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Abstract: In this article, the framework and architecture of a Subsurface Camera (SAMERA) are
envisioned and described for the first time. A SAMERA is a geophysical sensor network that senses
and processes geophysical sensor signals and computes a 3D subsurface image in situ in real time.
The basic mechanism is geophysical waves propagating/reflected/refracted through subsurface
enter a network of geophysical sensors, where a 2D or 3D image is computed and recorded; control
software may be connected to this network to allow view of the 2D/3D image and adjustment of
settings such as resolution, filter, regularization, and other algorithm parameters. System prototypes
based on seismic imaging have been designed. SAMERA technology is envisioned as a game changer
to transform many subsurface survey and monitoring applications, including oil/gas exploration and
production, subsurface infrastructures and homeland security, wastewater and CO2 sequestration,
and earthquake and volcano hazard monitoring. System prototypes for seismic imaging have been
built. Creating SAMERA requires interdisciplinary collaboration and the transformation of sensor
networks, signal processing, distributed computing, and geophysical imaging.

Keywords: subsurface camera; geophysical sensor network; subsurface infrastructure security;
distributed computing; real-time in situ imaging

1. Introduction

In the eighteenth century, the concept of the optical camera was conceived. The basic mechanism
is light rays reflected from a scene enter an enclosed box through a converging lens, and an image is
recorded on a light-sensitive medium (film or sensor); a display, often a liquid-crystal display (LCD),
permits the user to view the scene to be recorded and adjust settings such as ISO speed, exposure,
and shutter speed. In this article, the concept of a Subsurface Camera (SAMERA) is envisioned
and described for the first time. The basic mechanism (Figure 1) is as follows: geophysical waves
propagating/reflected/refracted through the subsurface enter a network of geophysical sensors where
a 2D or 3D image is computed and recorded; control software with a graphical user interface (GUI)
can be connected to this network to visualize computed images and adjust settings such as resolution,
filter, regularization, and other algorithm parameters.

A SAMERA is a geophysical sensor network that senses and processes geophysical waveform
signals and computes a 3D subsurface image in situ in real time. Just as a camera can become
a video camera to record a sequence of images, SAMERA can generate a time slice of subsurface
images and enable searching, identifying, and tracking underground dynamics for security and
control applications. Just as flashlights may be added to an optical camera to enlighten the scene,
geophysical transmitters may be added to a SAMERA to illuminate the subsurface for faster image
generation and finer resolutions, not merely relying on passive natural events (such as earthquakes).
Geophysical transmitters may be add-ons to receivers (e.g., sensors) and convert receivers to
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transceivers. For example, the seismic exploration of the oil/gas industry often uses explosives
or vibroseis to generate active seismic waves, and Ground Penetrating Radars (GPRs) equip
active electromagnetic-wave transmitters. Geophysical transmitters can transmit waves at different
wavelengths to enable subsurface imaging at different ranges and resolutions. Waves with a longer
wavelength typically propagate deeper and further but generate lower-resolution images. If each
geophysical transceiver is installed on mobile robots, it would enable a mobile and zoomable SAMERA.
Given an area, geophysical transceivers can first spread out to form a sparse array to transmit waves
with longer wavelength and generate a coarser subsurface image; if an interested region is identified
from the coarser image, the geophysical transceivers can gather closer to form a dense array to transmit
waves with shorter wavelength and generate finer subsurface images.

Figure 1. Subsurface Camera (SAMERA) system architecture: sensing, processing, computing
and control.

SAMERA technology is envisioned as a game changer to transform many subsurface survey and
monitoring applications, including oil/gas exploration and production, subsurface infrastructures
and homeland security, wastewater and CO2 sequestration, earthquake and volcano hazard
monitoring. System prototypes for seismic imaging have been built (Section 3). Creating SAMERA
requires interdisciplinary collaboration and transformation of sensor networks, signal processing,
distributed computing, and geophysical imaging.

2. System Framework and Architecture

A SAMERA system is a general subsurface exploration instrumentation platform and may
incorporate one or more types of geophysical sensors and imaging algorithms based on application
needs. Various geophysical sensors and methods have been used for subsurface explorations:
seismic methods (such as reflection seismology, seismic refraction, and seismic tomography);
seismoelectrical methods; geodesy and gravity techniques (such as gravimetry and gravity
gradiometry); magnetic techniques (including aeromagnetic surveys and magnetometers); electrical
techniques (including electrical resistivity tomography, induced polarization, spontaneous potential
and marine control source electromagnetic (mCSEM) or EM seabed logging; electromagnetic methods
(such as magnetotellurics, ground-penetrating radar, and transient/time-domain electromagnetics,
surface nuclear magnetic resonance (also known as magnetic-resonance sounding)). For environmental
engineering applications, the seismic, EM, and electric resistivity methods are often used. All of
these geophysical imaging methods can be implemented as a type of SAMERA with the same system
framework and architecture, as illustrated in Figure 1.

