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Multidisciplinary team (MDT) meetings are becoming the model of care for

cancer patients worldwide. While MDTs have improved the quality of

cancer care, the meetings impose substantial time pressure on the members,

who generally attend several such MDTs. We describe Lung Cancer Assistant

(LCA), a clinical decision support (CDS) prototype designed to assist the

experts in the treatment selection decisions in the lung cancer MDTs.

A novel feature of LCA is its ability to provide rule-based and probabilistic

decision support within a single platform. The guideline-based CDS is based

on clinical guideline rules, while the probabilistic CDS is based on a Bayesian

network trained on the English Lung Cancer Audit Database (LUCADA). We

assess rule-based and probabilistic recommendations based on their concor-

dances with the treatments recorded in LUCADA. Our results reveal that

the guideline rule-based recommendations perform well in simulating the

recorded treatments with exact and partial concordance rates of 0.57 and

0.79, respectively. On the other hand, the exact and partial concordance rates

achieved with probabilistic results are relatively poorer with 0.27 and 0.76.

However, probabilistic decision support fulfils a complementary role in pro-

viding accurate survival estimations. Compared to recorded treatments, both

CDS approaches promote higher resection rates and multimodality treatments.
1. Introduction
Multidisciplinary teams (MDTs) are becoming the model of care for cancer patients

worldwide [1]. The immediate benefit of these meetings is their ability to facilitate

collective thinking and expertise sharing, as opposed to the outdated sequential

management by a series of clinicians in isolation [2]. There are around 1500

cancer MDTs in the UK, meeting weekly in different centres across the country

[3]. Similar to other cancers, lung cancer MDTs generally consist of oncologists, his-

topathologists, radiologists, specialist nurses and thoracic surgeons along with

consultant respiratory physicians. The decisions are usually made based on pub-

lished research evidence, relevant clinical guideline recommendations, and the

shared expertise of the team members from previous similar cases.

An increasingly significant observation is that the volume of data that needs to

be processed in an MDT meeting is not only large and variable, but also comes from

different sources, making consolidation more difficult. Adding to the complexity of

the situation, most MDTs work against tight time schedules, and often need to

determine the best treatment option within a matter of minutes. Consequently,

the MDT is inherently prone to errors, primarily because relevant information

may not be considered. In 2011, Lamb et al. reported that excessive workload and
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time pressure were the two most detrimental factors that lower

team morale, reduce attendance, and rush decision-making [1].

In a similar vein, Lanceley et al. argued that MDT meetings

suffer from unstructured case discussion, time pressure and

variability in the quality of decision-making [4].

In order to reinforce the diligence and expertise of the

clinicians, clinical decision support (CDS) systems have been

developed. These are computer-based tools that provide

assistance in synthesizing and integrating patient-specific

information and presenting recommendations to clinicians at

the point of care [5]. As objective decision aides that can

match patient data to medical knowledge, their purpose is to

assist, rather than to replace the clinician. Winning the

cooperation of the clinicians is crucial for wider adoption of

CDS. Previous research shows that clinicians accept computer

warnings and recommendations but resist processes that inter-

fere with their daily workflow or challenge their autonomy [6].

CDS systems have been implemented in many different

clinical settings, where the decision-making process is error-

prone due to the diversity of medical information and the

uncertainties associated with it [7]. In addition to the uncertain-

ties, the excessive workload and time constraints of the team

members mean that the MDT meeting exemplifies a clinical

context that is ideal for CDS implementation. A CDS system

that can consolidate information from different sources, while

also dealing with uncertainty in a precise and mathematically

sound way, can be employed to provide patient-specific and

evidence-based recommendations in order to reduce the time

pressures of the team, better structure the patient case discus-

sions and ensure that errors of omission are minimized.

Current practice in CDS for MDTs is guideline rule-based

systems that help reduce the gap between clinical evidence

and practice by facilitating the adoption of clinical guideline

rules within the MDT meetings. To date, MDTSuite [2] in col-

orectal cancer and MATE [8] in breast cancer have been the

major guideline rule-based CDS applications that have been

researched and applied in clinical pilot studies. In delivering

evidence-based decision support, such systems use different

computer interpretable guideline (CIG) formalisms that oper-

ate on the principle of matching individual patient entries to

a set of computerized clinical guideline rules in order to

generate patient-specific arguments that support or oppose

particular treatment options.

This argumentation-based decision model has the benefit

of laying out all treatment options clearly and making evi-

dence explicit. However, a strictly guideline rule-based

approach to CDS also has certain limitations. First, such

systems are imprecise in quantifying the statistical or

probabilistic level of support associated with different treat-

ment options. Second, the elicitation and maintenance of

the rule-based domain representations of such systems are

expensive and time-consuming. In reality, covering the

entire disease domain using only clinical guideline rules is

highly challenging [2].

An alternative to the deterministic approach for repre-

senting and reasoning with domain knowledge employed

by such rule-based systems is probabilistic inference. Unlike

rule-based systems, probabilistic models trained on existing

patient data are able to provide quantified and more precise

answers to survival-related queries. While their inference

mechanisms are usually less explicit than argumentation-

based decision models, there are exceptions, not least

Bayesian networks (BNs), which enable probabilistic
inference in a visually more appealing and transparent way.

A BN consists of two components: a directed acyclic graph

(DAG) that defines the probabilistic dependencies between

different nodes and a joint probability distribution that rep-

resents the entire probability space of the domain. To date,

[9] in colon cancer, [10] in skeletal metastases and [11] in

lung cancer form the largest studies in survival prediction

in cancer care using BNs. Unfortunately, such probabilistic

applications are not widely available since they rely on the

availability of electronic patient data, which are still a rarity.

Motivated by the increasing clinical need for CDS in MDT

meetings and the limitations of the conventional rule-

based CDS applications, in this paper we introduce an online

CDS application, Lung Cancer Assistant (LCA), which com-

bines rule-based and probabilistic inference in order to aid

clinicians to arrive at more informed treatment selection

decisions in the lung cancer MDT meetings. The online plat-

form is accessible through the LCA website (http://www.lca.

eng.ox.ac.uk).
2. Material and methods
We first introduce the English National Lung Cancer Audit Database

(LUCADA), on which we base our system design and empirical

results. We then present the methodologies through which we

achieved semantic and probabilistic inference within LCA.

