier than with tiny glass fibers of only
several tens of micrometers, but requires different, continuous fabrication techniques. Depending on
the kind of application, POFs should show different properties, such as low attenuation, controlled
scattering, or a high bandwidth for data communication. Especially for the latter, graded-index (GI)
fibers have been developed that feature decaying refractive-index profiles towards the outer regions
of the fiber [2–4]. This requires special fabrication methods that most often involve a discontinuous
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preform process, by which a large version of the fiber with the correct refractive-index distribution is
manufactured first and then drawn to a fiber in a second step [5].

In [6], we presented a novel, continuous fabrication process, where the graded-index fiber is
produced by a simple melt-spinning process without the use of any dopants to control the refractive
index. The refractive-index profile is obtained by a subsequent rapid cooling of the filament right
behind the spinning nozzle (see Figure 1). The different cooling speeds of the inner and outer regions
lead to a radial density distribution, which results in a refractive-index profile without the use of any
doping materials.
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Figure 1. Example of a continuous POF fabrication process based on extrusion [5]. With this approach,
only step-index fibers can be produced.

We could show already in [7] that the novel fabrication process without any doping materials can
still lead to graded-index fibers with a distinct refractive-index profile. There are several established
methods for the characterization of the refractive-index profile of fibers beginning with quantitative
phase microscopy over the transmitted to the refracted near-field methods (RNF) to name just a few [8].
However, while the formation of a refractive-index profile by pure temperature treatment after the
melt-spinning process could be proven, it has not been possible to provide evidence that this profile
arises due to a density gradient and how the density is distributed within the fiber.

Surprisingly, the application of these methods to PMMA POFs produced by the aforementioned
melt-spinning process determine the refractive-index profiles typical for GI-POFs although the POFs
do not contain any dopants such as, e.g., bromobenzene, benzyl butyl, benzyl benzoate, phenyl
sulfide, monomer additions, nanoparticles, such as TiO2 or fluorine, that are usually added to increase
or decrease the refractive index over the cross-section of a POF according to their concentration
levels [9–12]. The only reasonable explanation for the presence of a refractive index profile in a neat
PMMA POF is the formation of a radial density gradient during the melt-spinning process, since both
quantities are related to each other as described by the Clausius-Mossotti relation [13]:

ρ(r) =
M

ρmol

n2(r)− 1
n2(r) + 2

, (1)
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where ρ is the density, M = 100.12 g/mol is the molar mass of PMMA, ρmol = 24.751 × 10−6 m3/mol is
the molar refractivity, n is the refractive index, and r denotes a possible dependence of the respective
quantities on the radial distance R from the center of the fiber cross-section.

So far, a genuine proof of radial density gradients in the neat PMMA POFs is lacking. In order to
obtain information on the origin of the measured refractive-index profiles, small-angle X-ray scattering
(SAXS) was chosen, since this technique is ideally suited to detect density fluctuations on the nanoscale
in the investigated material [14]. Since PMMA of optical grade is basically an amorphous polymer,
SAXS experiments on neat PMMA POFs have not yet been performed (mainly) due to the fact that an
amorphous material normally does not exhibit any small-angle scattering. Therefore, the present work
is to be understood as an initial, explorative study to assess the possibility of detecting and verifying
material density profiles over the fiber diameter via SAXS experiments.

The article is structured as follows: firstly, the materials and the novel fabrication method are
described in detail in order to draw conclusions on the structural properties of the resulting fibers.
Subsequently, the SAXS method is introduced and experimental conditions, as well as data-analysis
techniques, are explained. The results are discussed, and the fundamental assumptions for the analysis
of the SAXS curves are adapted in order to explain the structure parameters obtained from the different
analysis methods. In summary, the results indicate the presence of cross-sectional density variations
and, consequently, the general applicability of the SAXS method for the characterization of refractive
index/density profiles in POFs.

