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BcSUN1 is a glycoprotein secreted by Botrytis cinerea, an important plant pathogen
that causes severe losses in agriculture worldwide. In this work, the role of BcSUN1 in
different aspects of the B. cinerea biology was studied by phenotypic analysis of Bcsun1
knockout strains. We identified BcSUN1 as the only member of the Group-I SUN family
of proteins encoded in the B. cinerea genome, which is expressed both in axenic
culture and during infection. BcSUN1 is also weakly attached to the cellular surface and
is involved in maintaining the structure of the cell wall and/or the extracellular matrix.
Disruption of the Bcsun1 gene produces different cell surface alterations affecting the
production of reproductive structures and adhesion to plant surface, therefore reducing
B. cinerea virulence. BcSUN1 is the first member of the SUN family reported to be
involved in the pathogenesis of a filamentous fungus.
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INTRODUCTION

Botrytis cinerea has been considered the second most important plant pathogenic fungus according
to its economic/scientific importance (Dean et al., 2012). During infection of plant tissues, the
fungus secretes hundreds of proteins to the extracellular medium, although just a few of them
have been reported, by analysis of the corresponding mutants, to have a significant contribution to
B. cinerea virulence (González et al., 2015).

BcSUN1 is a member of the β-glucosidase SUN family that has been experimentally identified
as a component of the B. cinerea secretome (Espino et al., 2010; González et al., 2014). The Bcsun1
gene encodes a protein of 471 amino acids that contains a signal peptide for secretion, as well
as several Ser/Thr-rich regions that are potentially hyper-O-glycosylated (González et al., 2012).
Oligosaccharides with mannose α1-2 and/or α1-3 bonds, but not mannose α1-6 bonds, were
experimentally confirmed to be present in the BcSUN1 protein (González et al., 2014). In addition,
the culture medium from a B. cinerea strain overexpressing BcSUN1 showed an enhanced capacity
to elicit plant defenses, as compared with the wild type strain (González et al., 2014), suggesting
that BcSUN1 may be recognized by the plant immune system.

The β-glucosidase SUN family of proteins (Pfam PF03856; Interpro IPR005556) were first
described in Saccharomyces cerevisiae and have been identified only in ascomycetes (Firon et al.,
2007). In spite of their annotation, β-glucosidase activity has been described only for AfSUN1 from
Aspergillus fumigatus and SUN41 from Candida albicans, assigned to the new Glycosyl Hydrolase
family GH132 (Gastebois et al., 2013). Structurally, proteins of this family are classified into two
groups (Firon et al., 2007). Group-I members show a well conserved C-terminal region of 258
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amino acids corresponding to the SUN domain, which comprises
four putative Fe-binding cysteine residues (Cys-X5-Cys-X3-
Cys-X24-Cys) (Mouassite et al., 2000a), and a less conserved
N-terminal region, which contains a signal peptide and a low
complexity region rich in Ser and Thr residues. Group-II proteins
harbor a degenerate SUN domain, with multiple amino acid
insertions in the Cys-rich motif and a shorter N-terminal region
(Firon et al., 2007; Gastebois et al., 2013). Members of Group-II
are all related to the S. cerevisiae YMR244W protein (Firon et al.,
2007).

Group-I members have been extensively studied in yeast,
and diverse biological functions have been attributed to them.
The four prototypical SUN proteins of S. cerevisiae namely
SIM1, UTH1, NCA3 and SUN4 (Mouassite et al., 2000a,b) are
involved in different cell functions. SIM1 plays an important role
in the regulation of DNA replication (Dahmann et al., 1995),
although when overproduced from a multicopy plasmid, SIM1
also functioned as an extracellular suppressor of mutations in the
PAG1 and CBK1 genes involved in cellular morphogenesis (Du
and Novick, 2002). UTH1 was first identified in a screening for
S. cerevisiae mutants with increased stress resistance and longer
life spans (Kennedy et al., 1995) and shows a dual localization: in
mitochondria, where it is involved in mitochondrial biogenesis
and autophagy (Camougrand et al., 2000) and in the cell
wall, where it seems to play a role in determining the β-
d-glucan/chitin composition (Ritch et al., 2010). The third
member of the family, NCA3, is involved in the maturation
of transcripts encoding two components of the ATP-synthase
complex in mitochondria (Pelissier et al., 1995). Finally, SUN4
was isolated as a soluble cell wall protein (Cappellaro et al.,
1998) and is involved in cell septation (Mouassite et al.,
2000a). Similarly to UTH1, SUN4 has also been found both
in the cell wall and in mitochondria (Cappellaro et al., 1998;
Mouassite et al., 2000a). Recently, UTH1, SIM1 and SUN4 have
also been described as secreted proteins, and their production
was affected by the level of oxygen (Kuznetsov et al., 2013).
In C. albicans, on the contrary, only two members of the
SUN family have been identified, SUN41 and SUN42, both
of which are involved in remodeling the cell wall and are
essential for cell separation (Firon et al., 2007; Hiller et al.,
2011).

The SUN family has been poorly studied in filamentous fungi.
To our knowledge, these proteins have been experimentally
analyzed only in A. fumigatus (Gastebois et al., 2013), a
saprophytic fungus typically found in soil and decaying organic
matter, which can also cause aspergillosis in humans (Kwon-
Chung and Sugui, 2013), and in Ustilaginoidea virens, the causal
agent of rice false smut disease (Yu et al., 2015). AfSUN1 from
A. fumigatus, a member of Group-I, has been reported to be
involved in fungal morphogenesis (Gastebois et al., 2013) and the
Group-II protein, UvSUN2 from U. virens, has been proposed to
be involved in cell wall biogenesis and response to stress (Yu et al.,
2015).

In this work we report the disruption of the Bcsun1 gene in
B. cinerea and the phenotypic characterization of the mutant. We
show that BcSUN1 plays a key role in fungal morphogenesis and
is required for full virulence.