For the simplicity of presentation and illustration, the following sections describe SAMERA
based on seismic imaging, while the framework, architecture, and algorithms similarly apply to other
geophysical sensors and imaging approaches. Choosing seismic imaging as the example is also because
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seismic methods are widely used in subsurface explorations ranging from meters to kilometers in
distance and depth.

2.1. Sensing Layer and Hardware Platform

For seismic imaging, two types of seismic waves are mainly used in the sensing layer: body
waves (P and S) and surface waves (Rayleigh wave and Love wave), as illustrated in Figure 2.
They have different particle movement patterns [1], resulting in different waveform characteristics
and velocities [2]. In Section 3, several seismic imaging algorithms using body and surface waves,
respectively, are introduced. Seismometers (often geophones) are used to sense/receive seismic waves.
Some seismometers can measure motions with frequencies from 500 to 0.00118 Hz. Deep and large
planetary-scale studies often use sub-Hz broadband seismometers, while earthquake and exploration
geophysics often use 2–120 Hz geophones. A digitizer is designed to amplify signals, suppress noises,
and digitize data via an Analog-to-Digital Converters (ADC) chip. The digitizer of seismic application
typically has 16–32 bit resolution, with a sampling rate 50–1000 Hz.
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Figure 2. Illustration of seismic imaging. (a) Concept. (b) Body waves (P and S) and surface waves
(Love and Rayleigh).

The hardware prototype used for SAMERA (Figure 3) has been designed. The prototype has
been used to apply seismic imaging methods. It has a geophone, global positioning system (GPS),
computing board, wireless radio, solar panel, and battery. Each sensor nodes equip wireless radio
to self-form sensor networks for communication and data exchanges. Sensor networks have been
successfully deployed in harsh environments [3,4] for geophysical surveys. GPS provides a precise
timestamp and location information for each node. The computing board is Raspberry Pi 3 [5]. It has
1.2 GHz CPU, 1 GB RAM, and GPU for intensive local computing when needed, yet can be put in sleep
mode for very low power consumption. Several seismic imaging methods based on this hardware
platform have been built and demonstrated as described in Section 3. However, for some geophysical
imaging methods (such as Full Waveform Inversion (FWI)), there are concerns on whether they can
ever be performed in sensor networks, as they required days’, even months’, computation on IBM
mainframes when this article was written. Those concerns appear to be legitimate but will gradually
fade out. In the 1970s, an IBM mainframe computer ran at a speed of 12.5 MHz and cost $4.6 million.
People in 1970 would similarly doubt a match box-sized board (like Raspberry PI) in 2018 could be
100 times faster than a mainframe and cost only $35. In the past three decades, CPU frequency doubles
every 18 months, as predicted by Moore’s law; this trend is expected to continue in the next decade.
In addition to expected hardware improvements, Big Data, artificial intelligence, and distributed
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computing develop quickly as well and become increasingly efficient to deal with those geophysical
imaging problems.

Figure 3. SAMERA hardware platform prototype. It has a geophone, global positioning system (GPS),
computing board, wireless radio, solar panel, and battery.

2.2. Processing Layer

In the processing layer, signal-processing techniques are used to process the raw time-series
sensor signals and extract needed information for 2D/3D image reconstruction. The signal-processing
functions include data conditioning, noise cancellation, changing point detection, signal disaggregation,
cross-correlation, and time and frequency analysis. Most signal-processing tasks are locally performed
in each node, while a few processing tasks may need data exchange among nodes, such as
cross-correlation used in ambient noise imaging (Section 3.3).

Data conditioning is the very first step of the processing layer, which includes time
synchronization [6], data interpolation [7], axis direction initialization [8], and instrumental response
removal [9]. Then, to enhance the signals of interest and remove noises, filters, such as the bandpass
filter [10], Wiener filter [11], and adaptive filter [12], have been applied. Later, to extract signal event
information from the filtered data, wavefield separation [13], body wave (P and S) arrival detection [14],
and surface wave source extraction [15] are still drawing more and more attentions.

Recently, Valero et al. [16] applied signal-processing techniques, including taper filter, bandpass
filter, local normalization, cross-correlation, stacking, time-frequency analysis, and Eikonal tomography
and interpolation to map the shallow seismic surface wave velocity changes. Cali and Ambu [17] also
adopted advanced image-processing techniques to obtain more accurate 3D surface reconstruction.

