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Abstract
Background  Microcephaly and macrocephaly, which are abnormal congenital markers, are associated with 
developmental and neurologic deficits. Hence, there is a medically imperative need to conduct ultrasound imaging 
early on. However, resource-limited countries such as Ethiopia are confronted with inadequacies such that access to 
trained personnel and diagnostic machines inhibits the exact and continuous diagnosis from being met.

Objective  This study aims to develop a fetal head abnormality detection model from ultrasound images via deep 
learning.

Methods  Data were collected from three Ethiopian healthcare facilities to increase model generalizability. 
The recruitment period for this study started on November 9, 2024, and ended on November 30, 2024. Several 
preprocessing techniques have been performed, such as augmentation, noise reduction, and normalization. 
SegNet, UNet, FCN, MobileNetV2, and EfficientNet-B0 were applied to segment and measure fetal head structures 
using ultrasound images. The measurements were classified as microcephaly, macrocephaly, or normal using WHO 
guidelines for gestational age, and then the model performance was compared with that of existing industry experts. 
The metrics used for evaluation included accuracy, precision, recall, the F1 score, and the Dice coefficient.

Results  This study was able to demonstrate the feasibility of using SegNet for automatic segmentation, 
measurement of abnormalities of the fetal head, and classification of macrocephaly and microcephaly, with an 
accuracy of 98% and a Dice coefficient of 0.97. Compared with industry experts, the model achieved accuracies of 
92.5% and 91.2% for the BPD and HC measurements, respectively.

Conclusion  Deep learning models can enhance prenatal diagnosis workflows, especially in resource-constrained 
settings. Future work needs to be done on optimizing model performance, trying complex models, and expanding 
datasets to improve generalizability. If these technologies are adopted, they can be used in prenatal care delivery.

Clinical trial number  Not applicable.
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Background
Fetal head anomalies are differences in growth rates, 
structure, or outline shape that may differ from normal 
when the development of the fetal head is considered 
[1, 2]. Conditions that might estimate possible health 
complications and incidences related to developmen-
tal malformations include congenital genetic anomalies, 
infections, or other agents affecting normal fetal develop-
ment conditions, such as certain maternal infections or 
toxins during pregnancy [3–5].

Microcephaly and macrocephaly are two congenital 
conditions characterized by head sizes that are either 
abnormally small or abnormally large [6, 7]. These con-
ditions are known to result in severe neurological and 
developmental issues [8]. Timely detection of abnormali-
ties via ultrasound is essential for appropriate medical 
intervention. Recently, there has been high interest in the 
identification of microcephaly around the world follow-
ing its return into the limelight during the outbreak of 
the Zika virus, when many cases were reported [8]. While 
macrocephaly may be less common, this does not mean 
that its severity, as a condition affecting the development 
of the fetus, cannot be underestimated. The early detec-
tion of such conditions allows for the planning of appro-
priate postnatal care, if needed, for the best outcomes for 
the infants affected [4, 9].

Microcephaly is a condition characterized by the fetal 
head usually being too small, and therefore accompanied 
by both cognitive and physical disabilities [10], whereas 
macrocephaly involves having an abnormally large head 
[8], which is usually associated with brain defects or 
alterations. The detection of such abnormalities by deep 
learning, especially through CNNs, has been identified as 
one of the ways of resolving issues associated with man-
ual methods of detection [8, 12]. Ultrasound images can 
be processed efficiently for detecting fetal head abnor-
malities and providing real feedback almost instantly, 
hence making the technology very useful in areas where 
skilled health workers are not readily available [13, 14].

There is advanced prenatal health care in resource-
rich countries, employing ultrasound imaging through a 
sonographer to monitor fetal development [12, 15, 16]. 
Specialized prenatal health care, like this, exists very little 
in most disadvantaged parts of the world. Therefore, the 
only way to measure these two key parameters is man-
ual measurement via ultrasound, which is very slow and 
operator-dependent to the extent that some cases may 
go unnoticed, especially in far remote regions that are 
poorly served, where microcephaly and macrocephaly 
are more common [15].