MATERIALS AND METHDOS

Strains and Growth Conditions
Botrytis cinerea strains used in this work were B05.10 (Quidde
et al., 1999), a wild type strain, and B05.10-BcSUN1, which
expresses a tagged version of the BcSUN1 protein under the
control of the OliC promoter (González et al., 2014). These
were kept as conidial suspensions in 15% glycerol at −80◦C
for long storage, and were maintained on 3% malt extract agar
(MEA, Oxoid, UK) plates for routine use. Fungal cultures were
routinely incubated at 22◦C. B. cinerea conidia were prepared
as described by Benito et al. (1998) from cultures on tomato-
plates (25% homogenized tomato fruits, 1.5% agar, pH 5.5).
Unless otherwise indicated, fungal strains were grown on YGG
medium [0.5% yeast extract, 2% glucose, and 0.3% Gamborg’s
B5 (Duchefa Biochemie, The Netherlands)], supplemented with
1.5% agar and 100 µg/ml hygromycin or nourseothricin when
required. As minimal medium, GB5 (0.3% Gamborg’s B5, 1%
glucose, 10 mM KH2PO4) was used. To examine production of
the extracellular matrix (ECM) under the microscope, conidia
were germinated in PDB medium (0.1% Potato dextrose broth,
Duchefa Biocheme, The Netherlands). To analyze different
extracellular protein fractions, conidia were germinated in
YGG-L medium (0.3% Gamborg’s B5, 0.36% glucose, 10 mM
KH2PO4, 10 mM MES (Sigma Aldrich, USA), 0.5% yeast extract,
pH 5.5).

Nicotiana tabacum var. Havana, Solanum lycopersicum var.
moneymaker and Phaseolus vulgaris plants were maintained in a
growth chamber at 22◦C, 70% humidity with a light/dark cycle of
14 h light/10 h dark. When tobacco seedlings were required, seeds
were sterilized as explained before (González et al., 2014) and
incubated 2 days at 4◦C in darkness to break dormancy before
germination on solid MS medium [0.5% Murashige and Skoog
(Duchefa Biochemie, The Netherlands), 0.8% agar, pH 5.7] for
1 week.

Quantitative Real-Time PCR (Q-RT-PCR)
Mycelia for RNA extraction were prepared as described elsewhere
(ten Have et al., 2010). Briefly, 7 × 106 conidia/ml were
germinated for 12 h in 250 ml of GB5 medium containing 2 mM
sucrose instead of glucose and a dialysis bag with 30 ml of a
50% (w/v) kiwi, tomato or strawberry fruit extract (made in the
same medium). As a control, standard GB5 medium was used and
no dialysis bag was added. For the in planta expression studies,
RNA was isolated from infected tomato leaves as described before
(Brito et al., 2006).

One microgram of total RNA was used as template for
cDNA synthesis using the iScript cDNA Synthesis Kit (Bio-
Rad, USA), according to the manufacturer’s instructions. Q-RT-
PCR reactions were performed in an iCycler iQ thermal cycle
(Bio-Rad, USA) with the iQ SYBR Green Supermix (Bio-
Rad, USA) and the primers listed in Supplementary Table S1.
In order to normalize the expression levels, the B. cinerea
actA gene was used as an internal reference. One of the
two primers for each transcript spanned over an exon–
exon junction on the cDNA to avoid amplification from
contaminant genomic DNA. The relative mRNA amounts
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were calculated by the 11Ct method from the mean of
three independent determinations of the threshold cycle (Ct),
and the control sample (ungerminated conidia) was used
as calibrator (Schmittgen and Livak, 2008). Deviation from
the mean for each sample was calculated from the standard
deviation (SD) in the 11Ct value using the expression
2(11Ct ± SD).

Bcsun1 Gene Disruption
The replacement cassette was constructed by Overlap Extension
PCR as described by Nelson and Fitch (2011), with some
modifications, and the strategy is outlined in Supplementary
Figure S1. Genomic DNA from B. cinerea was extracted
using the PUREGENE DNA Purification Kit (Qiagen, USA)
and primers (Supplementary Table S1) were from Biolegio
(Nijmegen, The Netherlands). All PCR products and restriction
endonuclease digestion fragments were purified with PCR Clean-
up Kit and NucleoSpin Gel kit (MACHEREY-NAGEL, Germany),
respectively. The two fragments homologous to the target gene
were amplified with GoTaqG2 DNA Polymerase (Promega, USA)
and primer pairs 6.5.1/6.5.3 for the 5′-flanking region, and
6.3.1/6.3.3 for 3′-flanking region. The hygromycin resistance
cassette was obtained by digestion of the pLOB7 vector (Zhang
et al., 2011) with EcoRI and HindIII. The three fragments were
fused by PCR using the Expand High Fidelity Enzyme Mix
(Roche, Switzerland). The resultant gene replacement cassette
was purified, checked by double digestions with EcoRI-SacII
and HindIII-SacII, and used to transform B. cinerea protoplasts
(van Kan et al., 1997). Homokaryons were purified from the
transformants obtained and analyzed by Southern blot and PCR
(Supplementary Figure S1). Two independent knockout lines
(1Bcsun1.1 and 1Bcsun1.2) were used in all experiments. Since
the phenotypes of both independent mutants were identical,
only the results of 1Bcsun1.1 are shown in most figures for
simplicity.

Phenotypic Analysis
Fungal sensitivity to a range of compounds was assayed
determining the growth rate on YGG plates supplemented with
one of the following chemicals: 30 mM H2O2 (Foret, Spain),
0.005% congo red (CR; Sigma–Aldrich, USA), 0.02% SDS, 0.05%
Calcofluor white (CW; Sigma–Aldrich, USA), 1 M sorbitol, or
0.4% boric acid (BA; Merck-Millipore, Germany). Colony radius
was measured every 24 h during 3 days.