2.3. Computing Layer

In the computing layer, the reconstruction of 2D/3D seismic images often involves
computations such as linear/nonlinear inversion and optimization, and spatial and temporal stacking.
Those computations are traditionally performed in central servers and often need data from all
sensors. To implement SAMERA, a key requirement is to perform those computations in sensor
networks in real time. Thus, the main research challenge is to develop distributed iterative computing
algorithms under network bandwidth constraints. Song et al. [18–25] pioneered the research on
in situ seismic imaging in distributed sensor networks. The idea is to let each node compute in
an asynchronous fashion and only communicate with neighbors while solving a 2D/3D image
reconstruction problem. By eliminating synchronization point and multihop communication used in
existing distributed algorithms, the approach can better scale to large numbers of nodes and exhibit
better resilience and stability. Randomized gossip/broadcast-based iterative methods have also been
used. In these methods, each node asynchronously performs multiple rounds of iterations of its own



Sensors 2019, 19, 301 5 of 20

data, gossips/broadcasts its intermediate result with neighbors for a weighted averaging operation.
Iterative computing can be based on first-order and second-order methods (such as distributed
ADMM [26] methods). Second-order methods expect to have a faster convergence rate but higher
computation cost at each iteration. Each node repeats this process until reaching a consensus across
the network.

Distributed iterative computing is a paradigm-shifting computing problem and has received much
attention [27,28] in the computer science, mathematics, statistics, and machine-learning communities
in the past five years. It is advancing rapidly because it is increasingly necessary for many Big Data
and Internet of Things applications beyond subsurface imaging. In this new computing paradigm,
each node holds a privately known objective function and can only communicate with its immediate
neighbors (avoiding multihop if possible). A great effort has been devoted to solving decentralized
(fully distributed) consensus optimization problems, especially in applications like distributed machine
learning and multiagent optimization. Several algorithms have been proposed for solving general convex
and (sub)differentiable functions. By setting the objective function as least-square, the decentralized
least-square problem can be seen as a special case of the following problem:

min
x∈Rn

F(x) :=
p

∑
i=1

Fi(x) (1)

where p nodes are in the network and they need to collaboratively estimate model parameters x.
Each node i locally holds the function Fi and can only communicate with its immediate neighbors.
Figure 4 illustrates this paradigm. The literature can be categorized into two categories: (1) Synchronous
algorithms, where nodes need to synchronize the iterations. In other words, each node needs to wait
for all its neighbors’ information in order to perform the next computation round. Considering the
problem in Equation (1), (sub)gradient-based methods have been proposed [29,30]. However, it has
been analyzed that the aforementioned methods can only converge to a neighborhood of an optimal
solution in the case of fixed step size [31]. Modified algorithms have been developed in Reference [32],
which use diminishing step-size guarantee convergence. Other related algorithms were discussed
in [33–36], which share similar ideas. The D-NC algorithm proposed in [37] was demonstrated to have
an an outer-loop convergence rate of O(1/k2) in terms of objective value error. The rate is same as
the optimal centralized Nesterov’s accelerated gradient method and decentralized algorithms usually
have slower convergence rate than the centralized versions. However, the number of consensus
iterations within outer-loop is growing significantly along the iteration. (2) Asynchronous algorithms,
where nodes do not need to synchronize the iterations. Decentralized optimization methods for
asynchronous models have been designed in References [34,38]. The works in Reference [38] leverage
the alternating direction method of multipliers (ADMM) for the computation part, and in each iteration,
one node needs to randomly wake up one of its neighbors to exchange information. However,
the communication schemes in these two works are based on unicast, which is less preferable than
broadcast in wireless sensor networks. Tsitsiklis [34] proposed an asynchronous model for distributed
optimization, while in its model each node maintains a partial vector of the global variable. It is
different from our goal of decentralized consensus such that each node contains an estimate of the
global common interest. The first broadcast-based asynchronous distributed consensus method was
proposed in Reference [28]. However, the algorithm is designed only for consensus average problem
without “real objective function”. Nedic [39] first filled this gap by considering general decentralized
convex optimization similar to Equation (1) under the asynchronous broadcast setting. It adopted the
asynchronous broadcast model in Reference [28] and developed a (sub)gradient-based update rule for
its computation. By replacing (sub)gradient computation with full local optimization, an improved
algorithm was designed in terms of the number of communication rounds [40].

For either synchronous or asynchronous algorithms, the design goal is to generate same or
near-same results as centralized algorithm with minimal communication cost. The research on
distributed iterative computing advances rapidly in the past several years. This section does not
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intend to survey all methods, but to merely point out some related works and potential direction on
computing layer design for the SAMERA.

Figure 4. Distributed iterative computing paradigm.