2. Melt-Spinning Fabrication Process with Subsequent Cooling

Polymer and polymer fiber processing: Polymer optical fibers can be fabricated either by continuous
or discontinuous processes, while continuous processes are the norm due to their low cost [15]. Usual
continuous methods are extrusion, photo polymerization, and melt spinning. The first two processes
generate the polymer during the fiber extrusion by polymerization that relies either on heat or light.
The melt-spinning process, in contrast, uses already-fabricated polymer that is molten in order spin a
fiber from that material (Figure 1).

Since all process steps can be performed simultaneously it is possible to continuously generate
a fiber of arbitrary length, i.e., the fiber can be produced without stops and therefore at extremely
low cost. These processes are, however, not suitable for GI-POFs since each nozzle extrudes, more or
less, homogeneous material of a specific refractive index without any profile. Therefore, one has to
introduce a radius-dependent inhomogeneity.

Most processes for graded-index fibers are discontinuous preform techniques, in which the
preform of the fiber is produced first and then drawn to a fiber in a second step. Since these steps
have to be performed sequentially, only a fiber of limited length can be drawn from the preform,
which makes this method more expensive.

To achieve the graded-index profile in a continuous process, we used the melt-spinning technique
with a subsequent rapid cooling in a water quench, which is supposed to introduce a radius-dependent
cooling speed [16]. Figure 2 explains the process in detail. Using this continuous fabrication method,
the fiber length is not limited. The main difference to the standard melt spinning is the water quench
just after the spinning when the fiber is still warm and close to the glass-transition temperature.

With control of the cooling in the water quench, the refractive-index profile of the produced fiber
can be engineered in a simple way using standard off-the-shelf production methods. The decrease
of cooling speeds from the outer regions towards the fiber axis results in a density gradient with
an increase of the density for lower cooling speed in the center of the fiber. This increasing density
towards the fiber axis leads to a refractive-index profile according to the Clausius-Mosotti relation
because of the larger number of polarizable material per volume. This density-gradient formation
within the fiber, however, has not directly been proven. For this reason and because variations of the
density can also lead to increased scattering [17], a study of the structural properties of these novel
fibers have been conducted.
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Figure 2. Schematic of the melt-spinning process based with subsequent rapid cooling in a water
quench [16]. The still hot polymer filament is subjected to a rapid cooling in a water quench right
below the spinning nozzle. The rapid cooling results in an inhomogeneous cooling speed over the
fiber cross-section.

For the following study, fibers are spun from the amorphous optical grade PMMA PLEXIGLAS®

(Evonik Performance Materials GmbH, Darmstadt, Germany), Pure Optical Quality (POQ) with
different process parameters, such as nozzle diameter, water and process temperature, and winding
and extrusion speed.

3. Fiber Analysis via Small-Angle X-ray Scattering Experiments

From an (ideal) amorphous substance, an a priori SAXS signal cannot be expected. Since
semi-crystalline PMMA—which can be produced via Grignard reactions [18,19]—is not used for
the production of POFs in order to avoid unwanted scattering effects at the crystalline/amorphous
interface, only variations in the density of the material related to the refractive index profile
(Equation (1)), and/or the presence of nanosized gas-inclusions and voids [20] can give rise to a
SAXS signal. Hence, a clearly detectable small-angle scattering contribution from the (amorphous)
POF is the crucial point for the applicability of the SAXS method to extract information on the refractive
index profile from the measured data.

Four POF samples produced with different sets of process parameters were selected for the
SAXS experiments. Single processing conditions were not systematically varied for this initial study,
and, therefore, only the complete production processes of the POF samples investigated by SAXS
are different (see Table 1), which should nevertheless result in SAXS curves containing different
(structural) information.

Table 1. Fiber processing conditions for the four POF samples selected for the SAXS analysis.