Sensitivity of mycelium to protoplast-forming enzymes was
analyzed by treating young mycelium with Lysing Enzymes from
Trichoderma harzianum (Sigma–Aldrich, USA). Conidia were
germinated for 16 h in YGG medium, washed three times with
KC buffer (0.6 M KCl, 50 mM CaCl2), and incubated for up
to 4 h in 7.5 mg/ml of the enzyme mix in KC buffer. Samples
were taken every 30 min and protoplasts were counted using a
haemocytometer.

The capacity of the mycelium to retain water was calculated
by comparing the fresh weight of the mycelium after filtration
with the dry weight after being completely dried. Fungal strains
were grown for 3 days in 20 ml of YGG medium in the dark,
without shaking. Cultures were then filtered and the mycelia were

allowed to drain for 30 min at room temperature and weighed
(fresh weight) and then dried at 60◦C to a constant weight (dry
weight). The water retention capacity was calculated as the ratio
of the amount of water retained (fresh weight minus dry weight)
to the corresponding dry weight.

Pathogenicity tests were performed by inoculating bean,
tomato or tobacco leaves with either agar plugs containing young
mycelium (0.2-cm YGG-agar cubes) or conidia suspensions (5-µl
droplets of 2.5 × 105 conidia/ml in TGGK solution (60 mM
KH2PO4, 10 mM glycine, 0.01% Tween 20, 100 mM glucose).
The inoculated leaves were incubated at 20◦C under conditions of
high humidity on water-soaked filter paper in closed containers.
At different time points after inoculation, lesions on leaves
were photographed and their radii were measured. Quantitative
results are presented as the percentage of expanding lesions per
total number of inoculation spots, and the rate of increase of
lesion size (in cm/day) of the expanding lesions. Adhesion of
B. cinerea to plant surfaces was assayed as described by González
et al. (2013). The number of conidia on infected leaves was
estimated at 10 days post-inoculation using squares of infected
leaf (4× 4 cm). Conidia were released by vortexing in ddH2O for
20 s and then quantified as described elsewhere (González et al.,
2013).

To compare the amount of ECM around hyphae, the fungus
was grown for 3 days in 500 µl of PDB medium (inoculated with
5× 105 conidia), on glass slides in high-humidity conditions. The
medium was then aspirated and the mycelium was completely
overlaid with several drops of black India ink, covered with a
coverslip, and observed under the microscope (Olympus BX-50).
Aggregation of conidia was observed under the microscope at
2 h after inoculation in YGG medium. To analyze the production
of conidiophores and infection cushions, agar plugs with young
mycelium were laid on glass slides and incubated 10 days under
high-humidity before observation under the microscope. To
quantify the number of germ tubes per conidium and their
rate of ramification, conidia were germinated for 16 h in YGG
medium and observed under the fluorescence microscope after
staining with CW for easier visualization. Staining was done by
incubation in a CW solution (0.05% CW in 3.75% KOH) for
5 min, washing twice with 15% KOH, and resuspension in 20 µl
of 3.75% KOH/4.35% glycerol. The microscope (Olympus BX-50)
was equipped with a U-MWIB filter.

Production of reactive oxygen species (ROS) by fungal strains
was assayed according to Viefhues et al. (2015) with minor
modifications. Briefly, YGG-agar solid medium was overlaid
with cellophane, inoculated with mycelium plugs, incubated for
4 days, and finally used to harvest 6 mg of fresh mycelium that
was then placed at the bottom of a well in a microtiter (96 wells)
plate. Then 250 µl of a 3,3′-Diaminobenzidine (DAB) solution
(0.5 mg/ml DAB in 100 mM citric acid, pH 3.7) were added to
cover the mycelium, and the plate was incubated for 1.5 h in
the dark and visually evaluated. Positive and negative controls
were done as in Viefhues et al. (2015). Production of ROS during
infection was assayed in tobacco leaves inoculated with 5-µl
droplets of a conidial suspension (5 × 105 conidia/ml in TGGK
solution). 40 h after inoculation, leaf disks with the infected area
in its center were cut and vacuum infiltrated for 1 h with 1 mg/ml
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DAB, pH 3.8. To visualize the ROS stain, disks were then boiled
in ethanol for 5 min to eliminate chlorophyll, and photographed.
Quantification of ROS from the images obtained was done with
the software Fiji (Schindelin et al., 2012) and is expressed as
the percentage of brown pixels detected in a circumference of
constant area around the infection point.

Extracellular Protein Fractions and
BcSUN1 Localization
The strain B05.10-BcSUN1 was grown for 16 h with shaking
(160 rpm) in YGG-L medium supplemented with 25 µg/ml
nourseothricin and 4 µg/ml pepstatin-A (Sigma–Aldrich, USA),
inoculated with 3 × 106 conidia/ml. Three protein fractions
were recovered from the culture: (i) the extracellular proteins
were recovered from culture filtrates; (ii) proteins non-covalently
attached to the fungal cells were isolated incubating the
collected mycelium with 300 mM NaCl (15 ml/g mycelium)
for 15 min and subsequent filtration, recovering the NaCl-
solubilized proteins; and (iii) the remaining mycelial proteins
were obtained by incubation of the NaCl-treated mycelium
with Laemmli sample buffer (Laemmli, 1970) (0.1 mg mycelium
in 100 µl buffer). Extracellular and NaCl-solubilized proteins
were precipitated with methanol-chloroform according to Wessel
and Flügge (1984) and the pellets were also resuspended in
Laemmli sample buffer. The three protein preparations were
fractionated by SDS-PAGE, electroblotted onto nitrocellulose
membranes (Whatman Protran BA 85), and BcSUN1 was
detected with mouse anti-c-myc antibodies (Sigma–Aldrich,
USA; 1:5000 dilution) in combination with anti-mouse IgG
conjugated to Horseradish peroxidase (Sigma–Aldrich, USA;
1:3000 dilution) as the secondary antibody. The peroxidase signal
was detected with Immobilon Western Chemiluminescent HRP
Substrate (Merk-Millipore, Germany) and the intensity of the
bands was measured with the software Quantity One (BioRad,
USA).