2.4. Control Layer

Control software with a GUI can be connected to this network to view the computed
2D/3D images and adjust system and algorithm parameter settings such as resolution, filter, and
regularization parameters. The sensing, processing, and computing layers can execute automatically
and autonomously; on the other hand, the control layer allows users to control those layers, such
as choose different parameters even different algorithm combinations, to achieve the desired effects.
For example, a user may choose to use migration imaging vs. travel-time tomography based on
the sensitivity to different types of seismic waves from subsurface properties and the SNR, or the
combination with ambient noise imaging to view more or less details at the tradeoff of resource usages.
This layer is currently application specific and depends on user preferences, but the user-interface
standard will gradually emerge in the future.

3. System Prototype Design Examples

This section introduces several SAMERA system prototype design examples based on popular
seismic-imaging methods. In each of the following sections, the presentations of processing and
computing layers will be emphasized, as they are the main intellectual challenges. The sensing and
control layer are more or less engineering and interface issues as described in the previous section.

3.1. Travel-Time Seismic Tomography

Travel-time seismic tomography (TomoTT) uses body wave (P and S) arrival times at sensor
nodes to derive the subsurface velocity structure; the tomography model is continuously refined and
evolving as more seismic events are recorded over time. This method is often used in earthquake
seismology, where the event source is a natural or injection-induced (micro)earthquake. TomoTT
applies to the scenario where the signal-to-noise ratio (SNR) of body waves is good enough for arrival
time picking. Body wave arrival time picking and tomographic inversion are performed in processing
and computing layers, respectively.
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3.1.1. Processing Layer

When the SNR is relatively acceptable, the arrival-time picking techniques are used to identify the
body waves’ (P or S) onset times. Because of the strong background noise in seismic data [41], arrivals
are hard to pick or even unidentifiable. The commonly used arrival-picking algorithms are based on
statistical anomaly-detection methods including, but not limited to, characteristic function (CF) [14],
the short- and long-time average ratio (STA/LTA) [42], Akaike information criterion (AIC) [43], wavelet
transform (WT) [44], cross-correlation [45], modified energy ratio (MER) [41], and higher-order statistics
(HOS) [46]. In general, the arrival-picking [47] problem can be formulated as the ratio of short-term
characteristic function and long-term characteristic function (STCF/LTCF). The characteristic function
(CF) [14] can be a kind of statistical metrics, including energy [41], moments [46] and likelihood
estimates [48].

Most arrival-picking methods were designed based on single-channel (e.g., vertical axis) seismic
data. With triaxis geophones or three-component seismic data, two polarization parameters can be used
to distinguish between P and S waves, and noise [49], because wave types and orientations affect the
polarization of signal onsets. As the data have three orthogonal ground-motion records corresponding
to E, N, and Z, onset polarization could indicate the types (surface or body), phase (P or S) of the
wave [11].

3.1.2. Computing Layer

The picked arrival times are then used to estimate the event source location and origin time in the
subsurface, as shown in Figure 5. Thereafter, ray-tracing and tomography inversion are performed.
Given the source locations of the seismic events and initial velocity model, ray tracing finds the ray
paths from the seismic source locations to the sensor nodes. After ray tracing, the seismic tomography
problem is formulated as a large sparse matrix inversion problem. Suppose there are total M seismic
events and N sensors, and L cells in the 3D tomography model; then, let A ∈ RNṀ×L be the matrix of
ray information between M events and N sensors,~t ∈ RNṀ×1 be the vector of travel time between
M events and N sensors, and~s ∈ RL×1 be the 3D tomography model to calculate. The tomographic
inversion problem can be formulated as

~s∗ = arg min
~s
‖~t−A~s‖2

2 + λ‖~s‖2
2 (2)

where λ be the regularization parameter. In centralized algorithm, the system of equations is solved by
sparse matrix methods like LSQR or other conjugate gradient methods [50]. Various parallel algorithms
have also been developed to speed up the execution of these methods [51]. However, designed
for high-performance computers, these centralized approaches need a significant amount of
computational/memory resources and require global information (e.g.,~t and A).

Band­pass filter

Denoising
Arrival Picking Ray­tracing Tomographic 

Inversion 

Computing

Event Location 

Processing

Figure 5. Processing and computing algorithm flows of travel-time seismic tomography. The wireless
sign in the figure means communication between nodes is needed.
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Double-difference tomography [52] was developed to simultaneously solving the event location
and three-dimensional tomography model. It claims to produce more accurate event locations and
velocity structure near the source region than standard tomography. Its mathematical formulation is in
the same format as Equation (2).

