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Physiological and behavioral circadian rhythms are driven by a conserved transcriptional/translational negative feedback

loop in mammals. Although most core clock factors are transcription factors, post-transcriptional control introduces delays

that are critical for circadian oscillations. Little work has been done on circadian regulation of translation, so to address this

deficit we conducted ribosome profiling experiments in a human cell model for an autonomous clock. We found that most

rhythmic gene expression occurs with little delay between transcription and translation, suggesting that the lag in the ac-

cumulation of some clock proteins relative to their mRNAs does not arise from regulated translation. Nevertheless, we

found that translation occurs in a circadian fashion for many genes, sometimes imposing an additional level of control

on rhythmically expressed mRNAs and, in other cases, conferring rhythms on noncycling mRNAs. Most cyclically tran-

scribed RNAs are translated at one of two major times in a 24-h day, while rhythmic translation of most noncyclic

RNAs is phased to a single time of day. Unexpectedly, we found that the clock also regulates the formation of cytoplasmic

processing (P) bodies, which control the fate of mRNAs, suggesting circadian coordination of mRNA metabolism and

translation.

[Supplemental material is available for this article.]

Almost all life on Earth exhibits an evolutionary adaptation to the
24-h light-dark cycle in the form of physiological and behavioral
circadian rhythms (Edgar et al. 2012). These rhythms are ubiq-
uitous, presumably because the maintenance of these rhythms
has been shown experimentally to confer selective advantages
(Woelfle et al. 2004; Dodd et al. 2005), and the disruption of these
rhythms has been linked to various human pathologies (for re-
views, see Barnard andNolan 2008; Reddy andO’Neill 2010), illus-
trating their biological importance.

The central driver of these rhythms in mammals consists of
auto-regulatory molecular feedback loops (Mohawk et al. 2012).
Within the major loop, the trans-activators CLOCK and ARNTL
(also known as BMAL1) form a heterodimer and activate the
transcription of a large number of target genes, including their
own negative regulators, the period (PER1-3) and cryptochrome
(CRY1-2) genes. Over time, PER andCRY proteins accumulate, het-
erodimerize, and translocate to the nucleus to repress the CLOCK-
ARNTL complex and inhibit their own transcription, closing the
negative feedback loop. Next, the PER-CRY complex degrades in a
timely fashion, which allows the CLOCK-ARNTL heterodimer to
initiate anewroundof transcription. This cycle takes∼24h to com-
plete and regulates transcriptional output at the appropriate times
of day.

While the transcriptional feedback loop that is thought to
drive the circadian clock is well characterized, major questions
regarding how a 24-h oscillation is generated and maintained
remain unanswered. For instance, a delay in negative feedback is
necessary for self-sustained limit cycle oscillations (Novak and

Tyson 2008). The delay can come in a variety of different forms,
and in the case of the circadian clock, it has been reported that
the PER and CRY proteins exhibit delayed accumulation relative
to the expression of their respective mRNAs (Field et al. 2000;
Lee et al. 2001; Reppert and Weaver 2001). This observation sug-
gests the involvement of some type of post-transcriptional control,
but the nature of the regulation is not known.

Historically, most studies of gene expression in the mamma-
lian timekeeper have focused on RNA abundance measurements,
partly due to the relative ease of obtaining such data with the ad-
vent of microarrays and RNA sequencing technologies. Although
these methodologies are informative and have led to major
advances in understanding clock gene expression, this has nat-
urally led to a focus on transcriptional regulatory networks.
Correspondingly little work has occurred investigating translation
or post-translational regulation. In support of translational regula-
tion, past studies have found that a significant number of genes os-
cillate at the protein level without a corresponding oscillation at
the transcript level (Reddy et al. 2006; Lim and Allada 2013). In ad-
dition, a growing body of research suggests a role for translational
control in regulating circadian gene expression in different model
organisms (Mauvoisin et al. 2015). However, the extent of this
type of regulation, and its relevance to the delays mentioned
above, remains unclear.

To investigate the contribution of translational control to cir-
cadian clockmechanisms and output in an autonomous circadian
clock model, we conducted around-the-clock ribosome profiling
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experiments in human U2OS cells and compared these results
with RNA-seq. Ribosome profiling is based on the protection of
small lengths of mRNAs (∼30 nt) by the ribosome during transla-
tion (Steitz 1969). Sequencing libraries canbe generated from these
ribosome-protected fragments (RPFs) to determine which mRNAs
are actively translated at any given time on a genome-wide scale
with single codon resolution (Ingolia et al. 2009). Using thismeth-
od,we report on the effect of circadian rhythmson the global trans-
lation of rhythmic genes.

Results

Ribosome profiling over a circadian time course in U2OS cells

To reconfirm that a functional molecular clock was present in our
experimental system (Vollmers et al. 2008), we grew U2OS cells in
tissue culture and synchronized them with dexamethasone. This
cell type was chosen due to the relative ease with which samples
can be collected and compared to whole tissues. In addition,
U2OS cells are known to oscillate and are commonly used in circa-
dian studies (Hirota et al. 2008; Vollmers et al. 2008; Baggs et al.
2009; Hughes et al. 2009; Maier et al. 2009). The cells showed ro-
bust oscillations of luciferase activity derived from a PER2 promot-
er-luciferase fusion. As expected, these oscillations were abolished
with siRNAs targeting ARNTL (henceforth referred to as siARNTL
cells) to disrupt circadian rhythms (Supplemental Fig. S1A,B).

For our experiments, we synchronized cells with and without
treatment with siRNAs targeting ARNTL (also known as BMAL1)
and began the collection 24 h post-synchronization (Supple-
mental Fig. S1A) for a 24-h time course, with 2-h resolution (in
duplicate). The collected cells were used to generate sequencing li-
braries of ribosome-protected fragments at each time point. We
aligned these RPFs to the human reference genome using STAR
(Dobin et al. 2013) and quantified their distribution using pro-
tein-coding genemodels from the UCSC Known Gene annotation

(Hsu et al. 2006) (see Supplemental Methods for full details; map-
ping statistics in Supplemental Table S1).