Statistical Analysis
Statistical analysis was carried out with SPSS 17 (IBM). Statistical
significance tests used were either the T-test, in those cases with
a normal distribution (analyzed with the Kolmogorov–Smirnov
test), or the Mann-Whitney test, if sample distribution was not
normal. Asterisks indicate a statistically significant difference
with the control (wild type strain) (p= 0.05).

RESULTS

BcSUN1 Is the Only Member of the
Group-I of SUN Family in B. cinerea
BcSUN1 (Bcin06g06040.1, from the B. cinerea protein
database in EnsemblFungi1; van Kan et al., 2016) is a
highly glycosylated protein of 48 kDa, initially identified
as a component of the B. cinerea early secretome (Espino
et al., 2010) and also present in the glycosecretome (González

1http://fungi.ensembl.org/Botrytis_cinerea

et al., 2014). The alignment of its sequence with the four
S. cerevisiae proteins that belong to Group-I of the SUN
family (Supplementary Figure S2) showed an overall identity
ranging from 28.1% for NCA3 to 38.6% for SIM1 (Table 1),
while sequence conservation was higher for the C-terminal
region containing the SUN domain, with amino acid sequence
identities ranging from 41 to 46%. Analysis of the hydropathic
profiles (Supplementary Figure S3) also established a good
similarity to Group-I proteins, especially at the C-terminus.
BcSUN1 is especially similar to AfSUN1 from A. fumigatus
(43.5% of amino acid identity), the only member of Group-I
experimentally studied in filamentous fungi (Gastebois et al.,
2013).

A BLAST-P search (Altschul et al., 1997) in the B. cinerea
genome1 with BcSUN1 as the query sequence did not identify
additional homologues belonging to Group-I. However, the
search revealed an additional SUN family member (gene
Bcin07g06600.1) showing 53% amino acid identity both with
the hypothetical protein YMR244W from S. cerevisiae and
β-glucosidase Adg3 from Schizosaccharomyces pombe, both
classified as members of the Group-II of the SUN family
(Firon et al., 2007). This gene encodes a protein of 530 amino
acids containing a signal sequence for secretion, according to
SignalP 4.1, and a degenerate SUN domain, with multiple amino
acid insertions in the N-terminal Cys-rich motif (data not
shown).

BcSUN1 Is Expressed Both in Axenic
Culture and In planta
BcSUN1 has been detected in the culture medium, as a secreted
protein, very early after conidial germination and also at 4 days
after inoculation on YGG (Espino et al., 2010; González et al.,
2014). The expression of the Bcsun1 gene was studied in more
detail in this work by Q-RT-PCR. In axenic culture, Bcsun1
mRNA levels increased significantly in every condition tested
at 12 h post inoculation, as compared with the expression in
non-germinated conidia (Figure 1A). The level of induction was
higher when plant extracts were included in the medium than in
a chemically defined medium with glucose as the only carbon
source. The levels of Bcsun1 mRNA also increased during the
infection of tomato leaves with B. cinerea (Figure 1B). A slight

TABLE 1 | Amino acid sequence identity and similarity of BcSUN1 to
S. cerevisiae proteins in Group-I of the SUN family.

Protein C-terminal region

Identity (%) Similarity (%) Identity (%) Similarity (%)

SIM1 38.6 52.9 41.6 58.0

UTH1 36.6 47.9 46.2 57.3

NCA3 28.1 41.0 43.0 58.3

SUN4 33.7 48.6 43.4 57.5

Identity and similarity were computed with EMBOSS Needle from alignments of the
entire sequences or the C-terminal regions only. Uniprot accession numbers for
the S. cerevisiae proteins are as follows: P40472 (SIM1), P36135 (UTH1), P32493
(NCA3) and P53616 (SUN4).
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FIGURE 1 | Levels of Bcsun1 mRNA in the wild type strain B05.10
under different growth conditions. (A) Levels of Bcsun1 mRNA in the wild
type strain B05.10 grown for 12 h in liquid GB5 medium containing, as
indicated, a dialysis bag with 50% (w/v) kiwi, tomato or strawberry fruit
extract, or supplemented with 1% glucose as carbon source. (B) Levels of
Bcsun1 mRNA in tomato leaves infected with B. cinerea B05.10 at various
hours after inoculation (hpi). In all cases data are relative to the mRNA levels in
ungerminated conidia. Results are expressed as mean ± SD of 3 technical
replicates.

induction (2.5 times in comparison to ungerminated conidia) was
observed in the early phase of infection (up to 12 h) and then,
after a slight drop, expression levels increased up to 96 h post
inoculation (Figure 1B). These results suggest a role for BcSUN1
during infection, especially at late stages when the lesions become
necrotic.

BcSUN1 Is Involved in Maintaining Cell
Wall Integrity
Two independent Bcsun1 knockout mutants (1Bcsun1.1 and
1Bcsun1.2) were generated and characterized by PCR and
Southern-blot (Supplementary Figure S1). The two mutants
showed no difference with the wild type in the growth rate in rich
or minimal media and no difference was found either in media
supplemented with tomato leaf or fruit extracts (Figure 2A).
Nevertheless, the addition of various compounds known to affect
the integrity of the plasma membrane or the cell wall integrity
did affect the growth rates of the mutant strains (Figure 2A).
Calcofluor white, congo red, boric acid, and SDS caused a slight,
but significant reduction in the growth rate of the 1Bcsun1
strains, suggesting that BcSUN1 may have a role in the biogenesis

or stability of the cell wall. A smaller growth rate caused by
a weaker cell wall can usually be recovered by the addition of
osmotic stabilizers to the growth medium. However, in the case
of the 1Bcsun1 mutants, the presence of an osmotic stabilizer
(1 M sorbitol) had a negative effect on growth, and had almost
the same impact on the growth rate as CW, CR or boric acid
(Figure 2A).