3.1.3. Compute TomoTT in Sensor Networks

To implement travel-time seismic tomography in sensor networks, an effective approach is to let
each node compute tomography in an asynchronous fashion and only communicate with neighbors.
By eliminating synchronization point and multihop communication that are used in existing distributed
algorithms, the system can scale better to a large number of nodes, and exhibit better fault tolerance
and stability. In the harsh geological field environment, network disruptions are not unusual, and
reliable multihop communication is not easy to achieve. Prototype system based on TomoTT [18–22,24]
was designed and demonstrated. In Reference [53], a distributed computing algorithm based on
vertical partition was proposed. The key idea is to split the least-square problem into vertical partitions,
similar to the multisplitting method but being aligned with the geometry of tomography. Later, a node
in each partition is chosen as a landlord to gather necessary information from other nodes in the
partition and compute a part of tomography. Computation on each landlord is entirely local and the
communication cost is bounded. After the partial solution is obtained, it is then combined with other
local solutions to generate the entire tomography model. In References [19,25], the block iterative
kaczmarz method with a component averaging mechanism [54,55] was proposed. The key idea is
that each node runs multiple iterations of randomized kaczmarz, then their results are aggregated
through component averaging, and distributed back to each node for next iterations. After multiple
iterations, the algorithm converges and generates the tomography. Decentralized synchronous and
synchronous methods with random gossip and broadcast [20,40,56] were also developed to solve the
inversion problem in Equation (2).

3.2. Migration-Based Microseismic Imaging

Migration-based Microseismic Imaging (MMI) applies reverse-time migration (RTM) principles
to locate the microseismic source locations [57–60]. With a given velocity model, the time-reversed
extrapolation of observed wavefields can be calculated based on wave equations. The extrapolated
wavefields from different receivers stack together to enlighten the location of seismic sources [61],
as illustrated in Figure 6. MMI [61–65] typically uses body waves and has two main steps: forward
modeling and stacking (also called imaging condition) in processing and computing layer, respectively.
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Figure 6. Processing and computing algorithm flows of seismic migration imaging. The wireless sign
in the figure means communication between nodes is needed.

3.2.1. Processing Layer

In the first step, a bandpass filter with an appropriate bandwidth shall be applied, which is
narrow enough to contain signals of interest, and not too narrow to filter out signal components.
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For active source migration, since sources are controllable and seismic acquisition-array density is
high, the raw data and the corresponding wavefields can be completely separated for specific source
characterization [58,66]. For passive seismic-source imaging, on the other hand, the determination
of a seismic event becomes critical, or else there are not enough time-series data to use for wavefield
construction, or computation resources are wasted on background noises [59,60,67]. To extract the
window of seismic signal segments containing events, time framing based on energy segmentation can
be applied (Figure 6). In addition, for better location, a localized normalization operator is necessary
to deal with the issue of unbalanced amplitudes [59].

Let S(x; t; xs) denote the source wavefield generated from source location xs and recorded at a
spatial location x following the wave equation

(
1

v2(x)
∂2

∂t2 −∇2
)

S(x; t; xs) = 0, where v is velocity, and

∇2 is the (spatial) Laplacian operator [68]. RTM algorithms use the zero lag of the cross-correlation
between the source and receiver wavefields to produce an image Iri at receiver location xri [58,69]:

Iri (x, t) = S(x; t; xs)Ri(x; t; xs) (3)

Here, Ri(x; t; xs) is the receiver wavefield, which is approximated using a finite-difference solution
of the wave equation [68,70,71]. For microseismic imaging, under the virtual source assumption,
the source wavefield is eliminated by seismic interferometry using receiver wavefields [60,61,72].

3.2.2. Computing Layer

Equation (3) infers that every receiver generates a 4D wavefield Iri . The imaging condition step
is to combine all receivers’ wavefields to form the final migration images. It is often produced by
summation of wavefields:

I(x, t) =
N−1

∑
i=0

Iri (x, t) (4)

Conventionally, this is done by backward-propagating all data from all sensors at once. Assuming
the velocity model is accurate and data contain zero noise, image I(x, t) should have nonzero values
only if all the backward-propagated wavefields are nonzero at seismicity location x and time t.
However, it does not work well with real data with noises. A hybrid imaging condition [59] that was
proposed for more effective microseismic imaging is described in Equation (4):

I(x, t) =
N/(n−1)

∏
j=0

n−1

∑
k=0

Irj×n+k (x, t) (5)

where n is the local summation window length. Length n should be selected such that neighboring
receivers are backward-propagated together, while far-apart receivers are cross-correlated. Equation (5)
requires N/n computations of reverse-time modeling. Notice that the hybrid imaging condition
parameter decision needs careful design and evaluation by considering the trade-off between network
resource constraints and image quality.

This method is capable of producing high-resolution images of multiple source locations. It adopts
the migration imaging principles for locating microseismic hypocenters. It treats the wavefield
back-propagated from each individual receiver as an independent wavefield, and defines microseismic
hypocenters as the locations where all wavefields coincide with maximum local energies in the final
image in both space and time. Microseismic monitoring based on migration imaging is currently
considered as the most effective technique to track the geometry of stimulated fracture networks in
resource extraction [8].
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3.2.3. Compute MMI in Sensor Networks

In sensor networks, temporal stacking and spatial stacking in Figure 6 can be implemented based
on Equation (6), which is a slight modification from Equation (5).

