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Nasal stenosis in bulldogs significantly impacts their quality of life, making early diagnosis crucial for 
effective treatment. This study developed an automated deep learning model to classify the severity 
of nasal stenosis using 1020 images of bulldog nostrils, including both real and AI-generated samples. 
Five neural network architectures were tested across three experiments, with DenseNet201 achieving 
the highest median F-score of 54.04%. The model’s performance was directly compared to trained 
human evaluators specializing in veterinary anatomy, achieving comparable levels of accuracy and 
reliability. These results demonstrate the potential of advanced neural networks to match human-level 
performance in diagnosis, paving the way for enhanced treatment planning and overall animal welfare.
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Brachycephalic obstructive airway syndrome (BOAS) is a complex respiratory disease that affects dogs with 
flattened facial and cranial features, such as pugs, French bulldogs and English bulldogs1,2. The conformation 
of these breeds, with shortened skulls and flattened snouts, leads to deformations in the upper respiratory tract, 
resulting in obstruction and a series of clinical problems, ranging from noisy breathing and difficulty to exercise, 
up to syncope, collapse, and other potentially fatal events3.

The occurrence of BOAS has increased significantly over the last few decades, partly due to the growing 
popularity of these breeds. Recent studies have attempted to identify specific conformational characteristics 
associated with BOAS, using non-invasive measures that can be applied in a practical way to help breeders select 
animals with a lower risk of developing the syndrome1,4.

In addition, the severity of BOAS is often assessed through exercise tests, which measure the dog’s ability 
to exercise without showing signs of respiratory distress. Such tests can be particularly useful for assessing the 
effectiveness of surgical interventions aimed at relieving the symptoms of BOAS1.

Nasal stenosis can be considered one of the symptoms of BOAS. It refers to the narrowing of the nostrils, 
which restricts the flow of air through the nasal airways2. When present, this narrowing can vary between mild, 
moderate and severe as shown in Fig. 1. In dogs with BOAS, the narrowed nostrils significantly compromise 
their ability to inhale enough air through the nasal passages, often forcing them to breathe through their mouths, 
which is neither the natural nor the most efficient method for canine breathing5.

Stenosis prevents adequate airflow, increasing breathing effort and exacerbating other components of 
BOAS, such as stretching of the soft palate, which may already be partially obstructing the laryngeal inlet6. This 
increased effort to breathe can lead to inflammation and additional edema in the airways, making respiratory 
symptoms even worse. In addition, forced and labored breathing contributes to the development of secondary 
changes in the airways, such as laryngeal collapse and tracheal changes2,6.

The management of nasal stenosis in dogs with BOAS often involves surgical approaches to widen the 
nostrils, a technique known as stenotic nostril widening, which can significantly improve the quality of life of 
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affected dogs. In addition, careful lifestyle management, such as avoiding excessive heat, controlling weight and 
limiting exercise, is essential to minimize the risks associated with the condition5.

This connection between nasal stenosis and BOAS illustrates how anatomical features inherited through 
specific breeding practices can predispose certain breeds to complex and challenging conditions, emphasizing 
the need for awareness and careful considerations in the management and breeding of these popular breeds2,4.

The use of DL and AI, together with computer vision, has revolutionized many areas, including animal health7. 
In recent years, the growth of this area has been remarkable, with applications ranging from the automatic 
identification of physiological characteristics to the behavioral and welfare assessment of animals8, it also offers 
new possibilities for monitoring, diagnosing and treating diseases in animals through the advanced analysis of 
images and behavioral data. In addition, it allows the automation of complex diagnostic tasks that traditionally 
rely on human interpretation, offering comparable or even superior accuracy in some cases9.

Several studies have demonstrated the potential of artificial intelligence in transforming animal health 
management. For example, automatic animal recognition techniques and the extraction of specific physiological 
characteristics, such as breathing rate and heart rate from images, show that it is possible to obtain vital data non-
invasively and continuously, which was previously only possible through specialized equipment and physical 
contact8.

In recent years, the use of text-to-image models has become a great ally for data augmentation. For example, 
in Bahani10, the use of this type of tool was able to improve Recall by 2.1%, Specificity by 1.9% and smooth out 
overfitting during dataset training. In addition, a major advantage of using generative models is the possibility to 
generate data for experiments and storage that does not endanger individual safety11.

In an earlier paper by Higa et al.12, it was argued that the use of neural networks to classify the degree of 
stenosis is complex but possible. The main indication for this was the maximum median f-score of 53.77% 
obtained using the MobileNetV3 architecture, when treated as a multi-class problem. In this sense, this paper 
proposes a new approach to improve these results.