To confirm that the sequenced RNA fragments were generat-
ed through the authentic protection of mRNAs by ribosomes, we
examined if RPFs mapped correctly to coding regions of the ge-
nome and determined their size and periodicity. First, we found
that ∼70% of the putative RPFs mapped to exons and ∼10% map-
ped to introns (Fig. 1A). The remaining ∼20% mapped to inter-
genic regions, which may correspond to lincRNAs, as suggested
by others (Ingolia et al. 2011). This pattern was consistent in both
wild-type and siARNTL cells.Whenwe further examined the exon-
ic subset of reads in wild-type cells, ∼95%mapped to protein-cod-
ing regions, while ∼5.5% mapped to 5′ UTRs, and the remaining
∼0.5%mapped to 3′ UTRs (Fig. 1B). Again, the distribution of reads
was similar in the siARNTL cells. Second, we examined the length
of the RPFs across the entire data set and found that the distribu-
tion of read lengths was centered on ∼28 nt (Supplemental Fig.
S2), in agreement with the known ribosome footprint (Ingolia
et al. 2009). Third, others have shown that RPFs display a charac-
teristic triplet periodicity along translated transcripts that corre-
sponds to the translocation of the ribosome during elongation
(Ingolia et al. 2009). To determine if this was the case in our data
set, we took the 1000 genes with the largest mean number of
mapped RPFs in the wild-type data set, and for each gene we
mapped the putative A-site for each RPF from 80 bp flanking the
start and stop of the coding region (i.e., RPFs adjacent to either
the start codon or the stop codon). The A site of the ribosome is
the site at which an aminoacyl-tRNA enters to extend a growing
polypeptide. Previous studies have shown that the first nucleotide
of the A-site codon is typically located +15 nt from the 5′ end of a
given RPF read (Guo et al. 2010; Michel et al. 2012). We used this
definition to map the locations of A-sites along the lengths of pro-
tein-coding transcripts. Last, we combined and plotted these A-site
data from all 1000 genes (Fig. 1C) and observed a strong aggregate
3-nt periodicity in RPFs for these 1000 genes, as well as a steep
drop in RPF signal when transitioning between the coding region

and the UTR. Both of these observations
are typical of ribosome profiling experi-
ments. Thus, we find that the majority
of our RPFs map to protein-coding re-
gions of the genome, correspond to the
expected size of a ribosome footprint,
and are periodic in nature. These three
pieces of evidence strongly suggest that
our data are generated from the authen-
tic protection of mRNA by ribosomes.

To provide a direct, parallel compar-
ison between transcription and transla-
tion, we also created total RNA-seq
libraries from the same cells used to gen-
erate the RPF libraries. These libraries
were used as a read-out for steady state
mRNA abundance.We saw excellent cor-
relations between replicates across all
time points and treatment conditions,
for both the RPF and RNA-seq data (Sup-
plemental Fig. S3). To further validate
our RNA-seq data, we compared it to pub-
lished U2OS microarray data (Hughes
et al. 2009). We examined several known
clockgenes (ARNTL,CRY1,PER2,NR1D1,
also known as REV-ERBAalpha, and

Figure 1. Analysis of ribosome profiling data. (A) A bar graph displaying the fraction of total RPF reads
mapping to introns, exons, and inter-genic regions of the genome. (B) A bar graph displaying the fraction
of total exon reads mapping to coding sequence, 5′, or 3′ untranslated regions of genes. (C) The distri-
bution of ribosome A-sites by nucleotide position within a gene, relative to the start and stop codons.
Data are aggregated from the 1000 genes with the highest number of RPF reads in the wild-type data.
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NR1D2) and a known output gene, thyrotrophic embryonic factor
(TEF), and found that our data were in good agreement with this
previous study (Supplemental Fig. S4). Transcriptional rhythms
of these same genes were disrupted in the siARNTL cells. Taken to-
gether, this confirms the validity of our mRNA abundance mea-
surements for subsequent use.

Circadian rhythms in translation are bimodal

Most genes only had a few RPF reads mapping to them. To reduce
noise due to extremely low expression and RPF occupancy, we fil-
tered out all genes with <10 RPF reads across all wild-type samples
and those genes with no total RNA-seq reads in any sample. This
left 9942 protein-coding transcripts, which are used for all subse-
quent analyses. This number of expressed protein-coding tran-
scripts is within the expected range, given previous literature
that has studied RNA expression across many human and mouse
tissues and cell lines (Su et al. 2004; Ramskold et al. 2009). We
identified rhythms in transcript accumulation and translation us-
ing the JTK_CYCLE algorithm (Hughes et al. 2010). Using a false-
discovery rate (FDR) cutoff of 0.2, we found 590 genes with
rhythms in RPFoccupancy.However, 35%of these genesmaintain
oscillations in the data obtained from the siARNTL cells
(Supplemental Table S2). This is not unheard of, as a recent study
showed that over half of mouse liver genes with rhythmic protein
accumulation maintain their rhythms in the absence of a func-
tional molecular clock (Mauvoisin et al. 2014). While these resid-
ual rhythms may be driven by feeding cycles in a whole
organism, they may arise from interaction with the cell cycle in
our cellular model. This hypothesis is supported by DAVID analy-
sis of these genes, which showed significant enrichment for cell-
cycle proteins (Supplemental Table S3; Huang et al. 2009). In order
to focus on those genes most likely to be regulated by the molecu-
lar clock, we removed all genes that maintained RPF or RNA
rhythms in the siARNTL data. The only exceptions to this filter
were 58 genes that showed phase differences ≥4 h between the
two treatment conditions (marked in Supplemental Tables S4,
S5). While these genes were also enriched for cell-cycle proteins
(Supplemental Table S6), we retained them in our analyses since
the detectable phase-shift in the siARNTL condition suggests their
rhythms are regulated in part by the molecular clock.

By examining this filtered set of genes and varying the
JTK_CYCLE false-discovery rate cutoff, we identified 122 (FDR =
0.1), 224 (FDR = 0.15), and 321 (FDR = 0.2) genes with oscillations
in RPF occupancy, including the clock genes ARNTL, PER2/3,
CRY1/2, and NR1D1/NR1D2 (Supplemental Table S4). While we
display the results for the 321 genes (FDR = 0.2) for simplicity’s
sake, we demonstrate that our findings are the same for all cutoffs.
For the total RNA-seq data, we used a standard FDR of 5% and
found 592 genes with rhythmic RNA accumulation (Supplemental
Table S5). Our data indicated a bimodal pattern for general cellular
RNA accumulation as well as translation. Thus, each of the two
processes—RNA accumulation and translation—displayed peaks
∼5 and 17 h after the start of collection, which correspond to 29
and 41 h following dexamethasone treatment, respectively (Sup-
plemental Fig. S5). These two anti-phased peaks in expression/
translation are in agreementwith recent studies of themammalian
circadian transcriptome and proteome (Hoffmann et al. 2014;
Mauvoisin et al. 2014; Zhang et al. 2014).