Sample No. Nozzle diameter (mm) vw (m/min) λSD (= vw/ve) Twater (◦C) λD (= lD/l0) TD (◦C)

1 0.8 45 18.85 25 3 150
2 2.0 7 18.32 25 3 150
3 2.0 20 52.36 35 5 150
4 0.8 45 18.85 25 7 150

The spin-draw ratio λSD is the ratio between winding speed vw and extrusion velocity ve.
This value basically characterizes the mechanical forces which influence the PMMA nanostructure
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during the non-isothermal melt-spinning process, whereas the draw ratio λD corresponds to the length
ratio between the stretched fiber lD and as-spun fiber l0 achieved during an isothermal off-line drawing
process performed at a constant temperature TD above the glass-transition temperature of the polymer.

The SAXS experiments were performed at the high brilliance laboratory Gallium Anode Low
Angle X-ray Instrument (GALAXI) at the Jülich research center (Jülich, Germany) equipped with a
BRUKER AXS MetalJet X-ray source (Madison, WI, USA) (Figure 3). The diffractometer is based on the
former JUSIFA instrument installed at the DORIS-III storage ring at HASYLAB (Deutsches Elektronen
Synchotron DESY, Hamburg, Germany) [21,22]. The data were recorded with a 1 M Pilatus detector
(DECTRIS AG, Baden, Switzerland) at a sample-to-detector distance of 3.6 m and a wavelength of
0.134 nm covering a total range of momentum transfer of 0.03 nm−1 ≤ q ≤ 1.0 nm−1 (q = 4πsin(θ)/λ is
the modulus of the scattering vector, 2θ is the scattering angle, and λ is the wavelength). Prior to data
analysis, the collected data were reduced by normalization to the intensity of the transmitted beam
and empty beam subtraction.
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Figure 3. (Left) 2D-SAXS intensity distribution of the empty beam displaying an isotropic scattering.
(Right) 2D-SAXS intensity distribution of the sample POF 4. The strong anisotropic equatorial and
meridional scattering indicates that at least parts of the PMMA chains are highly oriented. Note that
the color codes of empty beam and sample scattering are not to scale. The empty beam scattering
intensity is on average about two orders of magnitude smaller than the small-angle scattering arising
from the fiber sample.

4. Results and Discussion

For the four selected POF samples, a significant SAXS signal is detectable (see Figure 4)
which basically confirms the presence of density variations in the amorphous PMMA fibers. Moreover,
the significant differences in the 2D SAXS intensity distributions of the fibers demonstrate the influence
of the processing conditions on the PMMA fiber nanostructure. The intensity streaks in the equatorial
plane (corresponding to the fiber cross-section) and the meridional direction (corresponding to the
fiber axis) appear to be quite sharp and indicate a high degree of axial orientation of the observed
nanostructure. Since the major changes in the scattering intensities also take place perpendicular
and parallel to the fiber axis, the respective equatorial and meridional intensity contributions were
extracted (Figure 5) in order to facilitate the analysis by methods that are usually applied to 1D
scattering curves—the Guinier approach and the distance distribution function [14]. Both methods
have the advantage, that a particular nanostructure model is not required for the analysis of the
SAXS data.
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Figure 4. 2D SAXS intensity distributions of the four PMMA POF samples. The anisotropic equatorial
and meridional scattering is present in all samples, but clearly different, which indicates a high
sensitivity of the fiber nanostructure to changes in the production processes.
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Figure 5. Extracted 1D SAXS intensity curves of the four POF samples. (Top row): equatorial intensities
corresponding to the scattering from the fiber cross-section. (Bottom row): meridional intensities
corresponding to the scattering contribution along the fiber axis.