Using an innovative combination of synthetic and real images, the work aims to improve the performance 
of neural networks for classifying and diagnosing the level of stenosis in bulldogs, a critical step given the 
prevalence of respiratory problems in this breed due to its brachycephalic nature. The inclusion of a diverse data 
set, comprising a set of synthetic images and a mixed set, with real and synthetic images, addresses the significant 
challenge of data scarcity and increases the model’s ability to generalize across different clinical presentations. 
This methodological choice not only strengthens the training process, but also tests the model’s performance in 
a variety of conditions, more closely emulating real-world scenarios.

Leveraging sophisticated neural network architectures such as ResNet50, MobileNetV3, DenseNet201, 
SwinV2, and MaxViT, this research stands at the forefront of applying deep learning in veterinary science. Each 
of these models brings unique strengths in handling image data, which is crucial for accurately capturing and 
learning from the nuanced differences in bulldogs’s nasal anatomies.

In addition to the aforementioned neural networks, we also employed GPT-4o, a model developed by 
OpenAI, to classify the images. Although GPT-4o is primarily a language model, its multimodal capabilities 
allowed us to utilize it for image classification tasks. We further enlisted veterinary students to classify the same 
images. Regardless of the classification approach, all tests were carried out using the same experimental protocol.

We emphasize that our model, despite its F-score of 54.04%, performs comparably to human evaluators and 
surpasses large multimodal AI models while using significantly fewer computational resources. This suggests 
that our method provides a strong starting point for future research. The primary contribution of this study is to 
introduce a novel problem for the scientific community to explore, particularly in the field of computer science, 
paving the way for advancements in AI-driven veterinary diagnostics.

Despite the promising approach, the work faces challenges such as ensuring the synthetic data’s realism, 
balancing the influence of synthetic versus real images to prevent model bias, and managing the computational 
demands of processing extensive datasets with complex models. Overcoming these challenges is essential 
for the successful deployment of these technologies in clinical settings, where they can potentially transform 
the diagnostics landscape by providing quick, reliable, and non-invasive diagnosis tools. This work not only 
highlights the potential of artificial intelligence in enhancing animal welfare but also sets a precedent for future 
research in the domain of veterinary medical imaging, promising substantial improvements in the accuracy and 
efficiency of diagnosing and treating animal diseases.

In summary, the main contributions of this paper are threefold: a new dataset specifically designed for 
experiments on nasal stenosis diagnosis in bulldogs, addressing the scarcity of available data in veterinary 
medicine for this condition; we present the first comparative analysis between human performance and 

Fig. 1.  Three different degrees of stenosis from our dataset of real images, ranging from mild (a), moderate (b) 
and severe (c).
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deep neural network performance in classifying the degrees of stenosis, providing valuable insights into the 
capabilities and limitations of both human experts and AI models; and report initial findings using state-of-the-
art foundational models, such as GPT-4o and DALL-E, which demonstrate the complexity of the problem and 
highlight the challenges and potentials of applying advanced AI technologies to veterinary diagnostics.

Results
Classifying the degree of nasal stenosis in bulldogs presents significant challenges, not only for computational 
models but also for trained human evaluators. The subtle morphological variations between different levels 
of stenosis often make consistent evaluation difficult, even among individuals with specialized training. This 
complexity underscores the importance of developing robust models that can assist in this nuanced task.

Tables 1, 2 and 3 show precision, recall and f-score results for each neural network architecture trained 
with different dataset configurations. It also shows the results of the Scott–Knott clustering test. The results 
are further illustrated by boxplots in Fig. 4. Despite the inherent difficulties, our models achieved convincing 
performance levels. Notably, the combined dataset led to the highest average results across all three metrics, with 
DenseNet201 achieving a precision of 61%, a recall of 58%, and an F-score of 56%. For a better understanding 
of this architecture’s performance, accuracy and loss were calculated using the complete history of 10 training 
and validation runs of the DenseNet201 model. The loss and accuracy curves are shown in Fig. 2. These results 
indicate that incorporating both real and synthetic images enhances the model’s ability to generalize and 
accurately classify the degree of nasal stenosis.

Interestingly, while MobileNetV3 trained solely on real images achieved the highest median precision and 
recall, the highest average results were generally achieved with the combined dataset. This suggests that synthetic 
images contribute valuable variability to the training process, helping the model better capture the subtle 
differences between stenosis levels. In some cases, using the synthetic dataset alone led to better results than 
using the real dataset, such as with MaxViT across all three metrics and ResNet50 in recall and F-score. However, 
the combined dataset consistently outperformed the others, highlighting the benefits of a diversified training set.

Figure 3 shows the confusion matrix for DenseNet201 trained with the combined image set. The dataset is 
not heavily imbalanced, allowing for a straightforward interpretation of the normalized matrix. The highest 
percentage of correct predictions is 28%, corresponding to severe stenosis examples correctly classified. Among 
the incorrect predictions, 12% of the images are examples of moderate stenosis misclassified as severe. This 
highlights the difficulty in distinguishing between adjacent classes due to subtle morphological differences.