Next, we focused on three distinct sets of genes: (1) thosewith
RNA oscillations, but no RPF oscillations (RNA-only) (Fig. 2A,D);
(2) those with RPF and RNA oscillations (Fig. 2B,E); and (3) those

with RPF oscillations, but no RNA oscillations (RPF-only) (Fig.
2C,F).We defined RNA-only cyclers as those genes with RNA oscil-
lations (FDR = 0.05), and P≥ 0.2 in the RPF data. By using the high-
er P-value threshold in the RPF data, we sought to reduce the
impact of genes which had actual RPF oscillations but were just
outside our significance cutoffs. Similarly, we defined RPF-only cy-
clers as those geneswith RPF oscillations (FDR = 0.1, 0.15, and 0.2),
and P≥ 0.2 in the RNAdata. Again, using this P-value cutoff should
yield a more accurate list of genes oscillating only at the RPF level.
Lastly,we defined genes oscillating both at the level of RNA (FDR =
0.05) and RPF accumulation (FDR = 0.1, 0.15, and 0.2).

Interestingly, peak RNA expression of genes with RNA-only
oscillations occurred at one of two major times of day (Fig. 2A).
Likewise, translation of genes showing rhythmicity at the level
of both RNA and RPF showed the bimodal pattern noted above
(Fig. 2B). However, genes with RPF-only oscillations showed a
unimodal pattern in peak phase, in that they tended to be translat-
ed at a single time of day (Fig. 2C). This pattern was maintained re-
gardless of FDR cutoff (Supplemental Fig. S6).We also found genes
that cycled in both the RNA and RPF data had higher amplitude os-
cillations in both data sets than those that cycled only at the level
of RNA or RPF (Supplemental Fig. S7). This difference was largely
lost with siARNTL treatment, suggesting this trend is the result
of a functional molecular clock. In addition to these distinct pat-
terns in peak oscillation phase and amplitude, these different
sets of genes showed enrichment for different pathways and bio-
logical processes. Using DAVID, we found the RNA-only cyclers
were enriched for transcription factors and genes involved in
MAPK, Wnt, and GnRH signaling. For example, MAPK6 and
the Wnt signaling mediator SATB1 (Fig. 2D; Supplemental Fig.
S8A;Notani et al. 2010) show rhythmicmRNAaccumulationwith-
out RPF oscillations. Those genes with both RNA and RPF oscilla-
tions were enriched largely for circadian rhythms (this group
contained the core clockgenes),withweaker associations to cell-cy-
cle regulators and GTP signal transduction (Supplemental Table
S6). These include CDC20, a regulator of the Anaphase Promoting
Complex (APC; an E3-ubiquitin ligase), and the phospholipase
PLCE1,which showgoodconcordancebetweenRPFandRNAoscil-
lations (Fig. 2E; Supplemental Fig. S8B). Note that CDC20was one
of the genes phase-shifted in the siARNTL condition, suggesting it
may be dually regulated by the circadian clock and the cell cycle.
Lastly, the RPF-only cyclers are enriched for ribosome-related pro-
teins, as well as genes involved in translation and RNA splicing.
Two such examples are the mitochondrial rRNA chaperone
ERAL1 and the poly(A) binding protein regulator PABPC3 (Fig.
2F; Supplemental Fig. S8C). This agrees with a recent study finding
that the clock both regulates ribosome biogenesis and consolidates
it to a single time of day (Jouffe et al. 2013). Taken together, these
results suggest that the clock regulates distinct cellular processes
at both the transcriptional and translational level. Furthermore,
themajority of this translational control is consolidated into a sin-
gle circadian phase at approximately CT (circadian time) 05.

The delay in clock gene expression is not

generated through translational control

Given that circadian genes were enriched among those with
rhythms in both RNA and RPF, we sought to examine the relation-
ship between RNA accumulation and translation. It is thought that
one of the requirements for the generation of the 24-h circadian
oscillation is a delay in the accumulation of the transcriptional in-
hibitors, PER and CRY. This delay appears to be present in our
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cycling U2OS cells when we compare the steady state levels of
CRY2 protein with corresponding mRNA over the entire 24-h
time course (Fig. 3A). While many mechanisms could create this
pattern, one hypothesis is that delayed protein synthesis causes
the lag between mRNA and steady state protein accumulation.

To test this hypothesis, we focused on those genes that dis-
played oscillations in RPF and mRNA accumulation (Fig. 2B). We
calculated the phase lag for this subset of genes as the absolute val-
ue of the time difference between peak RPF and peak mRNA, cor-
rected for edge cases (e.g., RPF peak at CT 02; RNA peak at CT 22
should have a 4-h phase lag, not a 20-h phase lag). The timing of
peak phases was determined by the JTK_CYCLE algorithm (see
Supplemental Methods for further detail). The majority of these
genes (92%) showed phase lags ≤2 h (Fig. 3B). This means that
most of these genes have either no difference in phase, or the phas-
es are too close together to distinguish with a 2-h sampling resolu-

tion. In either case, these phase lags aremuch smaller than the 6-h
delay between mRNA and protein accumulation that others have
observed using mass spectrometry (Mauvoisin et al. 2014; Robles
et al. 2014). Interestingly, this subset contained all of the major
clock genes. The negative regulators in particular, PER1/2 and
CRY1/2, exhibited phase differences of 0–1 h. Given the limita-
tions of our 2-h temporal resolution, we also directly compared
RPF andmRNA abundancemeasures for the transcriptional repres-
sors of the circadian clock (PER1/2, CRY1/2, NR1D1/NR1D2) and
found transcription and translation to be synchronous (Fig. 3C;
Supplemental Fig. S9). Taken together with our previous results,
these observations imply that the translation of these circadian
transcriptional repressors occurs concurrently with RNA accumu-
lation and that the delay in clock protein accumulation required
for a self-sustaining circadian clock is generated through a post-
translational control mechanism.
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Figure 2. Peak RNA and RPF timing in cycling genes. (A–C ) Radial diagrams displaying circadian phase information for those genes that (A) oscillate in the
RNA data only (RNA FDR < 0.05; RPF P > 0.2), (B) oscillate in the RNA and RPF data (RNA FDR < 0.05; RPF FDR < 0.2), and (C) oscillate in the RPF data only
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The circadian clock regulates a subset of genes