Defects in cell wall structure in filamentous fungi can
be visualized by testing the sensitivity to protoplast-forming
enzymes. With this purpose, young mycelia (conidia germinated
for 16 h) were incubated with a cocktail of cell wall degrading
enzymes and the production of protoplasts was monitored. The
1Bcsun1 mutant strains were more sensitive to these enzymes
than the wild type (Figure 2B), again pointing to an altered cell
wall caused by the deletion of Bcsun1. These modifications may
also be the reason for the changes detected for the 1Bcsun1
mutants in the number of germ tubes per conidium (Figure 2C)
and in the branching pattern of young hyphae (Figure 2D), as an
altered cell wall could potentially have an impact on whether or
not a new ramification forms at a given moment.

Deletion of Bcsun1 Induces Cell Surface
Alterations and Modifies the Production
of Reproductive Structures
Although BcSUN1 seems to have a role in the integrity of the cell
wall, the protein is also found in the extracellular medium, raising
the possibility of its involvement in the structure or metabolism
of the ECM. To examine this hypothesis, the 1Bcsun1 mutants
were grown for 3 days in PDB medium and ECM was negatively
stained with India ink (González et al., 2013). ECM is observed as
a clear halo surrounding the hyphae against the dark background.
The halo was much smaller for the 1Bcsun1 strains (Figure 3A),
as compared with the wild type. One of the functions proposed
for the ECM is the retention of water in the cell vicinity (Laspidou
and Rittmann, 2002), and a reduced ECM could result in the
reduction of the amount of water retained by the mycelium
upon filtration of the fungal cultures. Indeed the mycelium of
1Bcsun1 strains retained almost 50% less water than the wild type
(Figure 3B) in agreement with the reduced ECM halo detected by
India ink staining (Figure 3A).

Additionally, ECM has been proposed to have a role in cell-
to-cell attachment (Doss et al., 1995), and therefore the incidence
of conidial aggregation was assessed. In the case of the 1Bcsun1
mutants most conidia (75%) were found associated to at least
one other, while the majority of wild type spores appeared to
be in the suspension as individual conidia (Figure 3C). Finally,
cell surface modifications could provoke differences in the colony
morphology, especially at the borders. When fungal strains were
grown in MEA medium for 3 days, the mutants showed more
irregular and diffuse colony margins as compared to the wild type
(Figure 3D).

The influence of the deletion of Bcsun1 on the production
of conidia was assessed determining the number of conidia
produced by the two 1Bcsun1 mutants, as compared to the
wild type (Figures 4A,B), but also by studying the number of
conidiophores along mature hyphae (Figures 4C,D). The results
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FIGURE 2 | Role of BcSUN1 in cell wall integrity. (A) Growth rate of the indicated strains in various media: 6% tomato leaf extract (Leaf), 25% tomato fruit extract
(Fruit), minimal medium (GB5), rich medium (YGG), YGG + 0.005% congo red (CR), YGG + 0.4% boric acid (BA), YGG + 0.05% Calcofluor white (CW), YGG + 1 M
Sorbitol (SOR), or YGG + 0.02% SDS (SDS). Results are shown as mean ± SD for 9 biological replicates. Asterisks indicate a statistically significant difference (by
t-test, p = 0.05) between the wild type and the mutant in a given medium, and the percentage of reduction in growth rate for the mutant, as compared to the wild
type, is indicated above bars. (B) Production of protoplasts (mean ± SD, n = 3) from the indicated strains when treated with a cocktail of cell wall degrading
enzymes. (C) Percentage of germinated conidia with two or more germ tubes at 16 h after inoculation in YGG medium (n ≥ 100). (D) Percentage of hyphae with two
or more ramifications at 16 h after inoculation in the same medium (n ≥ 100).

obtained showed a significant reduction in both features for the
mutant strains, relative to the wild type. The role of BcSUN1
in the production of sclerotia was also analyzed, and the results
showed a significant increase in the number of these survival
structures in the mutant strains, as well as a slight reduction in
the number of sclerotia for the BcSUN1-overexpressing strain
B05.10-BcSUN1 (Figures 4E,F). Taken together, these results
suggest a role of BcSUN1 in the production of B. cinerea
reproductive structures.

BcSUN1 Is a Secreted Protein, but Is
Also Weakly Bound to the Cell Surface
BcSUN1 has previously been identified as a component of
B. cinerea secretome (Espino et al., 2010; González et al., 2014;
González-Fernández et al., 2014) and was more abundant in
the extracellular medium when the O-glycosylation machinery
was altered by mutation of the Bcpmt1 gene (González et al.,
2014). On the other hand, as discussed above, BcSUN1 plays a
role in the cell wall. Its S. cerevisiae homologues SUN4, UTH1
and SIM1 have been reported to have having multiple cellular
locations, either in the cell wall, the extracellular space, or in the
mitochondria (Kuznetsov et al., 2013).

To study the putative binding of BcSUN1 to the cell wall
and/or the ECM, the B05.10-BcSUN1 strain, which expressed
a version of BcSUN1 bearing a c-myc epitope, was grown on
YGG-L medium for 16 h and three fractions were recovered
representing (i) the soluble extracellular proteins secreted to the
culture medium, (ii) the proteins associated to the mycelium

that could be released in presence of high salt, and (iii) the
proteins extracted from the mycelium with Laemmli sample
buffer. Salt treatment can release proteins weakly associated to the
fungal cell wall and/or the matrix by van der Waals interactions,
hydrogen bonds, and hydrophobic or ionic interactions (Jamet
et al., 2008). The same three protein fractions isolated from
the wild type strain (B05.10) cultures, as well as proteins
precipitated from the un-inoculated medium (YGG-low) were
used as negative controls. When proteins were fractionated
by SDS-PAGE (Figure 5A) and BcSUN1 was visualized by
western blot (Figure 5B), three different isoforms were found
with apparent molecular weights of 25, 50, and 75 kDa,
although the expected size for the recombinant polypeptide is
48 kDa. The three isoforms were found in the culture medium
fraction, while only the 50 and 75 kDa proteins were released
from the mycelium surface by the salt treatment (Figure 5B).
By considering all the bands obtained in the blots, BcSUN1
was mainly distributed, in almost equal parts, between the
extracellular and the salt-extractable fractions (Figure 5B). As
previously reported (González et al., 2014), no bands were seen
in the negative controls (data not shown).