To enhance the interpretability of the confusion matrix, we included both absolute values (number of nostrils) 
and normalized percentages within a single figure. The absolute values represent the exact number of analyzed 
nostrils, reinforcing that the total corresponds to 190 samples (from real images). The normalized values ensure 
an intuitive understanding of classification performance relative to the dataset distribution.

The ANOVA results for precision indicated that there was a difference both for architectures (p = 2.0 × 10−9

) and for training sets (p = 1.2 × 10−5). It also indicated a significant interaction (p = 4.1 × 10−5). Regarding 

Precision

Mean SK (SD)

Architecture

Training set

Real Combined Synthetic

GPT-4o 0.390 Ba (±0.144) 0.397 Ba (±0.170) 0.386 Aa (±0.243)

DenseNet201 0.512 Aa (±0.120) 0.612 Aa (±0.084) 0.325 Ab (±0.060)

MobileNetV3 0.565 Aa (±0.192) 0.358 Bb (±0.178) 0.313 Ab (±0.062)

SwinV2 0.401 Ba (±0.233) 0.311 Ba (±0.092) 0.209 Ab (±0.143)

MaxViT 0.183 Ca (±0.117) 0.303 Ba (±0.016) 0.284 Aa (±0.042)

ResNet50 0.438 Bb (±0.162) 0.548 Aa (±0.045) 0.342 Ab (±0.106)

Humans 0.572 Aa (±0.131) – –

Median (IQR)

Architecture

Training set

Real Combined Synthetic

GPT-4o 0.359 (0.122) 0.408 (0.119) 0.366 (0.297)

DenseNet201 0.514 (0.181) 0.579 (0.077) 0.331 (0.093)

MobileNetV3 0.629 (0.293) 0.319 (0.193) 0.320 (0.079)

SwinV2 0.441 (0.417) 0.318 (0.028) 0.115 (0.225)

MaxViT 0.118 (0.103) 0.307 (0.010) 0.273 (0.046)

ResNet50 0.458 (0.171) 0.536 (0.050) 0.316 (0.133)

Humans 0.590 (0.135) – –

Table 1.  Precision statistics. The results of the Scott–Knott test are shown next to the mean values. In each 
column, mean values indicated by the same capital letters did not differ according to the 5% significance 
threshold. In each row, mean values indicated by the same lowercase letters did not differ according to the 
same threshold. Significant values are in bold.
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F-score

Mean SK (SD)

Architecture

Training set

Real Combined Synthetic

GPT-4o 0.365 Ba (±0.146) 0.362 Ba (±0.184) 0.376 Aa (±0.251)

DenseNet201 0.474 Aa (±0.068) 0.561 Aa (±0.102) 0.386 Ab (±0.068)

MobileNetV3 0.529 Aa (±0.152) 0.345 Bb (±0.098) 0.367 Ab (±0.068)

SwinV2 0.380 Ba (±0.185) 0.294 Ba (±0.076) 0.255 Aa (±0.132)

MaxViT 0.221 Cb (±0.086) 0.364 Ba (±0.019) 0.338 Aa (±0.045)

ResNet50 0.385 Ba (±0.138) 0.505 Aa (±0.039) 0.397 Aa (±0.108)

Humans 0.575 Aa (±0.130) – –

Median (IQR)

Architecture

Training set

Real Combined Synthetic

GPT-4o 0.333 (0.113) 0.377 (0.151) 0.354 (0.278)

DenseNet201 0.482 (0.088) 0.540 (0.148) 0.390 (0.103)

MobileNetV3 0.538 (0.188) 0.385 (0.057) 0.360 (0.084)

SwinV2 0.362 (0.338) 0.297 (0.034) 0.167 (0.230)

MaxViT 0.174 (0.086) 0.367 (0.020) 0.326 (0.053)

ResNet50 0.363 (0.177) 0.492 (0.033) 0.379 (0.152)

Humans 0.590 (0.138) – –

Table 3.  F-score statistics. The results of the Scott–Knott test are shown next to the mean values. In each 
column, mean values indicated by the same capital letters did not differ according to the 5% significance 
threshold. In each row, mean values indicated by the same lowercase letters did not differ according to the 
same threshold. Signficant values are in bold.