2.1. LUCADA database
Since 2004, the National Lung Cancer Audit (NLCA) has been

collecting data on lung cancer patients diagnosed in England.

The data are collected via a secure web portal with password

restricted access, using a clinically designed dataset and stored

in a central database known as LUCADA. It is aimed at provid-

ing a better understanding of the care delivered during referral,

diagnosis and treatment of lung cancer patients and how that

impacts on patient outcomes, particularly survival [12,13]. Indi-

vidual hospital trusts can either enter data directly or upload

using CSV or XML files.

Through a data-sharing agreement between the NLCA team

and the University of Oxford, we have had access to an anon-

ymized subset of the LUCADA, including 126 986 English

patient records entered into the system from the beginning of

2006 until the end of 2010. This approximates to 95% of all

English patients entered into the system for the given time period.

In this study, we focus on patients with lung cancer

including those with diagnoses of non-small cell lung cancer

(NSCLC) and small cell lung cancer confirmed by a tissue diag-

nosis plus those patients diagnosed only on clinical grounds. We

exclude mesothelioma patients from the study since it is a differ-

ent disease for which we had fewer patient records and UK

published guidelines.

A complete list of all LUCADA variables, along with their full

definitions and the list of values they can take, is given in the

LUCADA Data Manual document [14] available on the web.

Table 1 recalls the 13 patient- and disease-specific variables that

we chose to include in our studies from the LUCADA dataset.

These can be grouped into three categories with respect to their

temporal order in the patient journey, namely: ‘pre-treatment

(1–11)’, ‘treatment (12)’ and ‘outcome (13)’ variables.

The meanings of most of the terms are self-evident to a clin-

ician, though these are spelled out in more detail in [11], to which

the reader is referred to. We note that in table 1, the ‘1-year sur-

vival’ variable contains the survival outcome information for all

patient records. In cancer care, long-term disease-free survival is

more commonly reported with a cut-off point of 5 years. Owing
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Table 1. The 13 patient- and disease-specific variables from LUCADA, along with the values they can take and their temporal orders.

code name values

1 age ,50; 50 – 60; 60 – 70; 70 – 80; .80

2 staging identifier 6; 7

3 FEV1a absolute amount ,1.0; 1 – 1.5; 1.5 – 2.0; .2.0

4 FEV1 percentage ,30; 30 – 40; 40 – 80; .80

5 performance status 0; 1; 2; 3; 4

6 number of comorbidities 0; 1; 2; 3; 4; 5

7 primary diagnosis C33; C34; C34.0; C34.1; C34.2; C34.3; C34.8; C34.9; C38.4; C38.3; C38.8

8 tumour laterality left; right; midline; bilateral; n.a.

9 TNM category IA; IB; IIA; IIB; IIIA; IIIB; IV; Uncertain

10 histology M8010/2; M8041/3; M8046/3; M8070/3; M8140/3; M8250/3; M8012/3;

M8020/3; M8013/3; M8240; M8980/3; M8940/3; M9999/9

11 site-specific staging classification limited; extensive; unknown

12 suggested cancer treatment plan listed in table 2

13 1-year survival alive; dead
aForced expiratory volume in 1 s.

Table 2. The available treatment plan options and their frequencies in LUCADA.

code name
percentage
(%)

1 surgery 10

2 radiotherapy 14.79

3 chemotherapy 19

5 palliative care 23

6 active monitoring 9

7 sequential chemotherapy and

radiotherapy

7

8 concurrent chemotherapy and

radiotherapy

1

9 induction chemotherapy to

downstage before surgery

0.08

10 neo-adjuvant chemotherapy and

surgery

0.13

11 surgery followed by adjuvant

chemotherapy

2

— null 14
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to lack of sufficient 5-year survival data in LUCADA, we use

1-year survival as a surrogate outcome measure. This choice is

also supported by the literature, which reports almost all

improvement in lung cancer survival as being attributable to

an increase in 1-year survival [15,16]. The overall ‘1-year survi-

val’ rate within LUCADA is 33%. Table 2 lists the available

treatment options with their frequencies in LUCADA.
2.2. Guideline rule-based decision support
In order to reap the benefits of clinical guidelines, they need to be

easily accessible at the point of care by clinicians [17]. CIGs enable
computerizing guideline eligibility and decision criteria in order to

deliver patient-specific recommendations to clinicians [18].

Among the relevant MDT CDS projects listed, MATE used a

CIG formalism named PROforma [8] with a proprietary execution

engine, with no active support at the time of our research. In

addition, PROforma did not allow integration with an external

ontology. On the other hand, MDTSuite used a more recent

approach based on resource description framework (RDF) triplets

and queries. While this RDF query-based framework was able to

infer subsumption relationships such as ‘Lung Cancer is a Cancer’,

it did not allow reasoning with description logic (DL) axioms. For

detailed comparisons of the commonly used CIG formalisms, the

reader is referred to [19–21].

Within LCA, we captured the domain knowledge by using a

domain-specific clinical ontology. In general, ontologies are well

suited to classify and encode semantic relationships between

domain concepts. To this end, we designed a local ontology that

conceptualizes the LUCADA data model [14], using the Web

Ontology Language 2 (OWL 2). The terminological box (T-box)

of this ontology is given in figure 1. OWL-2 is the ontology

language officially endorsed by the World Wide Web Consortium

(W3C). It is based on DL, allowing the use of semantic inferences

through the use of axioms.

Subsequently, we performed mappings between the local

ontology classes and SNOMED-CT [22] concepts with the

help of Logmap-2 [23]. SNOMED-CT is the lingua franca of medi-

cine [24] and also the full fundamental standard for all medical

information applications within the NHS. Following the

mapping, we used the Locality Module Extractor tool [25] for

extracting a minimal and complete module of SNOMED-CT,

referred to as the LUCADA ontology for the remainder of the

text. This module preserves all semantic information relevant

to our mapped concepts.