solely at the level of translation

Oscillations in RPF counts can arise frommultiple sources of regu-
lation. In the case of the core clock genes, rhythms in RPF appear to
arise due to the oscillations in available RNA and reflect regulation
of translation through transcriptional control. RPF rhythms can
also arise from pure translational control, like those of PABPC3,
which has no rhythms in RNA accumulation. However, additional
control at the level of translation may be imposed on genes that
also show rhythmic RNA accumulation. In order to remove the ef-
fect of RNA abundance on RPF counts, previous studies have calcu-
lated the translational efficiency (Ingolia et al. 2011; Brar et al.
2012). Briefly, translational efficiency is calculated by dividing
RPF counts for a given gene by the RNA read counts for the same
gene at the same time (see Supplemental Methods for further de-
tails). We found 40 genes (Supplemental Table S7) with oscilla-
tions in translational efficiency, many of which were among the
list of RPF cyclers. Only two of these genes (CDC25B and KIF3C)
with rhythmic translational efficiency cycle in both the RNA
and RPF data. However, we also found 18 genes with rhythmic
translational efficiency missed by our earlier analyses. While there
are too few genes for DAVID analysis, we noticed genes associated
with small GTPase activity/signaling (RABL3, GNB2L1), cellular
transport and the cytoskeleton (TUBA4A, VIM, BIN1), a GPI an-
choring protein (PGAP1), and splicing factors (SNRNP70,
SNRPA). The patterns of translational efficiency across many of
these genes diverged from their accumulated RNA levels (Fig.
4A). We confirmed the rhythmic accumulation of SNRNP70 pro-

tein levels by Western blot and found that the pattern showed a
strong similarity to our RPF data (Fig. 4B), while SNRNP70 mRNA
levels were found to be nonoscillatory by quantitative PCR (Fig.
4C), consistent with previous findings in U2OS cells (Hughes
et al. 2009). Taken together, these oscillations in translational effi-
ciency provide further evidence that the circadian clock regulates a
diverse set of biological processes solely at the level of translation.

Mechanisms underlying rhythmic transcription

and translation in U2OS cells are unclear

In an effort to understand the different mechanisms underlying
the regulation of the three groups of genes we observe in our study
(RNA-only cyclers, RNA and RPF cyclers, RPF-only cyclers), we
searched gene promoters (+5 kb: −1 kb of the transcriptional start
site) for transcription factor binding sites, and UTRs for RNA-bind-
ing protein (RBP) interaction sites. In order to assess if direct acti-
vation by the core molecular clock affects the transcription of
our cycling genes, we used an existing ChIP-seq data set (Hoff-
mann et al. 2014). This data set identifies the locations of CLOCK,
ARNTL, and CRY1 binding sites in unsynchronized U2OS cells. By
assigning these binding sites to gene promoters (see Supplemental
Methods for full details), we found only 42 genes that cycle at
the level of RNA or RPF are directly bound by these clock fac-
tors (marked in Supplemental Tables S4, S5). Of these, only five
(CRY1, CRY2, PER2, TEF, and EIF5A2) were directly bound by all
three clock factors, and all of these genes cycled in both the
RNA and RPF data. Additionally, the major expression peaks in
our data (CT 17 and CT 05) are ∼3–4 h out of phase with the
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traces for the RPF data use the axes on the right. Points from both replicates are displayed, and the lines are plotted using a moving average (see
Supplemental Methods for further detail). Traces from siARNTL libraries are displayed in Supplemental Figure S9.
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components of the core oscillator (ARNTL, CRY1, CRY2, PER1,
PER2, PER3). These results suggest that the majority of transcrip-
tional cycling observed in our data is likely to arise from circadian
outputs downstream from the core oscillator and not due to direct
transcriptional regulation by the CLOCK/ARNTL complex. Next,
we used oPOSSUM (Kwon et al. 2012) to search gene promoters
for overrepresented transcription factor binding motifs. Notably,
we foundenrichment of ROR/RREbinding sites andD-boxbinding
sites (well-characterized circadian regulatory/outputmotifs) in the
RNA/RPF cyclers and RNA-only cyclers, respectively. In both of
these cases, only those genes with peak expression clustered
around CT 17 showed enrichment for these binding sites, while
therewere no binding sites significantly enriched over background
in the genes peaking around CT 05. Those genes that cycle only in
the RPF data showed significant enrichment for the joint MYC::

MAX binding site, as well as the ELK4
binding site. None of these transcription
factors have rhythmic RNA or RPF ex-
pression in our data. While these data
suggest that someof these transcriptional
rhythms could be due, in part, to regula-
tion by RRE and D-box elements, there
are still substantial numbers of genes
that lack these motifs in their promoters,
particularly the group of genes with peak
transcription occurring around CT 05.

In order to identify potential ave-
nues of translational regulation, we
searched for enriched RBP binding sites
and regulatory motifs in the 5′ and
3′ UTRs of genes. The AURA database
(Dassi et al. 2014) contains a curated
set of 754 RNA-RBP interactions and
miRNA binding sites derived from the lit-
erature and various experimental data
sets. We used this resource to search for
regulatory motifs enriched in each of
our three gene groups of interest (see
Supplemental Methods for full details).
Separating genes by peak phase in tran-
scription/translation, we found enrich-
ment of RBM10 interaction sites in the
RPF-only cycling genes and miR-335
binding sites among the RNA/RPF and
RNA-only cycling genes. However,
RBM10 does not cycle in our data, and
when we manually inspected the prima-
ry transcript of miR-335, we found no ev-
idence of expression. While this analysis
is limited to the ∼1.2 million RNA-RBP
interaction events described by the
AURA database, there does not appear
to be a singular RBP responsible for the
translational rhythms we observe in the
RPF-only cycling genes or the lack of
translational rhythms we observe in the
RNA-only cycling genes. We also com-
pared the lengths of the UTR and coding
regions between these groups of genes, as
there has been some evidence that UTR
length is associated with transcription-
al/translational efficiency (Tanguay and

Gallie 1996; Cenik et al. 2010). The only difference we found
was that RPF-only cycling genes tended to have shorter 3′ UTRs
than genes in the other two groups (Wilcoxon rank-sum test P-val-
ue <9 × 10−4). Upon closer inspection, this difference appears to be
driven largely by the rRNA genes included in the set of RPF-only
cyclers, as they tend to have shorter 3′ UTR sequences than other
genes (Ledda et al. 2005). The mechanisms underlying differential
circadian regulation of transcription and translation in the U2OS
system remain unclear.