 

Recall

Mean SK (SD)

Architecture

Training set

Real Combined Synthetic

GPT-4o 0.407 Ba (±0.174) 0.400 Ba (±0.219) 0.386 Ba (±0.271)

DenseNet201 0.512 Aa (±0.075) 0.581 Aa (±0.088) 0.489 Aa (±0.079)

MobileNetV3 0.556 Aa (±0.134) 0.453 Aa (±0.066) 0.472 Aa (±0.080)

SwinV2 0.451 Ba (±0.134) 0.380 Ba (±0.053) 0.391 Ba (±0.106)

MaxViT 0.350 Ba (±0.057) 0.459 Ba (±0.024) 0.441 Ba (±0.061)

ResNet50 0.436 Aa (±0.111) 0.547 Aa (±0.029) 0.499 Aa (±0.116)

Humans 0.580 Aa (±0.125) – –

Median (IQR)

Architecture

Training set

Real Combined Synthetic

GPT-4o 0.402 (0.261) 0.431 (0.129) 0.352 (0.329)

DenseNet201 0.533 (0.064) 0.554 (0.119) 0.489 (0.116)

MobileNetV3 0.572 (0.144) 0.486 (0.047) 0.461 (0.118)

SwinV2 0.439 (0.231) 0.392 (0.037) 0.333 (0.150)

MaxViT 0.333 (0.017) 0.463 (0.027) 0.439 (0.085)

ResNet50 0.420 (0.078) 0.538 (0.030) 0.494 (0.185)

Humans 0.600 (0.140) – –

Table 2.  Recall statistics. The results of the Scott–Knott test are shown next to the mean values. In each 
column, mean values indicated by the same capital letters did not differ according to the 5% significance 
threshold. In each row, mean values indicated by the same lowercase letters did not differ according to the 
same threshold. Signficant values are in bold.
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recall, there is no evidence either for difference between training sets (p = 0.55) or for a significant interaction 
(p = 0.09). On the other hand, the ANOVA result was significant for architectures (p = 3.0 × 10−5). Finally, 
f-score results were significant for architectures (p = 1.8 × 10−7) and for the interaction (p = 2.3 × 10−4), 
but not for the training sets (p = 0.06). The specification of the differences by the SK test are shown in Tables 
1, 2 and 3.

Discussion
Classifying nasal stenosis in bulldogs presents considerable challenges, even for trained human evaluators and 
specialists. The subtle morphological features that differentiate the degrees of stenosis make consistent evaluation 
difficult, emphasizing the need for advanced tools to assist in diagnostics. Our study demonstrates that advanced 
neural networks can achieve convincing performance levels in this task, offering a promising tool to support 
veterinary diagnostics.

While it is true that the dataset used by us, composed of 190 nostril images from 95 animals, does not have 
the usual size expected for training a neural network, it is worth noticing that data collection within this field 
is a difficult task. Schmid et al.13, for instance, managed to sample data from 84 french bulldogs for their study. 
Although their work had different goals and different methods, this allows us to argue that our sample is within 
the possible working range for the problem. Within deep learning, models trained with small datasets may not 
generalize well. In order to address this issue, we have used data augmentation with synthetic images generated 
by DALL-E. Other promising options that could be evaluated in the next steps are the use of few-shot learning 
and fine grained image classification techniques14, as well as those of multi-task learning15,16.

By incorporating both real and synthetic images, our models reached commendable performance metrics. 
Specifically, our hybrid dataset approach allowed DenseNet201 to achieve a precision of 61%, a recall of 58%, and 
an F-score of 56%, outperforming configurations that relied solely on one type of data. This blended approach 

Fig. 2.  Loss and accuracy curves calculated during training and validation steps. Since a tenfold cross 
validation was used, ten lines are shown for each procedure, for both loss and accuracy.
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Fig. 4.  Boxplots for each metric, for each achitecture evaluated in the different training regimens investigated 
in this study.

 

Fig. 3.  Confusion matrix for DenseNet201 trained with the combined set. The matrix presents both absolute 
values (number of nostrils) and normalized percentages based on the total number of real images (190).
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provided a balance between generalization and specificity, showcasing the benefits of a diversified dataset for 
complex classifications.

The curves in Fig. 2 indicate that training and validation loss and accuracy values followed similar patterns 
across the folds. In general, training loss and accuracy continued to improve whereas validation did not, which 
indicates overfitting. This suggests that regularization techniques, such as L1 and L2 regularization, can help 
improve performance. A promising next step would be to carry out a systematic evaluation of these techniques. 
Finally, Fig. 2 also shows that both loss function and accuracy stabilize within the first epochs. This suggests that 
a reduction on the number of epochs, or on the patience, can lead to a more efficient evaluation pipeline for this 
problem.

Our findings align with those of Higa et al.12, where predicting severe stenosis was easier for certain neural 
networks. In their work, 24% of the images were examples of severe stenosis correctly classified, whereas we 
observed 28% (Fig. 3). This consistency suggests that using a combination of synthetic and real images can be 
fruitful for binary classification tasks, such as recognizing severe stenosis. In addition, by looking at Fig. 3, it is 
possible to argue that the model’s predictions were, in a sense, pessimistic, since more images were misclassified 
on the upper right of the main diagonal, where the labeled stenosis degrees are lower than the predicted ones.