BcSUN1 Is Required for Full Virulence
To study the effect of the mutation of Bcsun1 on fungal virulence,
infections were carried out on detached leaves from various
plant species. The 1Bcsun1 mutants showed, in the first place,
a reduction in the number of inoculations actually producing a
spreading lesion when tomato or tobacco leaves were inoculated
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FIGURE 3 | Lack of BcSUN1 induces cell surface alterations. (A) ECM
displayed by the 1Bcsun1 mutant, as compared with the wild type (B05.10),
detected by negative India ink staining of conidia germinated in PDB medium
for 3 days. (B) Water retention capacity (mean ± SD; n = 3) of the two strains
grown on YGG medium for 3 days. (C) Aggregation of 1Bcsun1 mutant
spores, as compared with the wild type (B05.10). (D) Differences in the
morphology of the colony borders for the indicated strain when grown in MEA
for 3 days.

with agar plugs (Table 2). Such a reduction in the proportion
of expanding lesions, however, was not observed in the case
of bean leaves inoculated with agar plugs, or in any host plant
tested when inoculations were carried out with conidia. When
the growth rate of the expanding lesions was measured, a
significant reduction was observed for the 1Bcsun1 mutants

FIGURE 4 | Production of reproductive structures by the 1Bcsun1
mutant. (A) Amount of conidia produced by the indicated strains in 25%
tomato plates growing for 5 days, subjected to 12 h of near-UV light and
maintained in the dark for 10 additional days (mean ± SD; n = 3). (B) Amount
of conidia (mean ± SD; n = 9) collected from infected tobacco leaves at
10 days after inoculation. (C) Number of conidiophores along hyphae
(mean ± SD; n = 15), produced by the indicated strains growing from
YGG-agar plugs over sterile microscope slides after 10 days of incubation.
(D) Images of conidiophores counted in (C). (E) Number of sclerotia produced
(mean ± SD; n = 3) after 20 days of growth in 25% tomato plates under
continuous darkness. (F) Images of the plates from which the data in (E) were
taken. Asterisk on bars indicate a statistically significant difference with the
wild type (B05.10).

Frontiers in Microbiology | www.frontiersin.org 7 January 2017 | Volume 8 | Article 35

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00035 January 18, 2017 Time: 18:33 # 8

Pérez-Hernández et al. BcSUN1 Contributes to Virulence in Botrytis cinerea

FIGURE 5 | Localization of BcSUN1. (A) SDS-PAGE (Coomassie)
comparing the amount of total proteins precipitated from the culture medium
(Extracellular), extracted with NaCl from the mycelium (NaCl), or extracted
from the mycelium with Laemmli sample buffer (Mycelium) in cultures of the
B05.10-BcSUN1 strain. The amounts of proteins loaded were those
contained in 1 ml of medium (1/30 of total from culture), 0.75 ml of
salt-solubilized suspension (1/11 of total from culture), and those extracted
from 15 mg of mycelium with Laemmli sample buffer (1/33 of total from
culture). (B) Western blot (anti-c-myc) comparing the amount of recombinant
BcSUN1 in the three fractions.

in the three host plant species when inoculations were carried
out with agar plugs (Figure 6). In the case of inoculations
with conidia, however, a significant reduction in expanding
lesion growth rate was observed for the 1Bcsun1 mutants only
on bean leaves, while lesions on tomato and tobacco leaves
spread at the same rate for the mutants and the wild type.
In all these tests, no significant differences were found for
the B05.10-BcSUN1 strain, as compared to the wild type (not
shown).

The initial stage of the infection process is characterized
by adhesion of hyphae to the host surface. To analyze if the
adherence of fungal hyphae to the plant surface is modified by
Bcsun1 deletion, the adhesion of mutant strains to host tissue
was examined by measuring the percentage of mycelium plugs
detached from the surface of tobacco leaves after washing with
water at 24 h post inoculation (Figure 7A), and by measuring
the physical force that was necessary to detach individual plugs
(Figure 7B). The 1Bcsun1 strains showed both an increase in
the percentage of plugs that could be detached by washing and
a decrease of the average adhesion force of individual plugs to
the plant surface. Additionally, a microscopic analysis was done
to examine if the deletion of the Bcsun1 gene induced changes
in the number and/or the structure of infection cushions. The
morphology of the cushions produced by the 1Bcsun1 mutants

was similar to those generated by the wild type or the B05.10-
BcSUN1 strains (data not shown). However, the number of
infection cushions was reduced between 50 to 70% in the mutants
as compared to the wild type (Figure 7C).

Finally, the production of ROS in tobacco leaves during
infection was analyzed, as it has been reported that UTH1 from
S. cerevisiae and UvSUN2 from U. virens have a role in oxidative-
stress response (Bandara et al., 1998; Yu et al., 2015). An increase
in the reddish-brown DAB precipitate was found in the lesions
caused by the 1Bcsun1 strains, which was almost fourfold more
intense than that produced by the wild type strain (Figure 7D).
An increase in ROS production by the 1Bcsun1 mutants was also
observed in vitro using a semi-quantitative method (Figure 7E).
Furthermore, the addition of hydrogen peroxide to the culture
medium reduced the growth rate of the 1Bcsun1 strains (by
14%), indicating that ROS sensitivity seems also to be affected.
All these changes in ROS production and tolerance may have
a role in contributing to the lower virulence of the 1Bcsun1
mutants.