I(x) =
N/(n−1)

∏
j=0

Icj(x) =
N/(n−1)

∏
j=0

∑
t

n−1

∑
k=0

Irj×n+k (x, t) (6)

In Equation (6), Irj×n+k (x, t) is the 4D wavefield from each node, and Icj(x) is the 3D temporal
stacking image of each cluster. In other words, it is a dimension-reduction operation from 4D to 3D.
Temporal stacking including summation of wavefields and time axis collapses can be performed in
a cluster of sensors [73]. This decreases communication cost in the next step, where spatial stacking
is performed between clusters. In spatial stacking, the images of the same location x from different
clusters are essentially cross-correlated. The communication cost of passing the 3D image Icj(x) is
still considered expensive for sensor networks. Gaussian beam migration can be further applied to
limit the computation and communication to a narrow beam [74], instead of full wavefield Irj×n+k (x, t).
A primitive prototype of SAMERA on migration-based microseismic imaging has been designed [75].
By using Gaussian beams around these rays, the stacking of amplitudes is only restricted to physically
relevant regions. This reduces tens of times of computational and communicational burden without
damaging the imaging quality.

3.3. Ambient-Noise Seismic Imaging

To fully utilize the dense seismic array when there are few earthquakes or active sources,
Ambient Noise Seismic Imaging (ANSI) [76–78] has been developed to image the subsurface
using surface waves. ANSI uses radiation from random sources in the earth to first estimate the
Greens function between pairs of stations [79–82] and then invert for a 3D Earth structure [77,78].
Many applications have relied on relatively low-frequency data (in the range of 0.05–0.5 Hz) from
ocean noise [83], which images structure in the scale of kilometers, while more local structures can be
imaged with higher-order wave modes (higher frequencies) and denser networks [84–86]. The main
algorithm flows of ANSI (Figure 7) are described as follows:
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Figure 7. Processing and computing algorithm flows of ambient noise seismic imaging. The wireless
sign in the figure means communication between nodes is needed.

3.3.1. Processing Layer

This layer is to derive surface-wave travel times through noise cross-correlations.
Data conditioning is first applied to raw seismic signals, such as downsampling, denoising, and
band-pass filtering. Thereafter, noise cross-correlation CAB between two stations is performed:

CAB(t) =
∫ ∞

−∞
uA(τ)uB(t + τ)dτ =

∫ ∞

−∞
[−GAB(τ) + GAB(−τ)]dτ. (7)
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where uA and uB are the recorded noises at Locations A and B [9]. Theoretical studies have shown
that, if the noise wavefield is sufficiently diffusive, the cross-correlation between two stations can
be used to approximate the Green’s function GAB between the two sensors or locations [80,87].
By calculating ambient noise cross-correlations between one center station and all other stations,
seismic wavefield excited by a virtual source located at the center station can be constructed. Based
on noise cross-correlations, the period-dependent surface wave phase and group travel time can be
determined between each pair of stations.

3.3.2. Computing Layer

This layer first generates a series of frequency-dependent 2D surface-wave phase-velocity maps,
and then 3D inversions are performed across the array to form the final 3D tomography. The eikonal
and Helmholtz tomography methods are adopted to determine 2D phase-velocity maps based on
empirical wavefield tracking [15,88]. For each event i, it directly measures surface-wave phase
velocities at each location by the spatial derivatives of the observed wavefield:

1
c2

i (r)
= |∇τ(ri, r)|2 − ∇

2 Ai(r)
Ai(r)ω2 , (8)

where τ and A represent phase travel time and amplitude measurements, and k̂i
∼= ∇τ(ri, r)ci(r), c and

ω are direction of wave propagation, phase velocity, and angular frequency, respectively. k̂i can be
derived directly by solving 2D Helmholtz wave equation, also called eikonal equation, can be derived
from Equation (8) under infinite frequency approximation. While the above equations are defined for
‘events’, it is important to note that the cross-correlation method from Equation (7) effectively turns
each station into an ‘event’ recorded at every other station, so the wavefield from virtual sources at
each station, as well as the spatial derivatives in Equation (8) can be approximated from the set of
cross-correlations with that station. After 2D image reconstruction, the frequency-dependent phase
velocities at each location can then be used to invert for vertical profiles. The combination of all 2D
models and vertical profiles across the study area produces the final 3D model.