Our analysis reveals that while real images anchor the model in clinically applicable contexts, synthetic images 
generated through DALL-E enrich the dataset by introducing a variety of scenarios. This combination enhances 
model generalization without sacrificing clinical relevance. The success of this blended approach underscores 
the advantages of using both real and synthetic data, especially in veterinary applications where data scarcity is 
often an obstacle.

By comparing the synthetic samples in Fig. 6 with the real ones in Fig. 5, one can see that, while the synthetic 
images do resemble the real ones, they are still clearly taken from a different distribution. Important differences 
arguably include textures and lighting. Promising possibilities for future works are to carry out a systematic 
evaluation of the quality of synthetic images, to test other generative models, and to look for strategies to improve 
image generation. By doing this, it is possible that using generative models for data augmentation will lead to 
better-performing models.

Despite the complexities, human evaluators with specialized training achieved notable F-scores and recall 
rates, underscoring the inherent difficulty of the task and highlighting the potential for human expertise to 
complement automated systems. However, neural networks like MobileNetV3 still had an edge in precision, 
likely due to their ability to minimize false positives more effectively.

While GPT-4o did not outperform the other models, its use as a stenosis degree classification tool presents 
certain pitfalls. As a multimodal foundation model used within commercial software like ChatGPT, it operates as 
a black box with opaque procedures. This lack of transparency makes it challenging to ascertain how the model 
processes the data and whether it effectively utilizes the images for classification.

One of the key findings of our study is that our approach, despite using significantly fewer computational 
resources, was able to outperform GPT-4o in the classification of stenosis severity. This highlights the potential of 
our method as a baseline for future studies, showing that specialized deep learning models trained with domain-
specific data can achieve better results than general-purpose multimodal AI systems. The results reinforce the 
importance of domain adaptation and the role of dataset quality in improving classification accuracy.

Furthermore, while the F-score of 54.04% may seem low in absolute terms, it is crucial to note that our model 
performs comparably to trained human evaluators. In clinical applicability, this result suggests that AI-based 
approaches can support veterinarians in stenosis classification, especially considering that human evaluators 
also struggle with consistent classifications in complex medical imaging tasks. This reinforces the importance 

Fig. 5.  Different examples of images from the real image set. Degree of stenosis in both nostrils of each 
bulldog: left (L) and right (R).
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of continued development in this area to improve diagnostic reliability and practical usability in real-world 
settings.

According to a recent work by Schmid et al.13, exercise tests are the most reliable and satisfactory method 
to diagnose BOAS in french bulldogs. However, their results also reasserted the relationship between nasal 
stenosis and BOAS. More specifically, moderate and severe stenosis were found to have a significant positive 
effect on BOAS degree. While exercise tests were more reliable, it is clear that they present risks to the animal, 
thus requiring safety and comfort protocols. Furthermore, other highly effective methods, such as computer 
tomography and endoscopy, may be even more risky, since they are more invasive and require anesthesia.

Oren et al.17 evaluated machine learning models for the diagnosis of BOAS with respiratory sounds. In their 
work, animals of different brachycephalic races were used. While their approach achieved a maximum f-score 
of 85% in the determination of BOAS degree with pugs, their procedure involved an exercise test and required 
multiple audio samplings. Similarly to highly reliable diagnostic methods, their procedure can also be stressful 
to the animals.

One should notice that these works targeted the condition itself (BOAS). Meanwhile, classifying stenosis 
degree targets an important symptom of that condition. However, the method proposed by us has the advantage 
of being neither invasive nor stressful, since ultimately it only requires a picture of the animal’s face. While the 
performance of the model is still not ideal for diagnostics, further work could investigate model performance 
when classes are separated differently. For instance, a separation of degrees between (i) open-mild and (ii) 
moderate-severe could lead to acceptable results, while still being potentially useful, given that mild stenosis, 
according to the findings of Schmid et al.13, does not have a significant effect on the degree of BOAS.

The findings highlight the feasibility and potential of integrating deep learning into veterinary diagnostics. 
Advanced neural networks can complement traditional diagnostic methods, making the diagnosis and 
management of conditions like nasal stenosis in bulldogs faster and more precise. Future research should 
focus on expanding synthetic image diversity and exploring alternative neural network architectures to further 
optimize performance metrics. By doing so, we can push veterinary diagnostic tools to new levels of accuracy 
and accessibility, ultimately improving animal health outcomes.

Methods
Dataset
For the collection and use of images, we have approval from the Ethics Committee for the Use of Animals of the 
Dom Bosco Catholic University under protocol number 010/2022. In this work, we utilized the dataset of real 
images established in our previous project by Higa et al.12, which comprises 95 images collected between July 
2021 and April 2023 in partnership with the OdontoPet clinic in Campo Grande-MS.