The motivation for this study is the need to reduce the 
gap in prenatal diagnostic care between well-resourced 
and underprivileged regions. Therefore, the integration 
of CNN-based models for fetal head measurements could 

be a scaling solution to the problems of operator depen-
dency challenges and variability in image quality. The 
current study not only fills a significant gap in healthcare 
but also provides one possible way forward regarding the 
use of AI for medical diagnostics to increase the global 
accessibility and reliability of prenatal care. To maximize 
detection and ensure minimal human error during oper-
ator-dependent activities, automated detection of fetal 
head abnormalities is necessary for appropriate patient 
care. Therefore, this study aims to fill this gap by devel-
oping an automated model for anomaly detection in a 
fetus’s head via deep learning models.

This study aimed to devise a deep learning-based 
model for the automatic detection of microcephaly and 
macrocephaly from fetal ultrasound images and further 
assess its effectiveness. The importance of this study can-
not be overemphasized, given that this will dramatically 
improve diagnostic accuracy and increase access to pre-
natal care for so many underserved parts of the world 
where traditional methods are sorely lacking. Automat-
ing the diagnosis could increase the uniformity with 
which fetal head anomalies are diagnosed within the 
timeframe, while lessening the workload for healthcare 
workers and improving the health outcomes of babies 
with other developmental issues.

Related works
Summary of related works
Recent studies have employed diverse methodologies 
to advance fetal ultrasound segmentation, though per-
sistent challenges remain (Table  1). Approaches include 
U-Net fine-tuning hybrid attention mechanisms, and 
uncertainty-aware framework, which aim to improve 
accuracy in complex scenarios. However, common limi-
tations across these works include limited data availabil-
ity, variability in ultrasound image quality and anatomical 
complexities such as boundary ambiguity or fetal pose 
variability. Model-specific issues, such as suboptimal 
fine-tuning strategies and imperfect uncertainty mod-
eling, further hinder generalizability. These challenges 
underscore the need for robust datasets, enhanced image 
preprocessing, and adaptive algorithms to address the 
heterogeneity of clinical ultrasound data and fetal devel-
opmental stages.

Methods and materials
Study area and period
The study was conducted across three healthcare facili-
ties in Ethiopia, including hospitals and clinics. The 
recruitment period for this study started on November 
9, 2024, and ended on November 30, 2024. This study 
gathered various ultrasound images to represent differ-
ent healthcare settings. The selected sites for this study 
included Dessie Comprehensive Specialized Hospital, 
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Dejen Primary Hospital, and the Family Guidance Asso-
ciation Debre Markos Clinic. Such places were chosen so 
that both high-tech and low-tech contexts may be used 
for a comprehensive understanding of the model’s per-
formance in different situations. Model experimentation 
and evaluation, including report writing, were performed 
from December 1 to January 30, 2025.

Study design
This study identified the best segmentation model via a 
deep learning approach. Additionally, a rule-based sys-
tem is developed that uses the logic of percentile ranges 
for HCs and BPD patients to classify the outcomes as 
described by the WHO. The study uses images collected 
at a time with a collaborative campaign; it has a cross-
sectional study design.

Data sources
Description of the dataset
Ultrasound images of the heads of fetuses annotated with 
the measurements of HCs and BPD patients were con-
sidered. Data were collected from Dessie Comprehen-
sive Specialized Hospital, Dejen Primary Hospital, and 
the Family Guidance Association Debre Markos Clinic 
(Table  2). Images were captured from both the second 
and third trimesters proportionally.

Data collection
These ultrasound images of a normally shaped head 
with no visible deformed part have been collected in 

collaboration with healthcare institutes that target preg-
nant women for routine prenatal examinations. Overall, 
700 images have been gathered in the hope of having a 
broad variety of head sizes and states of fetuses. The total 
number is chosen as a balance between capacity and 
modeling precision. Data balancing was maintained in 
terms of the trimester; an equal amount of data was col-
lected for each trimester. From these images, the values 
of HCs and BPD patients were measured in 200 patients 
for later comparison.