The translation of uORFs in genes with rhythmic

transcription and translation

One regulatory control mechanism that could account for dif-
ferences in mRNA accumulation and RPF occupancy is the
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translation of open reading frames located upstream of the coding
sequence (upstream ORFs or uORFs). Translation of these uORFs
can affect the translation of the main coding sequence (CDS) of
their associated gene, leading to disrupted translation, translation
from an alternative start codon, or targeting the mRNA for non-
sense-mediated decay (for review, see Barbosa et al. 2013). In order
to search for uORFs in our data, we first identified complete ORFs
contained in the 5′ UTRs of protein-coding genes, beginning with
an AUG. In order to accurately differentiate between the uORF sig-
nal and that of the main CDS, we only considered those uORFs lo-
cated at least 30 bp upstream of the main start codon. After
quantifying RPF reads mapping to these putative uORFs and filter-
ing out those with low quantities of mapped reads, we found that
101 genes with oscillations in either mRNA or RPF accumulation
also had translated uORFs (Supplemental Table S8). While
JTK_CYCLE identified 13 genes with rhythmic uORF translation,
the uORF signals appeared to be noisier than the RNA and RPF

data from whole transcripts/CDSs. Through manual inspection
of the data, we found additional genes that appear to have cycling
uORFs, including NR1D1 and ARNTL. Looking at the distribution
of all uORFs among the three groups of cycling genes (RNA-only
cyclers, RNA and RPF, RPF-only), we observed 22% of RNA and
RPF cyclers, 12% of RNA-only cyclers, and only 7% of RPF-only
cyclers contained uORFs detectable in our data. The RNA and
RPF cyclers showed significant enrichment of uORFs over the back-
ground (Wilcoxon rank-sum test P-value = 5.448 × 10−4). Among
these genes, we found cases where the uORF was translated with
a temporal pattern similar to the main CDS (NR1D1), the uORF
was translated in the opposite temporal pattern as the main CDS
(C2CD5), and cases where the uORF and CDS followed no com-
mon pattern in translation (SUPT7L) (Fig. 5A,B). As a rough mea-
sure of the similarity between the uORF and CDS data, we first
normalized the RPF read counts by the lengths (kb) of these fea-
tures, and then calculated the Spearman correlation between the
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normalized uORF and CDS signals. Interestingly, when we com-
pared these correlations between the three groups of cycling genes,
we noticed RNA and RPF cyclers tended to have the best correla-
tions betweenuORFandCDS signals,while RNA-only cyclers tend-
ed to have very low correlations, and RPF-only cyclers tended
toward anti-correlation between uORF and CDS signals (Fig. 5C).
Furthermore, this trend largely disappeared when comparing
uORF and CDS signals in the siARNTL data. This mirrored our ear-
lier finding that genes cycling in both theRNAandRPFdata tended
to have higher amplitudes. We also searched these uORFs for en-
riched sequence motifs using the MEME suite (Bailey et al. 2009)
and for enriched RBP interaction sites using the AURA analysis de-
scribedabovebut foundnosignificant results.While theredoesnot
appear to be one overarching mechanism by which the clock uses
uORFs to regulate downstream translation, the enrichment of
translated uORFs amongRNAandRPF cyclers suggests that transla-
tion of these uORFs in U2OS cells may either reinforce, or is a con-
sequence of, robust transcriptional and translational cycles.

Circadian regulation of LSM1 expression leads to oscillating

processing body formation

The enrichment of genes associated with mRNA processing, splic-
ing, andmetabolismamong thosedisplayingoscillations inRPFac-
cumulation (Supplemental Table S6) suggests that the clock
influences other post-transcriptional regulatory processes. There
are anumberof previous reports that link the regulationofmultiple
post-transcriptional events to themammalian clock (Gatfield et al.
2009; Kojima et al. 2010, 2012; McGlincy et al. 2012; Morf et al.
2012). The LSM1 gene showed rhythmic RPF accumulation and
anexpressed, albeit nonoscillatory, uORF.A recent studyhas impli-
cated other LSM genes as regulators of the plant and mammalian
clocks (Perez-Santangelo et al. 2014). Interestingly, LSM1 encodes
an RNA binding protein that is involved in mRNA metabolism
and is a necessary component for the formation of processing bod-
ies,morecommonlyknownasPbodies, inhumancells (Andreietal.
2005; Chu and Rana 2006). These P bodies are cytoplasmic foci
where translationally silentmRNAs are stored andwhere their ulti-
mate fate—either continued translationordegradation—is decided
(Eulalio et al. 2007; Kulkarni et al. 2010; Decker and Parker 2012).

Since the ribosome occupancy of LSM1 appeared to be circadi-
an, wewere interested in determining if the circadian clock had an
effect on P body formation. To do this, we conducted immunoflu-
orescence microscopy for the P body components, DDX6 (also
known as P54/RCK) and EDC4 (also known as GE-1/HEDLS), in
synchronized U2OS cells (Fig. 6A; Kedersha and Anderson 2007).
In particular, we looked at two representative time points roughly
corresponding to the peak and nadir of LSM1 ribosome occupancy
(Fig. 6B). We found that ∼20% of cells possessed P bodies when
LSM1 ribosome occupancy was high (at 4 h), while we saw a
∼50% drop in P body formation when LSM1 ribosome occupancy
was lower, at 16 h (Fig. 6C). To confirm that this was clock-depen-
dent, we repeated this experiment in siARNTL cells and found de-
creased P body formation and no significant difference between
the two time points. Interestingly, the frequency of P bodies was
also found to be lower at both time points in siARNTL cells when
compared to wild type (Fig. 6D), although this difference did not
pass our cutoff for statistical significance. Regardless, this trend im-
plies that clock integrity may be necessary for proper control of P
body dynamics. Taken together, this suggests that the circadian
clockplays a role in regulating P bodydynamics andperhaps in reg-
ulating global mRNA decay under periods of cellular stress.