From the Guinier analysis, the forward scattering intensity I0 and the radius of gyration Rg are
obtained by fitting a model function:

Iobs(q) = I0 exp

[
−

q2R2
g

3

]
(2)

to the measured low-q scattering data Iobs(q). Since the fiber scattering exhibits cylindrical
geometry [23], possible density fluctuations across the fiber diameter may be of cylindrical shape as
well, and, therefore, the radius of gyration resulting from the Guinier fit of the equatorial scattering
curve can be interpreted as a cylinder radius Rc which is related to Rg by:

R2
g =

R2
c

2
. (3)



Polymers 2017, 9, 60 7 of 14

Correspondingly, the Guinier analysis of the meridional scattering curve yields a cylinder length
Lc where:

R2
g =

1
12

L2
c . (4)

The obtained values can be cross-checked by computation of the Fourier transform of the scattering
intensities, i.e., the equatorial and meridional 1D Patterson (distance distribution) function

γequ(r) =
1

Qequ

∞∫
0

Iobs
equ(qr)J0(qrr)qrM(qr)dqr (5)

and

γmer(r) =
1

Qmer

∞∫
0

Iobs
mer(qz) cos(qzr)M(qz)dqz (6)

with

Qmer/equ =

∞∫
0

Iobs
mer/equ(qz/r)M(qz/r)dqz/r, (7)

where qr and qz are the momentum transfer vector components in the equatorial plane
(fiber cross-section) and along the fiber axis, respectively, and J0 is the zero-order Bessel function
of the first kind. In order to suppress series termination ripples arising from the limited q-range,
a damping function M(qz/r) = exp[−B2q2

z/r] is used [24,25]. The constant B is chosen such,
that M(qz/r) = 0.05 at qz/r = 0.2 nm−1. The analysis of the SAXS curves was carried out with self-written
Fortran 90 programs. For the Guinier fits, the Levenberg-Marquardt routines MRQMIN and MRQCOF
were employed [26].

For an ideal single-particle scattering in a two-phase system, the respective maximum dimensions
are obtained at the first intersection of the Patterson functions with the abscissa, i.e.:

γmer/equ

(
r = DMAX

mer/equ

)
= 0. (8)

For the more general case, the maximum dimension is determined by the intersection of the linear
extrapolation of γ(r) close to the abscissa and its first minimum [27,28].

The results are exemplarily shown for the sample POF4 in Figure 6. A striking feature is the
similarity between the meridional and the equatorial Patterson functions. Both functions exhibit a
real-space correlation peak which is related to a periodically occurring repeat unit. The presence
of these correlation peaks is a quite unusual phenomenon for a generally amorphous material.
Consequently, the peaks are very likely caused by periodic (scattering-) density variations along
the fiber axis, as well as over the fiber cross-section.

The meridional case is well known and has been extensively studied for the case of semi-crystalline
polymer fibers [29,30]. Here, the maximum dimension DMAX = Lcryst corresponds to the axial
dimension of the polymer crystallite, while the peak in the meridional Patterson function can be
assigned to the so-called long-period Ltot = Lcryst + Lamorph, i.e., two adjacent crystallites are separated
by amorphous polymer chain segments of length Lamorph.

Although flow- or shear-induced crystallization effects can be excluded for the PMMA fibers,
melt-spinning, however, produces straight polymer chain sections of length LSC, which—in comparison
to the entangled polymer chain sections of length LEC that separate two consecutive straight polymer
sections—differ in their axial scattering densities, i.e., Ltot = LSC + LEC. These straight chain sections
can be considered as amorphous shish-precursors, which finally lead for a semi-crystalline polymer to
the formation of polymer crystallites [31–33].

The sum of the lengths (LSC + LEC) obtained from the analysis of the two different Guinier
regions (Figure 6) agree quite well with the positions Ltot of the correlation peaks in the meridional
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Patterson functions for all POF samples and demonstrate that both Guinier and real space analysis
yield consistent results (see Table 2).
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Figure 6. Analysis of the equatorial (Top row), and meridional (Bottom row) scattering contributions
using the Guinier fit and the Patterson function exemplarily shown for the sample POF 4. Note that
r corresponds to a distance, i.e., for the analysis of the equatorial SAXS intensities, DMAX = 2∆min,
and for the meridional SAXS, DMAX = LSC. The correlation peaks in the meridional and equatorial
Patterson functions correspond to periodically occurring density variations along the fiber axis and the
fiber cross-section, respectively.