However, some classes did not have one-to-one mappings

with a SNOMED-CT concept. Some of these were modelled as

post-coordinated concepts making use of the atomic concepts

and attributes available in SNOMED-CT as explained in [26].

Overall, out of the 376 concepts that we extracted from the

LUCADA data model, 13 could not be mapped to SNOMED-CT

and were kept as proprietary classes in the LUCADA ontology.

In addition to our ontological domain representation, we

devised an ontological guideline rule inference framework in
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Figure 1. The LUCADA ontology clinical domain T-box. The circles represent clinical classes; the edges represent object properties between these classes and the list
items represent the datatype properties belonging to the respective classes. (Online version in colour.)

Figure 2. The class equivalence axiom describing the eligibility criteria for patients with Stage I, II, III disease and good performance status. (Online version in colour.)

Figure 3. An automatically created OWL DL query for a patient record from the LUCADA database. (Online version in colour.)
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order to draw inferences from guideline rules. According to this,

we represent the guideline rule antecedents as defined patient

scenario classes, whose equivalent class descriptions capture

the semantics for rule eligibility criteria. As an example, the eli-

gibility for the guideline rule (taken from the NICE guideline

document [27]) ‘Consider radiotherapy for Stage I, II, III patients

with good performance status’ is encoded as the OWL 2 class
equivalence axiom in figure 2, which makes use of concepts

and properties in the LUCADA ontology, along with existential

and universal DL constraints [28].

We represent a patient record in the form of a DL query that

is automatically parsed by LCA using the Java OWL API [29].

A demonstrative representation of a LUCADA patient record

as a DL query is provided in figure 3. The DL query acts as a
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Figure 4. The BN structure used for carrying out causal interventions on the ‘suggested cancer treatment plan’ variable. The nodes follow the same numbering as in
table 1. (Online version in colour.)
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pseudo class definition, and as such ontological inference can be

achieved at the T-box level, merely by classifying the ontology.

This allows faster inference times compared with ontological

inference with individuals at the assertional box level [28].

We make use of the FaCTþþ semantic reasoner [30] to infer

the patient scenario class memberships of the automatically gen-

erated patient-DL query. The parent patient scenario classes, for

which the patient satisfies the eligibility criteria, represent the list

of guideline rules that apply to the given patient. Similar to the

argumentation-based decision model employed by MATE [8]

and MDTSuite [2], we produce patient-specific arguments,

which are in favour of or against a given treatment option.

These are then aggregated within the LCA decision support

engine to compare different treatment options and recommend

to the user the treatment that has the highest net support.

Among the better known CIG formalisms, EON, GLIF3 and

SAGE are the main ones that support a similar use of external

ontologies for conceptualization and data abstraction. However,

GLIF3 and EON are discontinued and SAGE is now proprietary.

Our adoption of OWL as the guideline expression language

allowed us to represent clinical knowledge in a standardized,

open source format and carry-out inferences using a publicly

available and well-maintained semantic reasoner.

It should, however, be mentioned that our framework does

not contain temporal concepts to incorporate sequential clinical

workflow management as most CIG formalisms do. This is

partly due to the LUCADA data model which does not

portray the patient journey in a temporal manner, and partly

due to the fact that the emphasis of the decision support is for a

single meeting and does not involve a series of sequential tasks

that would necessitate temporal workflow management. The

design of the LUCADA ontology and the ontological guideline

rule inference framework are explained in more detail in [26,28].
2.2.1. Guideline rule elicitation
In order to populate the guideline rule base for LCA, we carried out

detailed reviews of the four publicly available national and inter-

national guideline documents in lung cancer care. As a result of

our detailed reviews, we extracted 84 treatment-related rules from

(i) the British Thoracic Society (BTS) [31], (ii) National Institute

for Clinical Excellence (NICE) [27], (iii) European Society for
Medical Oncology (ESMO) [32] and (iv) the National Comprehen-

sive Cancer Network (NCCN) [33] guideline documents.

In general, the narrative language for the guideline rules

employed terminology that was open to interpretation, such as

‘operable’ and ‘suitable for concurrent radiotherapy’. We inter-

preted rules that contained such terminology based on the

shared expertise of our clinician collaborators. This formalization

of ambiguous terminology is a well-established bottleneck in the

development of guideline rule-based CDS applications [2,34].

In addition, we needed to ‘operationalize’ the guideline rules

in terms of the LUCADA data model that defined the boundaries

of the clinical concepts we could use. In some cases, LUCADA did

not encompass all the concepts necessary to entirely capture the

semantics of certain rule criteria. For instance, while conceptualiz-

ing criteria as ‘resectable’ or ‘operable’ that indicate suitability for

resection, we used a patient’s performance status and the existence

of a cardiovascular co-morbidity as surrogates to the indicators

listed in the guidelines, such as risk of peri/post-operative

mortality, cardiac functional capacity, lung function and post-

operative quality of life [27,31]. These approximations were

necessary in order to maximize our use of LUCADA data.
2.3. Probabilistic decision support
We soon realized that a purely rule-based decision support

approach falls short in answering certain critical questions that

the MDT members face on a weekly basis. Confronted with a

patient case in the MDT meeting, the answers to the questions of

‘What is the probability of survival for this patient?’ and

‘How would different treatment decisions affect this probability?’

generally drive the decision-making process.

We have developed a BN in order to provide probabilistic

answers to these questions. This required learning the DAG

structure that best fits the dataset and represents the domain.

In general, structure learning algorithms can be categorized

into constraint- and score-based search approaches [35]. In our

case, structure learning was performed by incorporating expert

elicited and temporal constraints into a score-based approach

using stochastic search. This achieved highly accurate survival

predictions with an area under the receiver operating character-

istic curve (AUC) of 0.81 (+0.03) [11]. The LUCADA BN that

we use for the causal interventions is shown in figure 4.
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According to the network structure, ‘performance status (5)’,

‘TNM category (9)’ and ‘treatment plan (12)’ are the nodes that

are directly related to ‘survival (13)’. The rest of the nodes, how-

ever, may provide valuable insight into the joint probability

distribution and potentially the causal relations of the domain.