DISCUSSION

The B. cinerea Genome Encodes Two
SUN-Family Proteins
β-Glucosidase SUN family members have been extensively
studied in yeast and have been linked to diverse cellular functions
such as cell wall biogenesis and septation, mitochondrial
biogenesis, aging and DNA replication (Camougrand et al., 2000;
Mouassite et al., 2000a; Velours et al., 2002; Hiller et al., 2007;
Kuznetsov et al., 2013). BcSUN1 is a glycoprotein secreted by
B. cinerea (Espino et al., 2010; González et al., 2014) that belongs
to the Group-I of the SUN family, showing the highly conserved
C-terminal region characteristic for this group of proteins. The
search for other members of Group-I in the B. cinerea genome
confirmed BcSUN1 as the single protein belonging to this
group, but it revealed the existence of the Bcin07g06600.1 gene,
which encodes a secreted protein of 530 amino acids with high
homology with YMR244W from S. cerevisiae and Adg3 from
S. pombe (Firon et al., 2007), both members of Group-II of the
SUN family. This second member of the SUN family has been
predicted to be GPI-anchored to the cell wall (de Groot et al.,
2013) and to be highly O-glycosylated (González et al., 2012),
features that are typical for Group-II proteins (Firon et al., 2007;
Gastebois et al., 2013). The presence of a single protein from
each group of the SUN family is considered characteristic for
euascomycetes (Firon et al., 2007; de Groot et al., 2009; de Groot
et al., 2013; Gastebois et al., 2013), while in yeasts the number of
Group-I members can mount up to four, as in S. cerevisiae (Firon
et al., 2007).

SUN family proteins have barely been experimentally
characterized in filamentous fungi. AfSUN1 from A. fumigatus
is the only Group-I protein studied so far, and it was shown
to have a unique hydrolytic activity on β-1,3-glucan (Gastebois
et al., 2013) which has resulted in classifying it in a new CAZY
class, GH132. The high similarity of BcSUN1 to AfSUN1 suggests
that the B. cinerea protein may also display this enzymatic
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TABLE 2 | Percentage of inoculations with the 1Bcsun1 mutants resulting in spreading infections.

Bean leaves (n = 15) Tomato leaves (n = 16) Tobacco leaves (n ≥ 19)

Plugs Conidia Plugs Conidia Plugs Conidia

B05.10 100 100 86.7 100 91,7 100

1Bcsun1.1 100 100 66.7 100 47.4 100

1Bcsun1.2 100 100 66.7 100 30.0 100

B05.10-BcSUN1 100 100 100 100 89.5 100

The indicated plant leaves were inoculated with either agar plugs or conidia, and the generation of spreading lesions was recorded visually during the first 3 days after
inoculation.

FIGURE 6 | Infection of different plant hosts with the 1Bcsun1 mutants. (A) Growth rates (mean ± SD; n ≥ 10) of the infections caused by the mutant and
the wild type on bean, tomato, or tobacco leaves, when inoculated with mycelium plugs. (B) Example images of the infections in (A) at 5 days after inoculation. (C)
Same as in (A) but in this case inoculations were carried out with 5-µl drops of TGGK containing 5 × 106 conidia/ml. (D) Example images of the infections in (C) at
5 days after inoculation.

activity. However, our attempts to purify BcSUN1 from the strain
B05.10-BcSUN1, in order to confirm its enzymatic activity, were
unsuccessful.

BcSUN1 Plays a Key Role in Maintaining
the Cell Wall and Extracellular Matrix
Previous analysis of B. cinerea secretomes obtained under
different growth conditions, revealed BcSUN1 as a protein
secreted by old mycelium grown on minimal and rich media
(González et al., 2014; González-Fernández et al., 2014), but
also as a member of the early secretome (Espino et al., 2010).
Transcriptional analysis of conidial germination on wax-coated
surfaces showed that Bcsun1 expression was induced already in
the first hour of conidial germination, and its level remained
constant at least for the first 15 h after inoculation (Leroch et al.,
2013). In the present work, we corroborated the expression of the
Bcsun1 gene at the early stages after inoculation, both in axenic
culture and in planta, and observed a continuous increase as the
infection progresses, a pattern clearly consistent with a role in the

morphogenesis and mycelial growth, as has been described for
AfSUN1 (Gastebois et al., 2013).

The use of cell wall perturbing agents caused a reduction in
the growth rates of 1Bcsun1 mutants (Figure 2A). This was
the case for congo red, which blocks lateral interaction between
glucan chains causing loss of cell wall rigidity (Kopecka and
Gabriel, 1992; Ram and Klis, 2006), and Calcofluor white, which
binds to chitin and interferes with its polymerization preventing
the interactions between chitin and glucans (Roncero et al.,
1988; Ram and Klis, 2006). 1Bcsun1 mutants also grew poorly
in medium supplemented with boric acid (Figure 2A), which
in C. albicans suppresses hyphal growth (De Seta et al., 2009)
and in S. cerevisiae leads to the synthesis of irregular cell wall
protuberances and the formation of irregular, chitin-rich septa
(Schmidt et al., 2010). Finally, growth on high levels of sorbitol
also resulted in growth reduction of the 1Bcsun1 mutants
(Figure 2A). This sugar alcohol is used frequently to stabilize
osmotically damaged cell walls, but it may also increase glycerol
production causing a reduction in the synthesis of cell wall
components (Gorka-Niec et al., 2010). These findings strongly
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FIGURE 7 | Surface interaction between knockout Bcsun1 mutants and plant host. (A) Percentage of plugs released from tobacco leaves by washing with
water (for the times indicated at the bottom) at 24 h after inoculation (n ≥ 15). (B) Adhesion strength of mycelium plugs to tobacco leaves after 24 h of incubation
(mean ± SD; n = 15). (C) Number of infection cushions produced by the indicated strains from agar plugs on glass slides. The data correspond to the average
number of cushion determined from 10 microscopic fields randomly chosen. (D) Production of H2O2 (as detected with DAB) in infected tobacco leaves, 36 h after
inoculation with conidia of the indicated strains. Upper panel shows an example of the results, and lower panel shows a semi-quantification of H2O2 produced,
expressed as the percentage of brown pixels in a circumference of constant area (calculated with the software Fiji, mean ± SD; n = 5). (E) Secretion of H2O2 by the
indicated strains grown for 4 days in YGG medium, detected with DAB.

suggest that BcSUN1 may play a key role in the metabolism
of the cell wall, since its absence in the mutants results in
weaker walls. Additional evidence comes from the increased
sensitivity of the mutant strains to SDS (Figure 2A), an anionic
detergent that induces lysis of cells with fragile cell walls (Shimizu
et al., 1994), and from the higher sensitivity to protoplast-
forming lytic enzymes (Figure 2B). Moreover, the changes in
the hyphal branching pattern observed for the 1Bcsun1 mutants
(Figures 2C,D) also suggest modifications in cell septation and
cell wall remodeling.