The targeted population consists of pregnant women 
attending routine ultrasound studies in their second 
or third trimesters at collaborating hospitals or clinics. 
Informed consent for the collection of data has been 
obtained at the policy or administrative level within the 
institutions involved in participating hospitals/clinics, 
since obtaining such permission through individual sign-
ing has become unwieldy. More fundamentally, although 
these images contain no personal identifiers/demograph-
ics from participating patients, the information taken 
down would infringe on policies laid down in a research 
context of ethics on breaches.

Data collection was performed according to standard-
ized protocols by qualified sonographers or gynecologists 
at healthcare institutions to maintain the quality of the 
images (Fig. 1).

All the ultrasound images annotated by gynecologists 
are considered the critical benchmark in the validation 
of model performance for predicting fetal head bound-
aries. These annotated images include those of HCs and 
BPD patients, which are two important clinical measures 
indicating fetal growth and abnormalities such as micro-
cephaly or macrocephaly. These facts ensure that clini-
cal measurement segmentation predictions by the model 
are quantitatively comparable since manual annotations 
by the gynecologist provide ground truth data of high 
reliability.

Table 1  Related works and their limitations
No. Reference (Author and 

Year)
Methodology Limitations

1 Wang et al., 2024 Fine-tuning U-Net Limited data availability in low-resource settings; challenges in 
achieving optimal fine-tuning strategies.

2 Yang et al., 2020 Hybrid attention mechanism Challenges include poor image quality, boundary ambiguity, and ap-
pearance variability across different fetal poses and gestational ages.

3 Nagabotu et al., 2024 Improved U-Net model Challenges include noisy ultrasound images and variability in fetal 
head development; overlapping sutures and blurred boundaries.

4 Chen et al., 2021 Deep learning-based 
Segmentation

Model performance is influenced by the quality and variability of 
ultrasound images across different trimesters.

5 Sobhaninia et al., 2019 Multitask deep CNN Need for large, annotated datasets; challenges posed by variability in 
ultrasound image quality.

6 Thaler et al., 2022 Optimized deep learning Relatively small dataset; potential variability in image quality affect-
ing generalizability.

7 Lei et al., 2024 Uncertainty-aware automated 
measurement

Data uncertainty impacts measurement reliability; it requires refine-
ment in uncertainty modeling techniques.

Table 2  Datasets collected by facility and trimester
No. Facility Name Images collected

2nd trimester 3rd trimester
1 Dessie Hospital 200 200
2 Dejen Hospital 100 100
3 FGAE Clinic 50 50
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Image preprocessing
First, images collected from different facilities had to be 
organized consistently before model input during opera-
tion. Several techniques of image preprocessing have 
been employed to prepare the dataset in this research 
for model training to further improve the performance. 
This involves various augmentations, including data aug-
mentation, and horizontal and vertical flipping. These 
augmentations are performed via random horizontal 
and vertical flipping with a probability of 50% to obtain 
a good variety of images in the dataset to prevent overfit-
ting. Resizing: All the images and masks are brought to 
the same dimension, height = 128 pixels and width = 192 
pixels, which is accomplished via the Resize transfor-
mation in the albumentation library. For binary mask 
processing, refinement of the annotation masks was per-
formed such that the segmented regions were filled to 
produce accurate binary segmentation maps and reduce 
noise. In addition, the normalization and conversion 
steps included converting images and masks into tensors. 
This transformation ensures compatibility with PyTorch 
models and scales image pixel values to the range [0, 1]. 
Finally, visualization functions were used to cross-check 
the correctness of the preprocessing steps by showing 
images, masks, and boundaries with boundaries high-
lighted. In this way, these preprocessing techniques 
collectively ensure a robust pipeline for training segmen-
tation models. All the images are annotated for training 
along with a gynecologist via the VGG 19 image annota-
tor software.

Operational definitions
Microcephaly  An HC that is smaller than the standard 
deviation for gestational age.

Macrocephaly  An HC that exceeds the normal range for 
gestational age.

Modeling framework
We follow a semi-supervised learning approach to 
develop a robust modeling framework for fetal ultra-
sound image segmentation, wherein the labeled data are 
utilized together with unlabeled data. Such a strategy is 
indeed very efficient in medical imaging, where it is usu-
ally difficult to acquire large labeled datasets because of 
expert annotations. The proposed framework uses unla-
beled ultrasound images along with a small amount of 
labeled data for better generalization and segmentation 
of the model.