By sampling from this distribution, it is also possible to estimate

missing data points or generate synthetic ones in the input space,

which categorizes BNs as generative models [36]. Missing data

are a reality of clinical datasets and the conditional probabilistic

dependencies encoded in the DAG allow missing data to be dealt

with more efficiently [37]. For detailed information on BNs,

along with discussions on the design steps of the LUCADA

BN, the reader is referred to [38,39].
2.4. System architecture
The architecture of the LCA was informed by our design goals to

develop a CDS prototype that can provide instantaneous

evidence-based and probabilistic decision support at the point of

care, while prioritizing the standardization of domain knowledge

and interoperability with other software.

We developed LCA with the Google Web Toolkit software

development kit v. 2.4.0 [40] in Java. The software architecture

is shown in figure 5. According to this, the user interacts with

the CDS prototype through a web-based form. Depending on

the nature of a client-side request, the ‘implemented’ Remote Ser-

vice Servlet class methods make use of the ‘Database Worker’,

‘Ontology Worker’ or ‘Bayesian Worker’ classes in order to per-

form inference. The Database Worker modifies or queries the

database, which is stored in PostgreSQL. It uses JDBC [41] for

connecting to and querying or modifying the LUCADA patient

records and fulfils a central role, enabling the communication

of electronic patient information with both ‘Ontology Worker’

and ‘Bayesian Worker’ classes.
The ‘Ontology Worker’ class mainly uses the OWL API [29]

for communicating with and querying the LUCADA ontology

with the help of the FaCTþþ [30] semantic reasoner. And the

‘Bayesian Worker’ class enables probabilistic reasoning. It

allows building and saving BNs in the standardized Bayesian

Interchange Format, which is compatible with the majority of

commercial and educational BN software tools. More impor-

tantly, it contains a bucket tree algorithm [42] implementation

that allows probabilistic inference to be performed on the BN

in order to return posterior survival probabilities.
3. Results
We ran two sets of experiments to assess the guideline rule-

based and probabilistic decision support functionalities of

LCA on a carefully selected subset of LUCADA, which

only contained patients who were given a curative treatment

plan and had no missing data. This resulted in a fully

observed subset of 4020 patients. Figure 6 gives a breakdown

of these patients with respect to their TNM stages.

Of the 4020 patient records, which were given curative

treatment plans, the recorded treatment plans were distribu-

ted as shown in figure 7, which adopts the treatment plan

numbering from table 2.

Making use of this patient subset and the two alternative

decision support approaches, we evaluated concordance rates

with respect to both exact and partial matches between LCA’s

top treatment recommendation and the treatments recorded

in the database. These recorded treatments were adopted as

a ‘silver standard’ in the absence of prospective patient data.

Partial matches contained patients for whom the top
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recommendation of the system either subsumed or

overlapped with the recorded treatment. For instance, a com-

monly occurring partial match pattern consisted of patients

for which the recorded treatment plan ‘surgery’ was sub-

sumed by the top LCA recommendation ‘surgery followed

by adjuvant chemotherapy’.

For guideline rule-based decision support, the top system

recommendation was defined as the treatment plan option

that had the highest net support. For probabilistic decision

support, our major goal was to investigate whether the

LCA BN, which produced highly accurate survival estimates,

could be used for making plausible treatment recommen-

dations based on maximizing survival.

Overall, the LCA guideline rule-based decision support

achieved an exact concordance rate of 0.57 with the recorded

treatments in LUCADA, which rose to 0.79 when partial matches

were included. On the other hand, the performance of the LCA

probabilistic decision support was worse with 0.27 and 0.76

for the exact and partial concordance rates, respectively.
3.1. Analyses with respect to treatment plan
Figures 8 and 9 show the confusion matrices that summ-

arize the aggregated discrepancies between the recorded

treatment plans and the guideline rule-based and pro-

babilistic decision support, respectively. In both figures, the

numbers on the diagonals indicate concordant cases for

each treatment plan type.
As an alternative indicator of consistency between the

recommendations and the recorded treatments, we provide

agreement analyses, using the unweighted kappa statistic

[43] and assuming treatment to be a nominal variable with

eight possible values for each set of CDS results. Further-

more, we present the proportions of specific agreement [44]

and kappa statistics per individual treatment by collapsing

the confusion matrices relative to each specific treatment.

For guideline rule-based recommendations, the overall

inter-rater agreement with recorded treatments was found

to be k ¼ 0.36 ( p , 0.05, 95% CI (0.34, 0.38)). The proportions

of specific agreements and kappa statistics per treatment are

given in table 3.

Comparing the guideline rule-based recommendations of

LCA with the recorded ‘surgery’ treatment plans on row 1 in

figure 8, it is evident that the two are concordant for the

majority of the cases. The discordances mainly arise due to

LCA recommending adjuvant chemotherapy after surgery,

whereas the recorded treatment is surgery alone. Upon

further analysis, we found that this group consisted entirely

of locally advanced stage (Stage IIIA and IIIB) patients,

for whom all guideline documents recommend adjuvant

chemotherapy after surgery.

On the other hand, if we focus on the ‘adjuvant che-

motherapy after surgery’ row, we see that the majority of

discordances (201 patients) stem from the system suggesting

surgery alone. These patients are entirely early stage patients,

and the disagreement of the system stems from a guideline

rule stating ‘There is no evidence of benefit of postoperative

chemotherapy in stage IA non-small cell lung cancer in a

western population’ taken from the BTS document [31].

Again, though debatable, the system’s suggestion is defensible.

Another notable pattern in figure 8 is that the discordant

portion of the ‘radiotherapy’ column is mainly comprised

patients for whom the top guideline-based recommendation

was surgery. These may potentially represent complex cases

for which suitability for surgery cannot be determined by

the guideline rules and information stored in the LUCADA

database. Similar low exact concordance percentages are

also observable for patients who have been treated with

‘chemotherapy’ and ‘sequential chemo-radiotherapy’.