In total, 95 images were collected and each nostril was labeled by an experienced veterinarian according to 
the four degrees of stenosis: open (non-stenotic), moderate, mild and severe. Due to the limited number of non-
stenotic nostrils (only three images), these were incorporated into the mild stenosis category for classification 
purposes. The images were then cropped using the LabelMe tool, isolating the nostril area and assigning the 
respective stenosis degree to each sample.

Additionally, we created a set of synthetic images categorized alongside the real ones. The synthetic set 
consists of 415 images generated using OpenAI’s Generative Artificial Intelligence, known as DALL-E. These 
synthetic images were also manually validated to ensure they accurately represented the varying degrees of nasal 
stenosis.

The 415 images of French Bulldogs were generated using the Generative Artificial Intelligence technology 
known as DALL-E. DALL-E is a cutting-edge model developed by OpenAI. Using advanced deep learning 
techniques and neural networks, DALL-E has the ability to transform text descriptions into highly realistic 
images. By applying a multi-level attention mechanism and reinforcement learning, DALL-E is able to generate 
a wide variety of high-quality images, including different degrees of severity of stenosis in bulldogs. To generate 
the images, we gave DALL-E the following command in Portuguese: “Narinas de um Bulldog Francês vistas de 
frente” (“French Bulldog’s nostrils seen from the front”), in its literal translation, as can be seen in Fig. 6. This 

Fig. 6.  Different examples of synthetic images generated for the dataset. Degree of stenosis in both nostrils of 
each bulldog: left (L) and right (R).
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approach allowed for the creation of a set of images that complements the actual images collected, providing a 
variety of visual representations for analysis and study18.

Each image was carefully assessed to determine the degree of stenosis of the nostrils, following criteria 
established by experts in the field. The images were then annotated using the RoboFlow tool, and according to 
Liu et al.2 four classes were classified as open (i.e., non stenotic) (A), mild stenosis (B), moderate stenosis (C) 
and severe stenosis (D), as can be seen in Table 4. It is important to note that each image contains two nostrils, 
which are classified individually. Therefore, the total of 510 images (415 synthetic and 95 real) results in 1020 
nostril images.

Deep learning
In this work, we used convolutional neural networks (CNN) and transformers, advanced technologies that, 
together with DL, are becoming increasingly important for study and experimentation in solving complex 
problems19,20. With these approaches, we have obtained good results. CNNs are effective at extracting complex 
visual features from images, while transformers excel at capturing long-range dependencies and contextual 
relationships within data21.

We evaluated five neural network architectures known for their effectiveness in image classification, 
particularly in medical imaging. ResNet50, MobileNetV3, and DenseNet201, which are based on CNNs, were 
selected for their strong performance in extracting complex visual features. DenseNet201, in particular, was 
chosen for its efficiency in feature reuse and gradient propagation, which are crucial for distinguishing the 
nuanced differences in nasal anatomy. Additionally, SwinV2 and MaxViT, transformer-based architectures, were 
included to leverage their ability to capture long-range dependencies and contextual relationships within the 
data.

•	 ResNet50 proposed in 2015 by He et al.22, brought significant innovation with the introduction of jump con-
nections, which help to avoid the problem of the gradient disappearing. This allows networks to become 
deeper and more effective. ResNet50, in particular, is made up of 50 layers and is widely used not only for 
image classification, but also as the basis for other computer vision tasks, such as object detection. In this 
work, we chose ResNet50 both because of its widespread acceptance in the scientific community, which en-
ables our findings to be relevant in a broader context, and to serve as a benchmark against which to evaluate 
the performance of the other architectures we investigated. ResNet50 is known for its excellent performance 
and efficiency, facilitating the construction of robust and accurate models for a variety of computer vision 
applications.

•	 MobileNetV3 is a neural network architecture designed for mobile devices and resource-limited environ-
ments. It combines depthwise separable convolutions and attention blocks to achieve high efficiency. The first 
version was released in 201723, followed by two updates: MobileNetV2 in 201824 and MobileNetV3 in 201925, 
which is the version used in this work. MobileNetV3 is especially suitable for applications where processing 
capacity and memory are restricted, while maintaining good performance in extracting visual features from 
images. The choice of MobileNetV3 in this work is due to its efficiency and its ability to operate in environ-
ments with limited resources. In addition, it serves as a useful comparison for evaluating the performance of 
other architectures. Its innovations, such as the use of Squeeze-and-Excitation (SE) attention blocks and opti-
mization through the use of the Neural Architecture Search (NAS) algorithm, contribute to its high efficiency 
and accuracy in computer vision tasks.

•	 DenseNet201 is a neural network architecture that connects each layer to all subsequent layers, promoting 
feature reuse and improving gradient propagation, proposed in 2017 by Huang et al.26. This approach allows 
DenseNet201 to learn complex representations with a relatively smaller number of parameters, due to its 
dense structure that facilitates the transmission of information through the network. We chose DenseN-
et201 in this work because of its ability to improve network efficiency and reduce data redundancy. This fea-
ture is particularly useful for applications that require detailed and accurate analysis of visual characteristics. 
DenseNet201 also stands out for its ability to mitigate common problems in deep networks, such as gradient 
disappearance, resulting in a more robust and effective network for extracting complex visual features.