The interpretation of the equatorial Patterson function is less straightforward. Similar to the
meridional distance-distribution function, the equatorial real-space correlation peak indicates the
presence of a radially symmetric repeat unit, which can, e.g., be defined as two concentric ring-segments
of widths ∆1 and ∆2 that exhibit significantly different scattering density contrasts ∆ρ1, and ∆ρ2,
respectively. Moreover, good axial transmission properties of the POFs require that the refractive index
and, according to the Clausius-Mossotti Equation (1), the material density, decays with increasing
distance r from the fiber axis, which defines the general properties of the ring segments ∆1 and ∆2.
The ring-segment of larger width (∆1) can be assigned a positive scattering density contrast ∆ρ1 while
the ring-segment with smaller width (∆2) exhibits a negative scattering density contrast ∆ρ2 < 0. Thus,
a decaying total scattering density can be achieved if |∆ρ1| < |∆ρ2|, and the moduli of the scattering
density contrasts increase with the distance r from the fiber axis (Figure 7). In principle, this radially
decaying, periodic scattering density variation over (parts of) the fiber cross-section is related to the
behavior of the polymer melt along the temperature gradient in the fiber. For example, different
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(radial) cooling rates can lead to changes in the free volume between adjacent polymer chains, which
is additionally influenced by the radial extrusion velocity profile of the polymer melt. Furthermore,
internal stress, which is likely to occur in the outer rim of the fiber cross section may—in combination
with the velocity profile—possibly induce ring segments of different density separated by nanoscopic
cracks. Albeit the origin of such radially decaying, periodic scattering density contrast variations over
(parts of) the fiber cross-section—which is clearly indicated by the equatorial real-space correlation
peak—is far from being understood, the described model appears to be self-consistent, and can at
least be used to correctly interpret the structural information contained in the γequ(r) in terms of the
model function:

Ieq(qr) = S0

{
2π

2N

∑
k=1

f (k, N, NR0)∆ρk

[
J1(qrRk)

qrRk
R2

k −
J1(qrRk−1)

qrRk−1
R2

k−1

]}2

, (9)

where S0 is a scaling factor, J1 is the first order Bessel function, N is the number of repeat units, R0 is
the radius of the fiber core with constant scattering density (i.e., ∆ρ0 = 0), R1 = R0 + ∆1, R2 = R1 + ∆2,
Rk = Rk−1 + ∆1 if k = 2n − 1, and Rk = Rk−1 + ∆2 if k = 2n. The scattering contrast ∆ρk equals ∆ρ1 if
Rk − Rk−1 = ∆1, and ∆ρk = ∆ρ2 if Rk − Rk−1 = ∆2.
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Figure 7. (Left) simple structure model for the description of radially decaying periodical
density variations over the fiber cross-section. (Top right) equatorial SAXS intensity patterns of
a model GI-POF and a two-step MSI-POF calculated with the structure model sketched on the left.
The respective model parameters are displayed in the insets. For better visibility, high frequency
oscillations in the SAXS curves were suppressed by a seven-point moving average. (Bottom right)
equatorial distance-distribution functions for GI- and MSI-POF. The information content is essentially
the same. In both cases, the smaller dimension ∆2 and the parameter Dtot can be extracted from
the functions.

The function f (k,N,NR0) increases the moduli of the scattering contrasts ∆ρk with increasing k, i.e.:

f (k, N, NR0) =
k + 2NR0

2Ntot
− NR0

Ntot
, (10)
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where NR0 is the number of repeat units that fit into the radius R0, i.e., NR0 = R0/(∆1 + ∆2), and Ntot is
the total number of repeat units for a fiber with radius Rf, i.e., Ntot = Rf/(∆1 + ∆2).