A role of SUN family proteins in cell wall biogenesis has also
been described in other organisms. In the yeast S. cerevisiae,
the four S. cerevisiae proteins act by remodeling the cell wall
(Kuznetsov et al., 2013). In fact, knockout mutants in the UTH1
gene showed similar sensitivity to cell wall modifying substances
(Kuznetsov et al., 2013) as reported here for 1Bcsun1 mutants,
and the reduction in the number of protoplasts generated from
the UTH1 mutant strain has been related with an increase
in β-1,6-glucan and chitin composition of the yeast cell wall
(Ritch et al., 2010). SUN41 from C. albicans is also involved
in morphogenesis, cell wall biogenesis and is necessary during
yeast branching (Hiller et al., 2007). WMSU1 from Williopsis
saturnus has been reported to be involved in cell wall metabolism
(Guyard et al., 2000). Finally, PSU1 from S. pombe plays a
critical role in cell separation (Omi et al., 1999; de Groot
et al., 2007). In filamentous fungi, the deletion of AfSUN1
also caused alterations on the mycelium growth and hyphal
morphogenesis, although no differences were reported/observed
in the cell wall composition of the mutant strain (Gastebois et al.,
2013).

Botrytis cinerea produces a prominent ECM involved in the
adhesion to the host tissues (Doss, 1999; Cooper et al., 2000;
Gil-ad et al., 2002; Doss et al., 2003). ECM was greatly reduced
in 1Bcsun1 strains (Figure 3A), which resulted in a reduced
capacity to retain water (Figure 3B). This may be a consequence

of a reduced or weaker cell wall, since an altered glucan-chitin
network may have less potential sites for binding to or interaction
with the ECM components, but BcSUN1 itself may also be
relevant for linking ECM components. In this context, it is
interesting that the SUN41 protein from C. albicans has been
proposed to play an important role in biofilm formation (Hiller
et al., 2007; Norice et al., 2007).

The alterations in the 1Bcsun1 mutants regarding conidia
and sclerotia production, conidia aggregation (Figure 3C), or
colony morphology, may all be consequences of an altered cell
wall and/or ECM. The aggregation of A. fumigatus germinating
conidia, for example, is dependent on cell wall α-1,3-glucans and
may be prevented by the addition of α-1,3-glucanase (Fontaine
et al., 2010), and similar phenotypic features have been reported
for a B. cinerea mutant in the gene Bcpmr1 displaying an altered
cell wall (Plaza et al., 2015).

BcSUN1 Is Associated with the Cell
Surface and Is Also Secreted
The c-myc-tagged version of BcSUN1 was identified in the
secretome of the B05.10-BcSUN1 strain in three isoforms
(Figure 5B), with molecular weights that differ from the
expected size for the recombinant protein (González et al., 2014).
Glycosylation may contribute to this heterogeneity, as not only
74 O-glycosylation sites are predicted for the protein (González
et al., 2012), but it has also been experimentally shown to
contain mannose residues linked by α1-2 or α1-3 glycosidic
bonds (González et al., 2014). Additionally, the present study
detected BcSUN1 both in the extracellular media as a soluble
protein and also associated to the cell wall (Figure 5). Such dual
localization has also been described for UTH1, SUN4 and SIM1
(Kuznetsov et al., 2013), and similar findings were reported for
C. albicans SUN41 and SUN42 proteins (Hiller et al., 2007; Sorgo
et al., 2010). The S. pombe psu1 protein, however, is covalently
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bound to the glucan network of the cell wall via a mild alkali-
sensitive phosphodiester bridge (de Groot et al., 2007). The
cell-wall association of BcSUN1 is consistent with a role in cell
wall metabolism, as discussed above, and it may play a role there
in remodeling the extracellular structures including cell wall and
ECM.

BcSUN1 Is a Virulence Factor
Bcsun1 is expressed from the very early stage of fungus-plant
interaction, and Bcsun1 mRNA levels increase as the lesions
become necrotic (Figure 1B). Previously, Smith et al. (2014)
identified Bcsun1 as one of the genes induced in planta during
infection of Solanum lycopersicoides leaves. Altogether, these
results suggested a role of BcSUN1 in fungal pathogenesis.
Indeed BcSUN1 is involved in the adhesion of the mycelium to
the host surface during infection (Figure 7), most probably by
altering the properties of the ECM and thus changing its adhesive
capacity. The chemical nature of these alterations remains to be
investigated. The reduced adherence of the 1Bcsun1 mutants
could explain the lower capacity of the mutants to initiate a
successful infection (Table 2), and this effect may be more
prominent in natural infections in the field, where a single
conidium landing on the plant surface is the predominant source
of inoculum. We also found that Bcsun1 mutants showed a
reduced production of infection cushions (Figure 7C), which
are specialized, dense and highly branched structures that play
a critical role in mycelium-derived infections (Choquer et al.,
2007), as well as an overall reduced virulence on all plant hosts
tested (Figure 6). Moreover, 1Bcsun1 mutants are affected in
the production of conidia and sclerotia (Figure 4), which may
in turn affect the dispersal of the pathogen. Finally, the 1Bcsun1
mutants showed an enhanced production of hydrogen peroxide

in axenic culture and in planta (Figure 7), which may also
contribute to their altered virulence. In conclusion, we report
here for the first time the involvement of a protein from the
β-glucosidase SUN family in the virulence of a phytopathogenic
fungus. Since this family has been found only in ascomycetes,
these proteins represent a promising novel target to develop new
control strategies against B. cinerea.
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