The SwinV2 and MaxViT networks are based on transformers, a technology originally introduced for Natural 
Language Processing (NLP) in 201727. Since the launch of the Vision Transformer (ViT) in 202120, several 
variants and improvements have been developed to overcome the initial limitations of these architectures, with 
a particular focus on training efficiency and adaptability to datasets of different sizes.

The networks used based on transformers are:

•	 SwinV2 Swin Transformer V2, or SwinV228, improves on the original design of Swin Transformers by us-
ing a hierarchical structure and sliding windows for attention. This approach allows efficient scalability for 
high-resolution images. SwinV2 is notable for its ability to capture long-range relationships in images, of-

Group

Class

Open (A) Mild stenosis (B) Moderate stenosis (C) Severe stenosis (D)

Synthetic 170 (20.48%) 324 (39.03%) 167 (20.12%) 169 (20.36%)

Real 3 (1.58%) 56 (29.47%) 66 (34.74%) 65 (34.21%)

Table 4.  Set of images created for the article, with their respective classes annotated.
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fering a flexible and powerful solution to complex challenges in computer vision. It excels at problems that 
require the analysis of large, detailed images, making it an important benchmark for comparing the perfor-
mance of other transform-based architectures. The choice of SwinV2 in this work is justified by its efficiency 
and scalability when dealing with high-resolution images, characteristics that make it exceptionally suitable 
for computer vision applications that require precision and detail. The architecture also demonstrates en-
hanced parallel processing capabilities and adaptability to different dataset sizes, making it a robust choice for 
a variety of application scenarios.

•	 MaxViT: MaxViT, a recently proposed architecture, effectively combines the techniques of Convolutional 
Neural Networks (CNNs) and Transformers for computer vision29. This architecture is designed to efficiently 
capture the local and global characteristics of images, facilitating more detailed and contextualized process-
ing. MaxViT is particularly efficient at handling computer vision tasks that require deep understanding of 
images at varying levels of granularity. MaxViT achieves this through an innovative strategy that interleaves 
convolution layers with transform modules, optimizing the flow of information and the effectiveness of the 
model at different resolutions and scales. This allows the architecture to adjust more dynamically to the com-
plexities of visual data, making it ideal for applications such as image recognition, object detection and se-
mantic segmentation.

These innovations not only address some of the initial limitations of transformers in computer vision, but also 
broaden their applications, showing promising capabilities in various computer vision tasks, from basic image 
classification to more complex applications such as real-time detection and video analysis. These advanced 
architectures were selected for our study due to their relevance and potential for dealing with the proposed 
dataset, demonstrating how technological advances can significantly impact the field of computer vision.

Experimental design
To evaluate the effectiveness of synthetic data for training the five neural networks, and to provide GPT-4o with 
prior knowledge, we used three distinct training regimens. Importantly, we always used a set of real images for 
testing, reflecting real-life applications where models are expected to handle real, unseen data.

First, we relied on the results from Higa et al.12, where neural networks were trained exclusively on real 
images using a tenfold stratified cross-validation strategy. Secondly, we employed a combination of real and 
synthetic images for training, again using the tenfold stratified approach. For this setup, the synthetic and real 
images were kept in different datasets and separately split into ten folds, yielding a total of 20 fold-subsets. Then, 
for any run i, 1 ≤ i ≤ 10, the training and validation sets were sampled from the union between all synthetic 
and real fold-subsets, except for the i-th ones. The test set for this run i is the i-th fold-subset of real images. The 
i-th fold-subset of synthetic images was not used in run i. The purpose of this exclusion was to increase data 
variability in the evaluation. Finally, a last configuration was setup, similarly to the second one, but the training 
and validation sets were sampled only from the synthetic images. The test set, of course, remained being a given 
fold-subset i of real images. These three setups will be referred to as the real, combined, and synthetic training 
sets, respectively.

To assess GPT-4o’s performance, we applied a similar approach. For each fold, nine were inputted as prior 
knowledge to the model, while the tenth (test fold) comprised only real images, which were provided in a single 
batch for classification. This process was repeated in separate instances of GPT-4o to ensure prior knowledge 
input without revealing test image labels. Each instance of GPT-4o was labeled with a title and description 
formatted as: dataset - fold_X, where dataset was either real, synthetic or combined. During the evaluation, it 
had access neither to the internet nor to image generation with DALL-E; it did have, however, access to the code 
interpreter, which seems to be necessary for it to manipulate files. Then, it was instructed with the following text:

Behave like a stenosis degree classifier. I’ll send you images that have already been classified so that you 
can understand and learn what each class is. You will receive input images of bulldog nostrils, which you 
should return as: mild, moderate or severe. Inside the zip file that I am attaching to the knowledge, there 
is the following structure:

mild;
moderate;
severe.