Discussion

Here, we used ribosome profiling in a cell autonomous human
clockmodel to examine the global circadian control of translation
in U2OS cells. To our knowledge, this is the first study to use ribo-
someprofiling to conduct a survey of global circadian translational
control in mammalian cells. We found that rhythmic RNA accu-
mulation and translation is consolidated into two distinct peaks
per day, which parallels recent findings using other methods in
clock cells obtained from whole head extracts of Drosophila mela-
nogaster (Huang et al. 2013) and in the mammalian circadian sys-
tem (Zhang et al. 2014). These peaks occur at ∼5 and 17 h after the
start of collection (Supplemental Fig. S5). Those genes regulated
through translational, but not transcriptional, control mecha-
nisms tend to show peak translation 5 h after the start of collection
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ers, P54/RCK and GE-1/HEDLS, are shown at a representative time point
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as a nuclear counterstain. P body foci are indicated with arrows in the
merged image. (B) Normalized RPF reads for the LSM1 gene as a function
of time for both the wild-type (red) and siARNTL (gray) data. Points from
both replicates are displayed, and the lines are plotted using a moving av-
erage (see Supplemental Methods for further detail). (C) A graph repre-
senting the number of cells with P bodies at the 4- and 16-h time points
for both synchronized wild-type and siARNTL U2OS cells. Error bars repre-
sent standard deviations. (D) A graph representing the average number of
P bodies per cell at the 4- and 16-h time points for both synchronized wild-
type and siARNTL U2OS cells. Error bars represent standard deviations.

Translational control in circadian gene expression

Genome Research 1843
www.genome.org



(Fig. 2C), while genes with rhythms in RNA and RPF accumulation
show a bimodal pattern in translation, peaking at 5 and 17 h after
the start of collection (Fig. 2B). This implies that translation-specif-
ic rhythms are somehow further restricted to a particular period of
time during the day, through other pathways/mechanisms aside
from mRNA availability.

Previous studies have shown that the accumulationof protein
for the negative regulators PER and CRY is delayed, relative to their
peak mRNA levels (Field et al. 2000; Lee et al. 2001; Reppert and
Weaver 2001). We have shown similar data here in U2OS cells
for CRY2 (Fig. 3A). It is thought that this delay is required for a
self-sustaining circadian oscillation, but the mechanism by which
this delay is created is not well understood. While we initially hy-
pothesized that changes in translational efficiency are responsible
for this delay, we were surprised to find that the core clock genes,
and the majority of genes with rhythms in both RNA and RPF,
showed almost no delay between RNA accumulation and transla-
tion. This observed discrepancymay be due to differences between
our model systems, or an indirect effect of genetic manipulation.
Regardless, it remains possible that the delay is cell-type–specific.
Our evidence suggests the delay is primarily caused by post-trans-
lational mechanisms, such as regulated protein stability.

If this delay is not made through changes in translational ef-
ficiency, this naturally leads to the question: Why do these trans-
lational control mechanisms impinge on clock genes in the first
place? The control of translation is unique in that it provides the
cell an immediate and selective way to control protein expression,
when compared to control imparted at the transcriptional level. As
a result, translational control mechanisms are often used under
stress conditions where immediate changes in protein levels are re-
quired, such as ultraviolet irradiation (Deng et al. 2002; Jiang and
Wek 2005), NO signaling (Lee et al. 2003), and temperature chang-
es (Lu et al. 2001). We speculate that translational control mecha-
nisms converging on the clock are used in response to acute
environmental changes to ensure accurate timekeeping.

While the translation of uORFs provides an attractive mecha-
nism for the clock’s regulation of translation, the exact role they
play in establishing translation rhythms inU2OS cells remains un-
clear. We noted a clock-dependent correlation between uORF and
CDS RPF signals, but relatively few uORFs showed detectable trans-
lational rhythms in our data. It is possible many of these uORFs
show rhythmic translation in full organisms, where they may be
driven by stronger entrainment queues andmore robust peripheral
oscillators. Furthermore, those genes that are only rhythmic at the
transcriptional level in U2OS cells may gain translational rhythms
in full organisms if they are accompanied by rhythmic uORF trans-
lation. Future work is needed to define the role circadian transla-
tion of uORFs plays in systems beyond U2OS cells and to
examine uORFs beginning with noncanonical start codons.

To assess translational efficiency independent of mRNA ex-
pression, we used the calculation introduced by previous ribosome
profiling papers (Ingolia et al. 2011; Brar et al. 2012). For the most
part, this measurement has been used to analyze differential ex-
pression style experiments, with only a few conditions. Circadian
expression analyses require specialized algorithms to identify com-
plex patterns spread over multiple samples, making them more
subject to biological noise, particularly when attempting to detect
low amplitude rhythms (Hughes et al. 2010). Given that the trans-
lational efficiency calculation involves the normalization of one
signal by another, this interference may be masking circadian sig-
nals in the translational efficiencymeasurement. Thismay explain
why we observed fewer genes with rhythms in translational effi-

ciency, rather than by looking at the RPF or RNA-seq data alone.
Future work may overcome this deficit by using higher sampling
resolution and multiple days of data.

One caveat to our findings is the observation that there are a
number of genes that have RPF oscillations in the siARNTL cells.
This observation is consistent with findings from other groups
(Mauvoisin et al. 2014), and it remains a possibility that the cell cy-
cle is responsible for the persistence of these rhythms. However,
there are two pieces of evidence that suggest that these oscillations
in RPF are cell-cycle–independent. Firstly, it has been shown that
treatment of mammalian cells with dexamethasone arrests the
cell cycle in a concentration-dependent manner (Reil et al.
1999). Secondly, treatment of mammalian cells with dexametha-
sone at lower concentrations will synchronize the cell cycle with
a non-24-h period (Yeom et al. 2010). Since we have filtered our
hits for oscillating genes with 24-h periods in the siARNTL cells,
it is unlikely that their oscillations are cell-cycle–generated.
However, we cannot completely rule out this possibility, so we re-
moved these genes from our analyses.