Central to our framework is the integration of CNN-
based architectures for image segmentation and classifi-
cation tasks. CNNs have shown outstanding performance 
in capturing spatial hierarchies and patterns within medi-
cal images, making them very suitable for delineating 
complex anatomical structures in ultrasound scans. In 
our approach, the CNN is trained to segment the key 
fetal biometric parameters HC and BPD, which are criti-
cal for assessing fetal development.

We used standard deviation measurements of HCs and 
BPD patients at specific gestational ages (GAs) to estab-
lish a benchmark of normal fetal growth, using standards 
defined by the WHO. These reference ranges are impor-
tant in the clinical identification of abnormal growth. We 
align our model outputs to ensure clinically relevant seg-
mentations that can help in the early detection of poten-
tial anomalies (Fig. 2).

Models
The selection of appropriate models and architectures is 
very important for the accurate and efficient analysis of 
fetal ultrasound images. Several deep-learning architec-
tures were explored in this work to address the challenges 
of segmentation and classification in medical imaging. 
The proposed models are SegNet, UNet, fully convo-
lutional networks, EfficientNet-B0, and MobileNetV2. 
These models represent a spectrum of architectural 

Fig. 1  Raw images annotated and measured by gynecologists
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diversity and efficiency [17–19]. Each of these architec-
tures provides unique strengths to the task, offering a 
balance between accuracy, computational efficiency, and 
suitability for ultrasound imaging. This work tends to 
leverage the power of such diverse architectures toward 
the development of a robust framework in the analysis of 
fetal ultrasound images. Each model has advantages, but 
the final choice will depend on task requirements, avail-
able computational resources, and the need for scalability 
in clinical settings.

Optimized SegNet model architecture
In this work, the SegNet architecture implemented here 
is specifically designed for pixel-wise image segmenta-
tion and performs especially well on medical imaging 
tasks. It consists of a strong encoder-decoder framework 
that effectively captures spatial features and reconstructs 

high-resolution segmentation maps. This model starts 
with an input layer that takes 128 × 192 × 3 images, where 
the three channels correspond to the RGB color space. 
This layer directly feeds the data into the encoder without 
any additional transformations or activations.

The encoder is structured into five hierarchical blocks 
of convolutional layers, followed by max pooling to 
reduce the spatial dimensions while extracting features 
at a progressively higher level. First, the encoder block 
consists of two convolutional layers with a filter size of 
3 × 3, a stride of 1, and an output channel of 64, followed 
by max pooling, which reduces the spatial dimensions 
to 64 × 96 × 64. Similarly, the subsequent encoder blocks 
progressively increase the number of filters while reduc-
ing the spatial dimensions by half until the fifth block 
ends with feature maps of size 4 × 6 × 512 after three con-
volutional layers, followed by max pooling (Fig. 3).

Fig. 2  Model framework

 



Page 6 of 21Mengistu et al. BMC Medical Imaging          (2025) 25:183 

The decoder mirrors the encoder structure and uses 
up-sampling layers to restore the feature maps spatially. 
Furthermore, each up-sampling step is followed by con-
volutional layers that process the up-sampled feature 

maps. For example, in the fifth decoder block, up-sam-
pling increases the dimensions to 8 × 12 × 512, and three 
convolutional layers further process these features. This 
structure symmetrically continues until the last decoder 
block has restored the dimensions to the input dimen-
sions of 128 × 192 × 64 (Table 3).

The model finally concludes with a pure output layer 
of convolution with a kernel of size 1 × 1 to match the 
refined feature maps to the required output channels, K, 
corresponding to segmentation classes, K = 1 for binary 
and 128 × 192 × 1 dimension in the case of segmentation 
probabilities at the pixel level. After every convolutional 
layer, both in the encoder and decoder, ReLU activation 
is used to introduce nonlinearity; this helps the model 
learn complex patterns effectively. In addition, sigmoid 
activation on the output is applied during evaluation, 
which transforms the logits into probabilities for binary 
segmentation.