For the ‘chemotherapy’ group, guideline-based decision

support highly favours multimodality treatments, such as ‘con-

current chemo-radiotherapy’ or ‘adjuvant chemotherapy after

surgery’, over chemotherapy alone. For patients who have

been given ‘sequential chemo-radiotherapy’, the LCA rule

base again mainly favours ‘concurrent chemo-radiotherapy’.
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Figure 8. The confusion matrix that displays the recorded treatment plans in the database versus the top guideline rule-based recommendations by LCA. (Online
version in colour.)
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Figure 9. The confusion matrix that displays the recorded treatment plans versus the top probabilistic recommendations by LCA. (Online version in colour.)
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Table 3. The kappa statistics and proportions of specific agreements for guideline recommendations per treatment plan type, along with their 95% asymptotic
confidence intervals.

kappa statistic specific agreement

1. surgery 0.50, (0.47 – 0.52) 0.77, (0.76 – 0.78)

2. radiotherapy 0.46, (0.42 – 0.50) 0.53, (0.49 – 0.56)

3. chemotherapy 0.24, (0.18 – 0.30) 0.29, (0.23 – 0.34)

7. sequential chemo-radio 0.07, (0.03 – 0.11) 0.10, (0.06 – 0.14)

8. concurrent chemo-radio 0.12, (0.08 – 0.16) 0.16, (0.12 – 020)

9. induction chemo and surgery 0 0

10. neo-adjuvant chemo and surgery 0 0

11. surgery and adjuvant chemo 0.31, (0.28 – 0.35) 0.42, (0.38 – 0.46)

Table 4. The kappa statistics and proportions of specific agreements for probabilistic recommendations per treatment plan type, along with their 95%
asymptotic confidence intervals.

specific kappa specific agreement

1. surgery 0.17, (0.15 – 0.19) 0.43, (0.41 – 0.45))

2. radiotherapy 0 0

3. chemotherapy 0 0

7. sequential chemo-radio 0.06, (0.02 – 0.10) 0.07, (0.03 – 0.11)

8. concurrent chemo-radio 0.11, (0.03 – 0.19) 0.11, (0.03, 0.19)

9. induction chemo and surgery 0.01, (0 – 0.02) 0.01, (0 – 0.03)

10. neo-adjuvant chemo and surgery 0.06, (0.02 – 0.06) 0.06, (0.04 – 0.08)

11. surgery and adjuvant chemo 0.06, (0.04 – 0.08) 0.25, (0.23 – 0.27)
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In the majority of the 146 cases, the discordance is due to a BTS

[31] guideline stating that ‘concurrent chemo-radiotherapy is

more efficacious and should be preferred to sequential

chemo-radiotherapy if the patient is fit enough’. Several

NSCLC trials have compared sequential and concurrent

chemo-radiotherapy, with almost all reporting increased survi-

val with the latter [45]. However, evidently LCA cannot

distinguish between the two, which may be due to the lack

of clearly defined criteria of ‘fit enough’. This may indeed be

regarded as a typical example of the effects of ambiguous

wording in guideline rules that are prone to variable interpret-

ations and may result in the recommendation of a sub-optimal

treatment by the system. Therefore, any clinical use of the

system would need the guidance and additional advice of an

expert oncologist.

Finally, in figure 8, two exceptional patient groups, for

whom concordance levels are zero, are those who have

been given ‘induction chemotherapy before surgery’ or

‘neo-adjuvant chemotherapy before surgery’. Such discor-

dances derive from the fact that no guideline rules that

recommend these two treatment plans currently exist since

they are only prescribed under clinical trials. This is a

common occurrence in clinical practice, where day-to-day

clinical practice often lags behind state-of-the-art treatments

until sufficient evidence accumulates.

In contrast with the fairly accurate guideline rule-based

recommendations, figure 9 reflects notably poorer concor-

dance results for probabilistic treatment recommendations
with an inter-rater agreement of k ¼ 0.09 ( p , 0.05, 95% CI

(0.07, 0.10)). The proportions of specific agreements and

individual kappa statistics per treatment are given in table 4.

A clearly visible pattern in figure 9 is that the top treatment

recommendations by the LCA BN almost exclusively comprise

surgical treatment plans. If we focus on the non-surgical treat-

ment plan columns, we see that the single modality plans:

radiotherapy and chemotherapy are never recommended by

the system, and the multimodal chemo-radiotherapy plans

are recommended very rarely.

Furthermore, the ‘surgery’ row in figure 9 reveals that for

the majority of the cases, the probabilistic decision support

favours multimodality surgical treatment plans: 9, 10 and

11 over ‘surgery’ alone. Upon further analysis, we found

that the 681 concordant cases were all early stage (Stage

IA–IIB) patients, for whom surgery alone yielded marginally

better survival expectancies compared with the multimodal

surgical plans.

Finally, contrary to guideline rule-based decision support,

the ‘induction chemotherapy before surgery’ and ‘neo-

adjuvant chemotherapy before surgery’ treatment plans are

recommended to a relatively high number of patients on the

basis of maximizing the probability of 1-year survival. Never-

theless, it is evident that the maximum a posteriori estimations

of ‘argmax(T)[P(Survival¼ AlivejEvidence, Treatment)]’ pro-

duce recommendations that are heavily biased towards

surgical treatment plans and therefore do not concord with

the recorded clinical practice.
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3.2. Analyses with respect to TNM staging
In addition to our analyses of concordance based on treatment

plan types, we also investigated the levels of exact and partial

concordances with respect to the TNM stages of the test

patients. Figure 10 shows the concordances between the guide-

line rule-based recommendations and the silver standards,

stratified with respect to the TNM stages. It can be observed

that the concordance rates are relatively high for early stage

cancer patients. This may be explained by the limited variation

between the disease specifics of early stage cancer patients and

their corresponding treatment decisions.