The question remains as to how the translation of these genes
is mechanistically controlled by the clock. As stated previously, os-
cillations in ribosome biogenesis may play a role in regulating
global circadian translation. Another possibility includes the tem-
porally controlled expression of trans-acting factors that may regu-
late translational control elements on a given mRNA, such as iron
regulatory proteins in the translational control of ferritin (Gray
and Hentze 1994). This mechanism is a likely candidate, given
that we see enrichment of translation factors in the set of genes
with translational rhythms. While we did see evidence for tran-
scriptional control by ROR/RRE and D-box elements in a large
number of our rhythmic genes, we found no clear RNA interac-
tionswith cycling RBPs. Thismaymeanmanyof these translation-
al rhythms are conferred by an as-yet unannotated RBP-RNA
interaction, or by regulation of subcellular localization of these
RNAs. One speculative possibility is the circadian regulation of a
“ribosome filter” (Mauro and Edelman 2007), whereby circadian
control of the ribosome itself through temporal modification of
rRNAs (Yoon et al. 2006) and ribosomal proteins (Otto et al.
2002) could selectively regulate its binding and translation of
mRNAs. These hypotheses remain to be tested.

Since we found overrepresentation of RNA processing and
metabolism genes, including LSM1, in our data, wewere interested
in determining if the clock affects the role of LSM1 in cytoplasmic
P body formation. These foci play an important role in various
types of mRNA decay and miRNA-induced silencing and are, un-
surprisingly, comprised of numerous proteins involved in those
pathways. Although some evidence suggests that P body forma-
tion is influenced by the phase of the cell cycle in U2OS cells
(Aizer et al. 2013), a mechanistic link with the cell cycle is not
known. To our surprise, we found that P body formation is regulat-
ed by the circadian clock (Fig. 6), with high LSM1 RPF levels at the
4-h time point corresponding to greater levels of P body formation.
Lower RPF counts at the 16-h time point corresponded to lower
levels of P body formation. This trend disappears in siARNTL cells.
In addition, the frequency of P bodies in cells drops in siARNTL
cells when compared to wild type, suggesting that clock integrity
is required for proper control of P body formation.

Interestingly, P body formation distinguishes the two phases
of circadian gene translation reported here. In otherwords, when P
bodies are high, genes that are synthesized through circadian
changes in translational efficiency (independent of mRNA abun-
dance) are produced. Conversely, when P bodies are low, circadian
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gene translation appears to be driven through changes in mRNA
abundance.

In our view, these findings are consistent with the idea that
the two processes of general translation andmRNAdecay are tight-
ly coupled and often sit in direct opposition to one another. For ex-
ample, the initial steps of general mRNA decay (removal of the 5′

cap and the shortening of the poly(A) tail) correspond to the re-
moval of mRNA features that stimulate canonical translation initi-
ation. In addition, other factors that stimulate general translation,
such as EIF4E, are known to inhibit the components of the mRNA
de-cappingmachinery (Schwartz and Parker 1999, 2000). Thus, we
believe it is likely that proteins translated independently of mRNA
abundance are preferentially made during periods of time when
general mRNA decay is high. This idea is also consistent with our
observations that genes whose oscillations are translationally,
but not transcriptionally, controlled peak with the same phase.
Thus, from our results, it appears that circadian clock integrity is
required to regulate P body dynamics, and it may play a role in reg-
ulating the mRNA cycle and general metabolism of cytoplasmic
mRNAs during periods of cellular stress, when P bodies are present
in the majority of cells.

Methods

Reagents

Oligos used for ribosome-protected fragment library generation
and quantitative PCR were obtained from IDT. Custom siRNAs
to target ARNTL were obtained from Qiagen. All oligo sequences
are given in Supplemental Table S9. Primary antibodies for GE-1/
HEDLS (sc-8418) and SNRNP70 (sc-9571) were obtained from
Santa Cruz Biotechnology. Antibodies for P54/RCK (A300-461A)
and CRY2 (A302-615A) were obtained from Bethyl Laboratories.
The antibody for beta-actin (ab8224) was obtained from Abcam.

Cell culture

A U2OS human osteosarcoma cell line expressing luciferase under
the control of the PER2 promoter was used. Cells were maintained
in a humidified 37°C incubator at 5% CO2 in DMEM (Life
Technologies), supplemented with 10% FBS, 4 mM L-glutamine,
50 units/mL penicillin, and 50 μg/mL streptomycin.

Cell synchronization

To monitor luciferase cycling, 0.122 × 106 cells were seeded per
35-mm plate. For the purposes of collection, 2.25 × 106 cells were
seeded per 15-cm plate. These cells were grown overnight, and
the media was then replaced with phenol red-free DMEM contain-
ing 0.1 mM luciferin and 0.1 μM dexamethasone to synchronize
the cells. Plates were then sealed with sterile vacuum grease
(Corning) and incubated in a 36°C, nonhumidified incubator at
5% CO2. Luciferase cycling in 35-mm plates was monitored by a
LumiCycle luminometer (Actimetrics).

ARNTL siRNA targeting

In order to target ARNTL expression using siRNAs, 3.0 × 104 cells
were seeded per 35-mm plate for the purposes of monitoring.
For collection, 5.6 × 105 cells were seeded per 15-cm plate. These
cells were grown overnight in complete DMEM without anti-
biotics, and transfected using Lipofectamine RNAiMAX (Life
Technologies) according to the manufacturer’s protocols. A mix-
ture of siRNAs that target ARNTL (siARNTL-1 through siARNTL-
5) was utilized, and 12 pmol of this mixture were added to each

35-mm plate, and 120 pmol of siRNA mixture were added to
each 15-cm plate. As a negative control, an equal amount of
AllStars Negative Control siRNA (Qiagen)was used for transfection
in parallel. Cells were then synchronized with dexamethasone fol-
lowing transfection as described above.

Quantitative PCR

cDNAs were produced from isolated RNAs from U2OS cells by us-
ing the High Capacity cDNA Reverse Transcription kit (Applied
Biosystems). These cDNAs were used for quantitative PCR, using
SYBR Green PCR Master Mix (Life Technologies). Thermal cycling
and analysis were conducted on an ABI Prism 7000 Sequence
Detection System (Applied Biosystems). Primetime qPCR primers
(Hs.PT.58.2126556, Integrated DNA Technologies) were used to
assay for SNRNP70 mRNA levels. All other qPCR primers used are
listed in Supplemental Table S9.