This implementation involves many refinements in the 
standard SegNet architecture: a parameterized design for 
flexibility, bilinear up-sampling to simplify the decoder, 
and additional convolutional layers for refined feature 
extraction. These enhancements ensure the robustness 
of the model, its computational efficiency, and adaptabil-
ity to the specific challenges presented by medical image 
segmentation, making it particularly suitable for tasks 
such as fetal head segmentation.

Table 3  Selected model SegNet architecture
Layer Type Output feature 

map dimensions
Filter 
size

Stride

Input Input Layer 128 × 192 × 3 - -
Encoder 1 Convolution (x2) 128 × 192 × 64 3 × 3 1

Max Pooling 64 × 96 × 64 2 × 2 2
Encoder 2 Convolution (x2) 64 × 96 × 128 3 × 3 1

Max Pooling 32 × 48 × 128 2 × 2 2
Encoder 3 Convolution (x3) 32 × 48 × 256 3 × 3 1

Max Pooling 16 × 24 × 256 2 × 2 2
Encoder 4 Convolution (x3) 16 × 24 × 512 3 × 3 1

Max Pooling 8 × 12 × 512 2 × 2 2
Encoder 5 Convolution (x3) 8 × 12 × 512 3 × 3 1

Max Pooling 4 × 6 × 512 2 × 2 2
Decoder 5 Upsampling 8 × 12 × 512 - -

Convolution (x3) 8 × 12 × 512 3 × 3 1
Decoder 4 Upsampling 16 × 24 × 512 - -

Convolution (x3) 16 × 24 × 512 3 × 3 1
Decoder 3 Upsampling 32 × 48 × 256 - -

Convolution (x3) 32 × 48 × 256 3 × 3 1
Decoder 2 Upsampling 64 × 96 × 128 - -

Convolution (x2) 64 × 96 × 128 3 × 3 1
Decoder 1 Upsampling 128 × 192 × 64 - -

Convolution (x2) 128 × 192 × 64 3 × 3 1
Output Convolution 128 × 192×K 1 × 1 1

Fig. 3  The optimized SegNet model architecture used for the final training
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Mathematical modeling optimized SegNet model 
architecture
Encoder-Decoder architecture
It is designed for pixel-wise segmentation, combining 
convolutional layers for feature extraction (encoder) and 
up-sampling layers for mask reconstruction (decoder).

Encoder (Feature extraction)

 	• Convolutional Layer:
	 Each encoder block applies a convolution operation:

	 Z(l) = W (l) ∗ A(l−1) + b(l)

where W(l) = learnable weights, A(l−1) = input activations, 
b(l) = biases, and ∗ = convolution operator.

 	• Batch Normalization:
	 Normalizes activations to stabilize training:

	
Ẑ

(l)
= γ

Z(l) − µ√
σ 2+ ∈

+ β

where µ, σ2 = mean/variance of Z(l), γ, β = learnable 
parameters, and ∈ = small constant.

 	• ReLU Activation:
	 Introduces non-linearity:

	 A(l) = max (0, Ẑ(l))

 	• Max Pooling:
	 Reduces spatial dimensions while preserving critical 

features. Pooling indices (locations of max values) are 
stored for decoder up-sampling.

Decoder (Mask reconstruction)

 	• Up-sampling with Pooling Indices:
	 Uses saved indices from the encoder to spatially 

relocate features, preserving boundary details.

	 A(l)
up = Upsample (A(l), Poolindices)

 	• Convolutional Layers:
	 Refines up-sampled features to reconstruct the 

segmentation mask.

Loss function
A hybrid loss combining Binary Cross-Entropy (BCE) 
and Dice Loss optimizes both pixel-wise accuracy and 
mask overlap:

 	• Binary Cross-Entropy (BCE):

	 LBCE = − 1
N

∑
N
i=1[yilog (pi) + (1 − yi) log (1 − pi)]

Where yi = ground truth, pi = predicted probability, 
N = total pixels.