Note that the folder names are: mild, moderate, severe. These names classify the images inside each folder, 
so that you can learn each class. You will always return a csv with two columns one being the file name 
of the image and the other being the degree you have classified, order the rows by the names of the 
images. You will always analyze the set of images uploaded here in the knowledge to classify the input 
images. Do not create a second model. Look at each image, analyze the image and classify it by yourself. 
Limit yourself to using code only where necessary to unzip and organize the image files, and to load the 
images themselves so that you can analyze them. You must not use code to classify these images, that is, 
do noticreate a second model and do not resort to strategies such as calculating the distance between the 
images. The classification must be intended to correspond to the real stenosis degree. Each classification 
performed should follow the template: show the name of the image file, and show the image itself with 
your classification. Furthermore, describe the image and your reasoning, so that we know you are not just 
randomly classifying the image.

For neural network training, we followed the same setup used by Higa et al.12 to ensure a fair comparison. Since 
using Sharpness-Aware Minimization (SAM)30 with Stochastic Gradient Descent (SGD) yielded the best median 
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results for all the metrics in that work, we selected this optimization strategy for our neural networks in this 
experiment. In each cycle, 20% of the training images were used for validation. The images were standardized 
to a size of 256 × 256 pixels to match the input requirements of the networks, and pixel values were normalized 
to the range [0, 1]. Training with real images only was performed on a 12 GiB Nvidia RTX 3060 GPU, which 
limited the batch size to 8. For the other configurations, we used a 16 GiB Nvidia RTX A4000 GPU, but the batch 
size remained the same. For optimization, the categorical cross entropy was used as loss function. The learning 
rate was set at 0.001, and validation loss values were monitored with a patience of 300 epochs and tolerance of 
0.01. Various data augmentation techniques-including color adjustments and geometric transformations-were 
applied to the training set (but not the test set) to improve the model’s ability to generalize. This does not apply 
to the evaluation of GPT-4o, which followed the procedure described above but received images without prior 
transformations, either in size or data augmentation.

Data augmentation was extensively applied to the training set (excluding the test set) to improve 
generalization and reduce overfitting; these techniques included color jittering, random grayscale conversion, 
inversion, solarization (with a threshold of 0.75), auto-contrast adjustment, random cropping, horizontal and 
vertical flips (with a 50% probability), 90◦ rotations, perspective distortions, and sharpness adjustments (factor 
2, 50% probability).

In addition to the machine learning models, we conducted an experiment with 52 trained human evaluators 
specializing in veterinary anatomy to assess their ability to classify nasal stenosis in bulldogs based on the same 
set of real images used in neural network training. Each evaluator received a subset of the images and was asked 
to classify them as mild, moderate, or severe stenosis. The results were evaluated based on the accuracy, precision, 
recall, and F-score of their classifications. These metrics were calculated using the same methods applied to the 
neural network and GPT-4o results, allowing for a direct comparison between human and machine classification 
accuracy.

Regarding the neural networks utilized, except for GPT-4o, training and validation accuracy values were 
calculated, in addition to loss values, in order to further assess model training. Finally, precision, recall, and 
F-score metrics were calculated in each fold to evaluate the neural networks. For the final evaluation on the 
test set, these classification metrics were preferred over accuracy because the properties measured by them 
were considered more important within the context. Statistical analysis included means, standard deviations, 
medians, and interquartile ranges. A two-way Analysis of Variance (ANOVA) was performed, and the Scott-
Knott clustering test (SK) was used post-hoc to explore significant differences between the models. Boxplots and 
confusion matrices were also generated and used in the analysis and discussion of the results.

The experiments with the mixed and synthetic dataset were conducted on a machine running Linux Ubuntu 
22.04.4 LTS, equipped with 32GiB of RAM, a 13th-generation Intel Core i5-13500 processor, and a NVIDIA 
RTX A4000 GPU with 16 GiB memory. For the implementation of deep learning techniques, the 2.4.0 version of 
the PyTorch library was used. The Scikit-learn, version 1.4.2, was used for calculating the metrics evaluated on 
this experiment. The matplotlib library, version 3.9.0, was used for generating the confusion matrices during the 
testing on each fold. The Torchvision, 0.18.0 version, and TIMM, 1.0.3 version, were used to import the models 
for our experiment. Finally, the R language, version 4.1.2, with the package ggplot2, version 3.5.0, was used to 
generate boxplots, accuracy and loss graphics and confusion matrices for the best results obtained at the end of 
all 10 runs.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to privacy and 
ethical considerations but are available from the corresponding author, Gustavo da Silva Andrade (gustavo.s.an-
drade@ufms.br), upon reasonable request.
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