On the other hand, concordance rates for locally advanced

stage patients (Stage IIIA and IIIB) are significantly lower. This

is not surprising since stages IIIA and IIIB comprise the widest

variation in disease specifics (T and N stage combinations)

among all TNM stages and constitute the patient group with

the highest degree of uncertainty. As a result, treatment

decisions tend to vary more with patient-specific differences.

One way to interpret the low exact concordance rates for

the locally advanced stage patients, shown in figure 10, is

that despite the more comprehensive rule coverage for these

patients, the national and international guideline rules are not

sufficient on their own to attain high levels of agreement

between LCA recommendations and clinical practice.

However, it should also be kept in mind that the silver

standards, against which we compare our system recommen-

dations, do not necessarily represent best practice patterns.

Therefore, the relatively low concordance rates need not

necessarily indicate deficiencies of our rule base. These can

alternatively be interpreted as complex cases, which deviate
from best practice recommended in the national and

international guideline documents.

On the other hand, figure 11 reveals a different story for

the probabilistic decision support results, with notably

lower exact concordance results for the early stage patients.

More strikingly, the exact concordance levels for locally

advanced (IIIA and IIB) and advanced (IV) stage patients

are close to zero. This may be attributable to the fact that

while the LCA probabilistic recommendations favour surgical

treatment plans regardless of the stage of the disease, in clini-

cal practice the proportion of patients who are suitable for

surgery decreases as the severity of the disease ( judged by

the TNM stage) increases.

It is clear from the results that the probabilistic decision

support falls short in judging suitability for surgery, which

should be determined by factors listed in §2.2.
4. Discussion
This paper presents the implementation and performance of a

novel CDS prototype, LCA, which combines guideline rule-

based and probabilistic decision support in order to assist

the treatment selection decision of lung cancer experts in

MDT meetings. Our results highlight the relative strengths

and weaknesses of the guideline rule-based and probabilistic

inference in providing decision support to the clinicians.

A direct comparison of the empirical concordance results

achieved with guideline rule-based and probabilistic decision

support reveals that the former performs better in simulating



Figure 12. A screenshot of the Decision Support tab of LCA, where guideline rule-based (on the left) and probabilistic (on the right) decision support are provided
together. (Online version in colour.)
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the recorded treatments in the database. While a high concor-

dance rate with the recorded treatments does not necessarily

imply better decision support, the rule-based CDS results at

least provide sufficient evidence that the system is capable

of making sensible personalized recommendations.

On the other hand, the relatively poorer concordance

results of the probabilistic recommendations can be explained

by the inability to incorporate additional factors, other than

maximizing survival expectancy, into our probabilistic queries.

While we stress that this shortcoming is not methodological

but is due to lack of data on such factors in LUCADA, it is

obvious that the usefulness of the treatment recommendations

provided on the basis of survival maximization is limited.

However, the posterior distributions can still be very informa-

tive in allowing the clinicians to compare the direct impacts of

different treatment plans on survival expectancies.

The LCA user interface (UI) is designed to operate as an

electronic patient form that includes all LUCADA data

fields. Some MDTs, like the lung cancer MDT in the John

Radcliffe Hospital in Oxford, already use electronic forms

to record patient details prior to and during the meetings.

LCA can potentially replace such electronic forms to provide

instantaneous decision support upon entering a new patient

or updating the details of an existing patient. The LCA UI dis-

plays guideline-based and probabilistic recommendations

side by side as shown in figure 12. On the left, the supporting

guideline-based arguments are symbolized with ‘thumbs up’

icons, whereas the opposing arguments are presented with

‘thumbs down’ icons. On the right, personalized 1-year
survival expectancies and probabilistic treatment recommen-

dations are displayed.

While we contend that the two decision support

approaches are complementary, the relatively better concor-

dance results achieved by the guideline rule-based CDS is

due to their qualitative nature, which allows them to implicitly

accommodate factors other than survival maximization in their

recommendations. Therefore, in the absence of comprehensive

electronic patient data, guideline rule-based CDS clearly serves

the important purpose of laying out a more complete picture of

the factors that govern treatment selection decisions.

However, more often than not the qualitative nature of

guideline rules manifests itself in the form of vagueness and

uncertainty in rule eligibility criteria. This can result in varied

interpretations of guideline rules, raising the possibility of

increasing practice variation despite apparent guideline adher-

ence [46]. This major bottleneck in explicating the implicit

expert knowledge can be addressed by the promotion of

clear guideline authoring, keeping in mind the computeriza-

tion steps and discouraging the use of vague terms [47].

Furthermore, the introduction of a ‘de facto standard’ and

open source language, such as OWL2, for implementing

guidelines would facilitate the dissemination and re-use of

information between different CIG formalisms [48].

One of the major drawbacks in the wide adoption of

guideline-based CDS is the need for manual elicitation and

maintenance of rule-bases by clinicians and informaticians. In

contrast to this dependency, the probability distribution under-

lying a BN is automatically updated as new patient data are
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added. This adaptive nature of the BN provides a more

autonomous model that can evolve as more data are added.

A common treatment selection pattern observed in both

guideline rule-based and probabilistic recommendations is

that, compared to recorded decisions, they favour multimod-

ality treatment plans over single modality ones. Similarly,

both CDS recommendations over-prescribe surgical treat-

ment plans compared to recorded clinical practice. Unless

there are strong contraindications, such as metastatic disease,

poor performance status or low lung capacity, the rule-base

of LCA prioritizes single or multiple modality surgery

plans for early and locally advanced cancer patients. The

‘over-prescription’ of surgery by the probabilistic decision

support, on the other hand, is caused by the limitations of

the one-dimensional analysis based on survival maximiza-

tion. In either case, evidence from NLCA and the Society of

Cardiothoracic Surgeons show that although the curative

resection rates in the UK are rising, they are still not at opti-

mum levels [49,50]. In this respect, the adoption of LCA,

which lays out qualitative and quantitative indicators in

support of surgical treatment plans at the MDT meetings,

may help in optimizing resection decisions.