Cell collection

Cells in 15-cm plates were treated with 100 μg/mL cycloheximide
for 3min at 36°C, 24.5 h post-synchronizationwhen luciferase lev-
els were at their nadir. Cells were 80% confluent at the time of col-
lection. All subsequent steps were done on ice. Spent media was
aspirated from the plates, and the cells were washed with 10 mL
of cold PBS before treatment with 790 μL of cold lysis buffer
(20 mM Tris, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM dithio-
threitol, 100 μg/mL cycloheximide, 1% Triton X-100, and
0.02 units/μL Turbo DNase). Cells were recovered from the plate
using a cell scraper, trituratedwith a 1.0-mLpipette, and incubated
on ice for 10 min with occasional mixing. The lysate was then trit-
urated 10 times through a 26-gauge needle and centrifuged at
20,000g for 10 min at 4°C. One hundred fifty microliters of the
cleared lysate was added to 700 μL of QIAzol lysis reagent and
stored at −80°C for total RNA preparation. The remaining cleared
lysate was used for RPF preparation and flash-frozen in a dry ice/
ethanol bath before storage at −80°C. Collection of cells was re-
peated every 2 h for an entire 24-h time course.

Generation of ribosome-protected fragments,

library preparation, and sequencing

Frozen cleared lysate was thawed on ice, and RNase I (Life
Technologies) was added to 400 μL of cleared lysate to a final activ-
ity of 0.75 units/μL. Thismixturewas incubated for 45min at room
temperature with gentle mixing on a tube rotator, and the nucle-
ase was subsequently inactivated by the addition of 20 μL of
SUPERase•In (Life Technologies). The digestion was carefully
layered onto a 0.9-mL sucrose cushion (20 mM Tris, pH 7.5,
150 mM NaCl, 5 mM MgCl2, 1 mM dithiothreitol, 100 μg/mL cy-
cloheximide, 20 units/mL SUPERase•In, 34% sucrose, [w/v]) in
an 11 × 34-mm polycarbonate ultracentrifuge tube (Beckman
Coulter), and centrifuged for 4 h at 78,000 rpm in a prechilled
TLA-100.2 rotor. The ribosome pellet was resuspended in 700 μL
of QIAzol lysis reagent and processed according to the Qiagen
miRNeasy Quick-Start protocol. RNA was then isopropanol-pre-
cipitated from the elution, and resuspended in 5 μL of 10 mM
Tris, pH 8.0. RNA samples were run on a 15% TBE-urea gel
(Life Technologies), stained with SYBR Gold, and visualized with
a Dark Reader blue light transilluminator (Clare Chemical
Research). The 26- to 34-nt region demarcated by the size selection
RNA oligos NI-NI-19 and NI-NI-20 was excised from the gel, and
the RPFs were extracted and isopropanol precipitated from the
gel fragment. Library generation from RPFs was performed as de-
scribed previously (Ingolia et al. 2012), with some modifications.
The full details are provided in the Supplemental Methods. PCR-
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amplified libraries were pooled and sequenced on aHiSeq 2000 us-
ing a V3 flowcell at the University of Pennsylvania Next
Generation Sequencing Core. Pooled libraries were sequenced as
single 50-bp reads.

Library preparation from total RNA and sequencing

Cleared lysate frozen with QIAzol lysis reagent was processed ac-
cording to the Qiagen miRNeasy Quick-Start protocol. RNA integ-
rity was verified by Bioanalyzer (Agilent Technologies) before
library preparation as described according to the TruSeq Stranded
Total RNA Sample Prep kit (Illumina). PCR-amplified libraries
were pooled and sequenced on a HiSeq 2000 using a V3 flow cell
at the University of Pennsylvania Next Generation Sequencing
Core. Pooled libraries were sequenced as single 100-bp reads.

Data alignment, quantification, and analysis for cycling transcripts

Raw FASTQ files from RPF library sequencing were preprocessed as
previously described (Ingolia et al. 2012). Following preprocessing,
the remaining reads were aligned to the reference human genome
(GRCh37/hg19) using STAR (Dobin et al. 2013), quantified using
HTSeq (Anders et al. 2015), and normalized with DESeq2
(Anders andHuber 2010; Love et al. 2014), all using default param-
eters. While hg38 represents a newer human genome build, we
have chosen to keep our data aligned to the hg19 version because
there are several important resources that have not been mapped
to the hg38 version. These include the ChIP-seq data from
Hoffmann et al. (2014), the ENCODE Project data sets, and the
Genotype-Tissue Expression (GTEx) data set. Furthermore, given
our focus on well-studied, protein-coding regions, we do not ex-
pect that alignment to hg38 would significantly change the con-
clusions of this work. Total RNA-seq data were aligned using the
same methods as the RPF data, without any of the preprocessing
steps. Oscillations in quantification data for these genes were de-
tected using the JTK_CYCLE algorithm (Hughes et al. 2010),
with parameters set to handle replicates and to look for oscillating
transcripts with period lengths of 24 h. Formore detailed informa-
tion about data analysis, please see the Supplemental Methods.

Processing body immunostaining

U2OS cells were grown on chamber slides and synchronized as de-
scribed above. P body immunostaining was done as described by
others (Kedersha and Anderson 2007). In brief, cells were rinsed
with PBS and fixed with 4% paraformaldehyde at the indicated
time point. Blocking was done by incubation in 5% normal horse
serum (Life Technologies) in PBS for 45 min at room temperature.
Primary antibodies were prepared in blocking buffer and used to
incubate cells for 1 h at room temperature before washing in PBS
and treatment with secondary conjugates. Slides were then
washed with PBS and mounted in Vectashield with DAPI (Vector
Labs) as a nuclear counterstain.

Confocal microscopy

Image stacks were obtained using a Leica SP5 confocalmicroscope,
using a 40× oil immersion objective lens. Confocal settings were
roughly identical for all images captured but were adjusted in
some cases to obtain a high-quality image for analysis. A two-di-
mensional image was generated for analysis by merging Z-planes
through each set of cells, and the number of cells with punctate cy-
toplasmic colocalization of the P body markers GE-1/HEDLS and
P54/RCK were counted by eye. All counting was done in a blinded
fashion.

Data access

Raw and processed RPF-seq and RNA-seq data from this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE56924.
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