3.3.3. Compute ANSI in Sensor Networks

To compute ANSI in sensor networks, there are two main challenges and can be addressed as
follows: (1) The noise cross-correlation step requires every pair of nodes to exchange data with each
other at the beginning. Communication cost can be reduced by subsampling, applying a bandpass
filter, and limiting the cross-correlation between nodes in near range while approaching far-range
cross-correlation through distributed interpolation. (2) The eikonal tomography step requires all
nodes to stack their locally calculated velocity maps to form the final 2D/3D subsurface image.
The stacking processing can be done through in-network data aggregation or decentralized consensus.
Each approach has its own advantages and disadvantages: aggregation works better when the network
is reliable, while consensus might be better when network is intermittent. A primitive prototype of
SAMERA based on ANSI [16,23,89] has been built and demonstrated.

4. Evaluation

A prototype of the SAMERA system based on ambient-noise imaging principles (Section 3.3) was
deployed on the campus of the University of Georgia (UGA). This particular area has an underground
pipeline that begins in one building to transport water. Pictures of the area and one of the culvert
(where is possible to visualize part of the pipeline) are shown in Figure 8.
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Figure 8. Deployment location at the University of Georgia (UGA) campus. Upper right: A visual of
the pipeline that is around ∼1.5 and 1.8 m under surface.

The underground pipeline that the system aims to detect is located under the surface at an
approximate depth of 1.5–1.8 m. Thirteen seismic nodes were used for this test, and they formed
a seismic mesh network for communication and collaboration. The approximate distance between
sensor was 3 m; they were located over the area where the pipeline is. The experiment successfully
imaged the pipeline under the ground.

4.1. Sensing Layer

In the SAMERA design, the sensing layer is responsible of sensing and gathering subsurface
waveforms in the seismic network. Our seismic sensors devices were designed and developed to be
computation-enabled and energy-efficient.

Every sensor node has a GPS, three channel/component seismometer (geophone), a Raspberry
Pi 3 board, a battery, and a solar panel as shown in Figure 3. Some hardware components are housed
in a waterproof box called R1+ for protecting them from harsh environments. The low-power GPS
interface provides the geolocation of the sensor node and a time stamp is used for the system to collect,
synchronize, and process the seismic data. The three-channel geophone is incorporated into the system
to detect the velocity of ground movements. Each channel records its own data with respect to its axis
N,E, and Z, or directions North, East, and Depth (vertical). The single-board computer (Raspberry
Pi) is the core of the system, in charge of collecting and storing data, processing data analytics,
communicating with other units and providing raw and processed information to a visualization tool.
We also integrated a waterproof battery, 11 V and 99.9 Wh, which can be connected to a 10 Watt solar
panel for providing the system with renewable energy.

The detailed specifications of the main single-board computer inside R1 are presented in Table 1.
Figure 9 shows an example of data sensed by a seismic node in the field.

Table 1. Single-board computer specifications.

Raspberry Pi 3 Model B

CPU 1.2 GHz 64-bit quad-core ARMv8
Memory 1 GB SDRAM
USB 2.0 ports 4 (via the on-board 5-port USB hub)
On-board storage 32 Gb Micro SDHC
On-board network 10/100 Mbit/s Ethernet, 802.11n wireless, Bluetooth 4.1
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Figure 9. Data visualization. For image purposes, only geophone locations are shown in
deployment image.

4.2. Processing Layer

In the processing layer, the system applies signal-processing techniques to process the raw
time-series sensor signals and extract needed information for 2D/3D image reconstruction. Once the
battery is connected to the sensors, the system automatically calibrates itself and finds a GPS signal for
synchronization. System parameters are read from configuration files and the sensor reading from the
medium starts. Human intervention is minimal, but the system is manageable via a laptop connected
to the mesh network.

For ambient-noise seismic imaging, the output of this layer consists of a prepared data
(after down-sampling and normalization techniques) and the cross-correlation results between sensors
in the network. An example of a result of the system data preparation (done by every sensor) is
presented in Figure 10.

(a) (b)

Figure 10. Signal preparation example. (a) Raw seismic data sensed by a sensor node. High picks
represent possible events that obscure ambient noise. (b) Data after preparation preserving
ambient noise.

Figure 10a shows the original raw data that every sensor collects in the sensing layer. Note that
the effect of some microseismic events in the gray section. Because ANSI is only based on ambient
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noise, data preparation in the processing layer is responsible to remove these microevents, normalize
the data, and enhance the ambient noise. As it can be seen in Figure 10b, the system effectively removes
these unwanted events, and prepares ambient noise for cross-correlation.

In the processing layer, every node communicates with its neighbor nodes via broadcasting
to send the prepared data and perform cross-correlation. Before sending the data, every node
applies a band-pass filter to select the spectrum band to be analyzed and a compression technique
to improve communication cost between nodes. Once sensor nodes receive the prepared data (and
after decompression), they perform the cross-correlation with their own signal. Example of a result
of cross-correlation and stacking process (done in distributed fashion) is presented in Figure 11.
In Figure 11a, the symmetry cross-correlation result between a pair of stations is presented. As an extra
feature, the designed system allows to visualize the cross-correlation result between each pair of
seismic sensors. In Figure 11b the frequency-time spectrogram for this cross-correlation is presented.
Note the effect of the band-pass filter in the result; this implies that for the final result, only the
frequencies between this spectrum band are considered.