Equation (9) is a very simple approach to the above described model and is in its current form not
applicable to fit the observed equatorial SAXS data. The development of a suitable model—similar to
the one known for stacked platelets [34]—requires much more effort in order to separate the single
repeat unit scattering (i.e., the “single-particle” scattering) from the structure factor that describes the
scattering contributions arising from the interference of different repeat units, which is necessary to
introduce corrections such as, e.g., size-distribution functions for the repeat units, and uncertainty
factors for the inter-particle scattering into the model scattering function. Nevertheless, the model
curves demonstrate that the information content in the equatorial Patterson function is basically the
same for a GI-POF (where the density variation starts at R0 = 0 nm) or a multi-step index (MSI)-POF
(where the density variation starts for the example structure at R0 = 3800 nm, see Figure 7).

The DMAX value corresponds to the doubled width of the smaller ring-segment, i.e.,
DMAX = 2∆min = 2∆2 and the position of the correlation peak Dtot is given by:

Dtot =

√
2
(

∆2
1 + ∆2

2

)
(11)

The comparison of the values Rtot = Dtot/2 with the results for the cylinder radii Rc obtained from
the Guinier analysis (see Table 2) agree almost perfectly for all four POF samples, which demonstrates,
once again, that the results are consistent, and, more important, that the above described equatorial
structure model is a simple but reasonable approach to the real nanostructure of the POFs over the
fiber cross-section.

Table 2. Resulting equatorial and meridional characteristic dimensions of the investigated POF samples
obtained from distance distribution function (γ) and Guinier approximation (G).

Sample
No.

∆min (γ)
(nm)

Rtot (γ)
(nm)

LSC (γ)
(nm)

Ltot (γ)
(nm)

Rc (G)
(nm)

LSC (G)
(nm)

LEC (G)
(nm)

1 33 (3) 75 (3) 50 (2) 130 (2) 75 (4) 45 (2) 80 (4)
2 32 (3) 74 (3) 51 (2) 131 (2) 74 (4) 44 (2) 79 (4)
3 32 (3) 72 (3) 50 (2) 135 (2) 68 (3) 47 (2) 77 (4)
4 31 (3) 66 (3) 49 (2) 149 (2) 63 (3) 46 (2) 84 (4)

A simple simulation using Equation (9), where the parameters ∆1 = 85 nm and ∆2 = 35 nm were
manually found by variation of the respective values derived from the equatorial Patterson function
within their uncertainties, was carried out for the sample POF1 which displays the most pronounced
features in the equatorial scattering curve (see Figure 8). Although the model scattering intensities can
of course not even rudimentarily describe the measured data, it can yet be shown that the maxima
and minima in the observed intensities are correctly reproduced and that the sample is a multi-step
index fiber rather than a single-step or gradient-index POF (which is presumably valid for all four
investigated PMMA POF samples).

The upturn of the measured SAXS curve at very small q-values in comparison to the model
curve (Figure 8) may either be indicative of additional scattering contributions arising from micro
cracks or gas-inclusions, which also need to be taken into account for a proper data modeling, and/or
can be attributed to an incorrectly chosen fiber core radius R0 (see the SAXS curves in Figure 7).
To access information on such large-scale structure features for an improved interpretation of the results
(for both equatorial and meridional scattering intensities) requires an extension of the experiments into
the ultra-small-angle X-ray scattering (USAXS) regime, i.e., q ≤ 10−2·nm−1, making use of appropriate
techniques such as, e.g., light scattering and/or USAXS-cameras (Bonse-Hart) [35,36]. Regardless of
these limitations, the comparison between model curve and observed data clearly demonstrates that
the parameters derived from Guinier and real-space analysis are related to the PMMA nanostructure
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rather than to scattering contributions originating from cracks or voids. This indication can in principle
be easily confirmed if the structure parameters show systematic dependencies on the processing
conditions. Moreover, strong correlations between process and structure parameters are a clear sign
that the polymer structure, and, in particular, the radial density profile, can be modified by changes in
the fiber production process.
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Figure 8. Simulated SAXS intensities (blue solid lines) in comparison with the observed data (symbols
and green solid lines) for the sample POF1 using the structure parameters displayed in the inset on
the left for different numbers N of repeat units. For better visibility, high-frequency oscillations in
the model SAXS curves were suppressed by a seven-point moving average. The model curve with
N = 6 repeat units reproduces the positions of the maxima and minima in the measured data quite well.
A POF1 sample consisting of only one single repeat unit (N = 1) is not very likely.