Nevertheless, we recognize that the research presented

here is not without limitations. First, we recognize that the

treatment plan selection, by nature, is a multi-faceted

decision problem, involving complex criteria other than sur-

vival maximization, such as post-treatment quality of life

assessment, access to treatment equipment and staff, and

cost of treatment, among many others. From a patient-

centred perspective, the MDT decisions also need to reflect

the patient’s views, preferences and circumstances [51].

Data on some of these concepts are very hard to capture,

let alone quantify and put in a computer model. In an

attempt to assist the expertise and holistic judgement of

the clinicians, LCA only focuses on a subset of the more

easily quantifiable biomedical aspects. As more diverse

data become available, well-established decision analytic

methods—not least decision networks [52]—can be used to

calculate the expected utilities of decision alternatives using

multi-criteria decision models.
Second, owing to the lack of data on 5-year survival rates,

we adopt 1-year survival as our outcome measure. This is an

informed decision, supported by literary evidence [15,16]

and our analyses are of relevance to most patients (67%)

who were dead within 1 year of diagnosis. However, it is poss-

ible that the probabilistic recommendations may change if a

5-year survival cut-off can be used. This will become possible

with the continuation of LUCADA data collection.

Third, our experiments are based on retrospective data

and as such may reflect biased treatment patterns. In order

to validate the results prospectively, a properly conducted

pilot study, which would span a minimum of 5-years and

involve randomized control groups, would be necessary.

Finally, the integration of probabilistic and rule-based

inference within LCA is only at the UI level. An obvious

avenue for further research is coupling the outputs of

the BN with the guideline inference engine. Williams &

Williamson [53] have proposed such a proof-of-concept

system that uses posterior probabilities obtained by Bayesian

inference to weigh up competing arguments.
5. Conclusion
Practice variation and poor decisions in MDTs are inevitable,

because clinicians have to make life or death decisions on

phenomenally complex problems under very difficult con-

ditions and with very limited support [54]. Computers can

act as ever-attentive personal assistants to clinicians, and

LCA is aimed to demonstrate how different decision support

approaches, which derive from fundamentally different

research hypotheses, can be used to complement each other

to this end. We note that for LCA to be adopted in daily clini-

cal practice, ensuring seamless integration with the workflow

of the clinicians is of paramount importance. Once this is

achieved, we believe it to have great potential in improving

the quality of clinical decision-making, reducing the variation

in treatment rates between MDTs and ultimately improving

outcomes for patients.
References
1. Lamb BW, Brown KF, Nagpal K, Vincent C, Green
JSA, Sevdalis N. 2011 Quality of care management
decisions by multidisciplinary cancer teams: a
systematic review. Ann. Surg. Oncol. 18,
2116 – 2125. (doi:10.1245/s10434-011-1675-6)

2. Austin M. 2008 Information integration and decision
support for multidisciplinary team meetings on
colorectal cancer. Oxford, UK: Oxford University.

3. National Cancer Action Team. 2012 Multi-disciplinary
team development. National Cancer Intelligence
Network

4. Lanceley A, Savage J, Menon U, Jacobs I. 2008
Influences on multidisciplinary team decision-
making. Int. J. Gynecol. Cancer 18, 215 – 222.
(doi:10.1111/j.1525-1438.2007.00991.x)

5. Hunt DL, Haynes RB, Hanna SE, Smith K. 1998
Effects of computer-based clinical decision support
systems on physician performance and patient
outcomes: a systematic review. JAMA 280,
1339 – 1346. (doi:10.1001/jama.280.15.1339)

6. Keet R. 1999 Essential characteristics of an
electronic prescription writer. J. Healthc. Inf. Manag.
13, 53 – 61.

7. Berner ES. 2009 Clinical decision support systems:
state of the art. Agency for Healthcare Research and
Quality. See http://healthit.ahrq.gov/sites/default/
files/docs/page/09-0069-EF_1.pdf.

8. Patkar V, Acosta D, Davidson T, Jones A, Fox J,
Keshtgar M. 2012 Using computerised decision
support to improve compliance of cancer
multidisciplinary meetings with evidence-based
guidance. BMJ Open 2, e000439. (doi:10.1136/
bmjopen-2011-000439)

9. Stojadinovic A et al. 2013 Clinical decision support
and individualized prediction of survival in colon
cancer: Bayesian belief network model. Ann. Surg.
Oncol. 20, 161 – 174. (doi:10.1245/s10434-012-
2555-4)

10. Forsberg JA, Eberhardt J, Boland PJ, Wedin R,
Healey JH. 2013 Estimating survival in patients with
operable skeletal metastases: an application of a
Bayesian belief network. PLoS ONE 6, e19956.
(doi:10.1371/journal.pone.0019956)

11. Sesen MB, Nicholson AE, Banares-Alcantara R, Kadir
T, Brady M. 2013 Bayesian networks for
clinical decision support in lung cancer care.
PLoS ONE 8, e82349. (doi:10.1371/journal.pone.
0082349)

12. The National Lung Cancer Audit. 2012 Clinical audit
support programme—lung cancer. Healthcare
Quality Improvement Partnership (HQIP). See http://
www.hqip.org.uk/assets/NCAPOP-Library/NCAPOP-
2012-13/Lung-Cancer-National-Audit-Report-pub-
2012.pdf.

http://dx.doi.org/10.1245/s10434-011-1675-6
http://dx.doi.org/10.1111/j.1525-1438.2007.00991.x
http://dx.doi.org/10.1001/jama.280.15.1339
http://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
http://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf
http://dx.doi.org/10.1136/bmjopen-2011-000439
http://dx.doi.org/10.1136/bmjopen-2011-000439
http://dx.doi.org/10.1245/s10434-012-2555-4
http://dx.doi.org/10.1245/s10434-012-2555-4
http://dx.doi.org/10.1371/journal.pone.0019956
http://dx.doi.org/10.1371/journal.pone.0082349
http://dx.doi.org/10.1371/journal.pone.0082349
http://www.hqip.org.uk/assets/NCAPOP-Library/NCAPOP-2012-13/Lung-Cancer-National-Audit-Report-pub-2012.pdf
http://www.hqip.org.uk/assets/NCAPOP-Library/NCAPOP-2012-13/Lung-Cancer-National-Audit-Report-pub-2012.pdf
http://www.hqip.org.uk/assets/NCAPOP-Library/NCAPOP-2012-13/Lung-Cancer-National-Audit-Report-pub-2012.pdf
http://www.hqip.org.uk/assets/NCAPOP-Library/NCAPOP-2012-13/Lung-Cancer-National-Audit-Report-pub-2012.pdf