(a) (b)

Figure 11. Cross-correlation example between two sensors’ data. (a) Casual (positive) and anticasual
(negative) symmetric cross-correlation. (b) Frequency-time spectrogram where it is possible to
distinguish dominant frequencies.

The system allows the configuration of the frequency band to be analyzed (in a configuration file),
which incorporates flexibility to the approach. Figure 12 shows another cross-correlation result after
stacking seven hours of cross-correlation

Figure 12. Cross-correlation between a pair of stations, Station 024 and Station 008. For image purposes,
only geophone locations are shown in the deployment image.
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4.3. Computing Layer

For ambient-noise seismic imaging, the output of this layer consists of a series of velocity maps
that have been constructed collaboratively by the seismic network. To accomplish this, each node first
constructs a velocity estimation based on a frequency-time analysis made to the cross-correlation results.
Then, Eikonal tomography is applied to construct a partial travel-time surface. A spatial-stacking
process between the seismic sensors is performed to estimate the velocity maps of the area at different
depths. An example of velocity maps at different depths is shown in Figure 13.

(a) (b)

(c) (d)

Figure 13. Velocity Maps. (a) Layer ∼5.1 m depth. (b) Layer ∼3.5 m depth. (c) Layer ∼1.5 m depth.
(d) Layer ∼0.8 m depth. Sensor-node locations are plotted as reference.

Figure 13 shows the reconstructed subsurface image by the seismic network, which shows the
velocity variation of the subsurface at different depths. A pattern of high velocities at the center
of the seismic deployment is evident. This image corresponds to the pipeline that is located under
the deployment.

The network constructs a 3D subsurface velocity image, as shown in Figure 14, by interpolating
the velocity profiles from all the nodes. In this figure, only depths between 1 and 1.7 m are shown.
In the center of the velocity map, the high-velocity area corresponds to the pipeline location. Due to
the high propagation velocity of the metal pipe, the surrounding soils also show higher velocities than
other areas. It seems the horizontal resolution was still not high enough to estimate the real diameter
of the pipe, because the frequency range we used in the current application was quite wide. If specific
narrow frequency bands, which have the most significant responses with the pipe, are used, the
resolution is higher. In addition, vertical resolution can be further improved if there are more stations.
This result shows the system is able to see structures under the subsurface and potentially extends the
work for some security issues (for example, detecting broken pipelines and detecting tunnels).
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Figure 14. 3D velocity subsurface. Layers between 1 and 1.7 m.

4.4. Remarks

Pipe detection and location have been demonstrated in this experiment based on the SAMERA
framework and architecture. Control software with a GUI was also connected to this network to view
the computed 2D/3D images and adjust the system and algorithm parameter settings.

The same system may be used for steam-/water-leakage detection since fluid dramatically reduces
seismic propagation velocity. In addition, the leakage location should be along the pipe system, so the
high-velocity pipe shape imaging result associated with a low-velocity area can infer the leakage.

5. Conclusions

Creating a SAMERA requires interdisciplinary collaboration and the advancement of sensor
networks, signal processing, distributed computing, and geophysical imaging. Prototypes based on
several seismic-imaging methods have been demonstrated, yet there are many research challenges
and opportunities, such as: (1) Full automation: today, geophysical imaging often involves humans
in the loop, which is not a surprise as the first generation optical camera is not fully automatic either.
For example, the initial velocity model and some algorithm parameters are still based on experience,
so the questions are: how to self-learn and self-optimize parameters to make subsurface-imaging
computing fully automatic? How to automatically build the initial velocity model? How to integrate
machine learning (e.g., data-driven) with physics-based modeling to enable better automation? (2) Fast
completion: distributed iterative-computing frameworks and principles have been laid out, yet many
practical issues remain to address, such as how to decide the stopping/pausing criteria to avoid
overfitting, and how to generate subsurface images faster under the bandwidth constraint and random
network failures. (3) Data fusion: different geophysical sensors/methods are sensitive to different
subsurface geophysical properties, and the question remains of how to integrate different geophysical
methods for joint inversion to generate better subsurface images. These research questions are no
longer unique to SAMERA creation and have received much attention in Big Data, machine learning,
Internet of Things, and other domains, beyond geophysics, and increasingly better solutions are
developed every day. With these recent rapid advancements and cost reduction of both hardware and
computing algorithms, it is the right time to start creating the SAMERA—the camera to see through
the subsurface.
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