As already mentioned above, single process parameters were not systematically varied in this
study. However, since the overall characteristics for the production of the four fiber samples are
different, at least integral structure—process relationships can be obtained, which require the definition
of an overall process parameter that (qualitatively) reflects the interdependencies of the complete set
of production factors with respect to their relative impact on the formation of the fiber structure.

The variation of the spin-draw ratio λSD has a strong influence on the structure of a fiber material
that is rapidly cooled down, and almost no influence on the structure of a fiber in the molten state.
Consequently, it appears reasonable to weight the spin-draw ratio λSD with the temperature of the
water-bath Twater. This argument also holds for the mechanical draw ratio λD, which can be weighted
with the drawing temperature TD. The effect of the applied mechanical draw ratio λD on the fiber
structure also depends on the history of the as-spun material, since the relative impact of the draw ratio
on the fiber nanostructure is higher if the fiber is spun at a moderate spin-draw ratio, and decreases
with increasing spin-draw ratio.

Thus, an approximate overall process parameter f tot can be created which is given by:

ftot =
λD

λSD

(Twater − T0)

(TD − T0)
(12)

where T0 corresponds to ambient temperature. The overall factor f tot defined by Equation (12) has to be
considered as a very simple approximation to the real dependencies of the single process parameters.
Though the major changes in the integral structure parameters are due to the mechanical draw ratio
(which is in fact of minor importance for the fabrication of POFs, see Table 1), Figure 9 reveals that Rtot

and Ltot depend (even for the comparatively small changes in the process parameters between POF1
and POF2) systematically on f tot, which proves that the equatorial (scattering-) density, as well as the
meridional length distribution of the straight PMMA chain segments in the fiber, can be manipulated
by selection of the processing conditions.
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Figure 9. Dependence of the integral equatorial and meridional parameters Rtot (Left) and Ltot (Right)
on the overall process-parameter f tot. Although the major differences in the structure parameters are
induced by the mechanical draw ratio, the impact of small changes in the spin-draw ratio between
POF1 and POF2 is also noticeable.

5. Conclusions

Four PMMA-POFs produced with different sets of process parameters were investigated with
small-angle X-ray scattering (SAXS). The SAXS intensity distributions were analyzed by a Guinier
approach and the computation of the distance distribution functions in order to extract information
on the PMMA fiber nanostructure in the equatorial plane and along the fiber axis. The occurrence
of real-space correlation peaks in both equatorial and meridional distance distribution functions
suggest periodic variations of the scattering density along and perpendicular to the fiber axis in
the amorphous POFs, and the resulting structure parameters can be assigned to scattering density
variations over the fiber cross-section and the occurrence of straight PMMA chain segments along
the fiber axis. The integral structure parameters are clearly correlated to—and, therefore, controllable
by—changes in the processing conditions. A simple model that describes the radially decaying periodic
density variation is found to reproduce the essential structural features of the equatorial scattering
curves. Though the mechanism that induces these radially decaying periodic changes in the equatorial
scattering density contrast is yet to be investigated in detail, the origin of the fiber cross-sectional
refractive-index profiles is definitely a radial density gradient. Despite the fact that the explored range
of processing conditions is, by far, too small to derive correlations that are of real significance, this very
first SAXS study on the response of the PMMA fiber structure to variations of the processing conditions
can be considered successful, since it shows that SAXS experiments can indeed contribute to the
determination of structure–property process relationships, which may be exploited to finally fabricate
POFs with well-defined refractive-index profiles that can be designed by the choice of appropriate
processing conditions.
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