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140534

13
13. Beckett P, Woolhouse I, Stanley RA, Peake MD. 2012
Exploring variations in lung cancer care across the
UK—the ‘Story So Far’ for the National Lung
Cancer Audit. Clin. Med. 12, 14 – 18. (doi:10.7861/
clinmedicine.12-1-14)

14. The National Lung Cancer Audit. 2012 The National
Clinical Lung Cancer Audit (LUCADA) Data Manual.
Int. Classif., 3.1.4, 1 – 37.

15. Coleman M, Forman D, Bryant H, Butler J, Richards
M. 2011 Cancer survival in Australia, Canada,
Denmark, Norway, Sweden, and the UK, 1995 –
2007 (the International Cancer Benchmarking
Partnership): an analysis of population-based cancer
registry data. Lancet 377, 127 – 138. (doi:10.1016/
S0140-6736(10)62231-3)

16. Holmberg L et al. 2010 National comparisons of
lung cancer survival in England, Norway and
Sweden 2001 – 2004: differences occur early in
follow-up. Thorax 65, 436 – 441. (doi:10.1136/thx.
2009.124222)

17. Garg A, Adhikari NKJ, Beyene J, Sam J, Haynes RB.
2005 Effects of computerized clinical decision
support systems on practitioner performance. J. Am.
Med. Assoc. 293, 1223 – 1238. (doi:10.1001/jama.
293.10.1223)

18. Peleg M, Ogunyemi O, Tu S, Boxwala A, Zeng Q,
Greenes R, Shortliffe EH. 2001 Using features of Arden
Syntax with object-oriented medical data models
for guideline modeling. In Proc. AMIA Symp.,
pp. 523 – 527. See http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2243476/.

19. Ram P, Berg D, Tu S, Mansfield G, Ye Q, Abarbanel
R, Beard N. 2004 Executing clinical practice
guidelines using the SAGE execution engine. Stud.
Health Technol. Inform. 107, 251 – 255.

20. Peleg M et al. 2003 Comparing guideline models: a
case-study approach. J. Am. Med. Informatics Assoc.
10, 52 – 68. (doi:10.1197/jamia.M1135)

21. Clercq PDE, Kaiser K, Hasman A. 2008 Computer-
interpretable guideline formalisms. Stud. Health
Technol. Inform. 139, 22 – 43.

22. NHS Connecting for Health. 2010 Systematized
nomenclature of medicine clinical terms (SNOMED CT).
NHS Connecting for Health. See http://www.
connectingforhealth.nhs.uk/systemsandservices/icd/
informspec/etd/elearning/nhselearning/snomedct.

23. Jimenez-Ruiz E, Grau BC, Horrocks I. 2011 LogMap:
logic-based and scalable ontology matching. In The
Semantic Web – ISWC 2011 (eds L Aroyo, C Welty,
H Alani, J Taylor, A Bernstein, L Kagal, N Noy,
E Blomqvist), pp. 273 – 288. Lecture Notes in
Computer Science. Berlin, Germany: Springer. See
http://link.springer.com/chapter/10.1007/978-3-642-
25073-6_18# (doi:10.1007/978-3-642-25073-6_18).

24. Benson T. 2010 Principles of Health Interoperability
HL7 and SNOMED. Springer. See http://www.
springer.com/public+health/book/978-1-4471-
2800-7
25. Jimenez-Ruiz E, Grau BC, Sattler U, Schneider T, Berlanga
R. 2008 Safe and economic re-use of ontologies: a logic-
based methodology and tool Support. In The semantic
web: research and applications (eds S Bechhofer,
M Hauswirth, J Hoffmann, M Koubarakis), pp. 185 –
199. Lecture Notes in Computer Science. Berlin,
Germany: Springer. See http://link.springer.com/
chapter/10.1007%2F978-3-540-68234-9_16#page-1.
(doi:10.1007/978-3-540-68234-9_16)

26. Sesen MB, Banares-Alcantara R, Fox J, Kadir T, Brady M
. 2012 Lung Cancer Assistant: an ontology-driven,
online decision support prototype. In Proc. OWL:
Experiences and Directions Workshop 2012, Crete,
Greece. See http://ceur-ws.org/Vol-849/paper_22.pdf

27. National Collaborating Centre for Cancer. 2011 The
diagnosis and treatment of lung cancer (update).
Epidemiology. National Collaborating Centre for
Cancer for NICE. See http://www.nice.org.uk/
nicemedia/live/13465/54199/54199.pdf.

28. Sesen MB, Jimenez-Ruiz E, Banares-Alcantara R,
Brady M. 2013 Evaluating OWL 2 reasoners in the
context of clinical decision support in lung cancer
treatment selection. In Proc. of the 2nd Int.
Workshop on OWL Reasoner Evaluation,
pp. 121 – 127, Ulm, Germany. See http://ceur-
ws.org/Vol-1015/paper_10.pdf

29. Horridge M, Bechhofer S. 2011 OWL API v. 3.2.3.
See http://owlapi.sourceforge.net/

30. Tsarkov D, Horrocks I. 2006 FaCTþþ description logic
reasoner: system description. In IJCAR’06 Proc. 3rd Int.
Joint Conf. on Automated Reasoning, pp. 292 – 297.
See http://dl.acm.org/citation.cfm?id=2136140

31. Lim E et al. 2010 Guidelines on the radical
management of patients with lung cancer. Thorax
65, iii1 – iii27. (doi:10.1136/thx.2010.145938)
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