 	• Dice Loss: Maximizes overlap between predicted (P) 
and ground truth (G) masks:

	
LDice = 1 − 2 |P ∩ G|

|P | + |G|

 	• Total loss

	 Ltotal = α LBCE + (1 − α ) LDice

We set α = 0.5 to balance both terms.
The architecture’s mathematical foundation, combining 

hierarchical feature extraction, spatial up-sampling, and 
hybrid loss optimization, underpins its success in auto-
mating fetal head biometrics. We appreciate the opportu-
nity to elaborate on these details and will incorporate this 
section into the revised manuscript.

Model training
Software and hardware requirements
In this research, the computational environment used 
an Intel(R) Core (TM) i7-8650U CPU running at 
1.90  GHz with 16 GB of installed RAM. The hardware 
configuration has been used in training and performing 
deep-learning models related to the segmentation and 
classification of fetal ultrasound images. High-resolution 
computation with ultrasound images was easily managed 
with the architecture of the 64-bit operating system.

On the software side, Python was used as the primary 
programming language, with most of its deep learn-
ing libraries and frameworks. Specifically, PyTorch was 
utilized for the creation and training of the CNN mod-
els proposed in this study, which allows the efficient use 
of complicated neural network architectures. For image 
preprocessing and augmentation purposes, OpenCV 
and Albumentations were used in this study. OpenCV 
involves basic image processing, and Albumentation 
provides a fast, flexible image augmentation library. This 
improved our model’s robustness and further generalized 
its performance. This combination of hardware and soft-
ware resources provided us with a firm and efficient base 
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for our experiments, ensuring that the computational 
demands needed for deep learning-based fetal ultra-
sound image analysis would be well supported.

The training processes
This training of the SegNet model has been performed in 
the same controlled environment as the other four mod-
els, namely, UNet, FCN, MobileNetV2, and EfficientNet-
B0. The dataset used is split into 80% for training and 20% 
for testing to ensure that there is a strong generalization 
of the models being measured. The performances were 
further fine-tuned for both the U-Net and SegNet mod-
els, each trained at three different epoch levels: 25, 50, 
100, and 125. This allowed us to analyze how the perfor-
mance of the models changes with training time.

The iterative update of model weights was performed 
during training, and the performance metrics were con-
tinuously evaluated on both the training and validation 
datasets after each epoch. Different regularization tech-
niques, including dropout, have been used to reduce 
overfitting issues and enhance the ability of models to 
generalize to unseen data. In addition, checkpoints were 
used to save the states of the model from time to time to 
recover or experiment with other configurations.

Model optimization
The optimization is usually performed by delicately 
choosing a combination of an appropriate loss function, 

optimizer, and learning rate schedule, along with training 
strategies for the segmentation model.

It leverages performance by using binary cross-entropy 
loss along with Dice loss. The BCE loss affects the prob-
abilities that were predicted and the actual ground truth 
values, considering every pixel, as it performs binary 
classification on them. Moreover, Dice loss has been 
incorporated for direct optimization of the Dice coeffi-
cient, one of the very common metrics of segmentation, 
which describes the overlap between the predicted and 
ground truth masks. This combined loss function ensures 
both accurate pixel-level classification and overall mask 
quality.

The Adam optimizer was used with a learning rate 
of 0.001 to adapt the learning rates for each param-
eter. Adam is popularly known to be very effective in 
improving convergence speed and stability while train-
ing. Finally, a ReduceLROnPlateau scheduler was imple-
mented to perform dynamic learning rate adjustments. 
When the validation loss has stopped improving, that is, 
plateaus for a certain number of epochs (patience = 20), 
the learning rate is reduced by a factor of 0.5. This adjust-
ment fine-tunes the training process, especially when 
progress slows, enhancing the model’s ability to reach 
an optimal solution. The training loop processes data 
in mini-batches, thus enabling efficient computation. 
Gradients are calculated through backpropagation, and 
weights are updated via the Adam optimizer (Table 4).

Table 4  Key components and parameters used in optimizing our segmentation model
Component Parameter Value
Loss Function Binary Cross-Entropy (BCE) Applied

Dice Loss Applied
Optimizer Type Adam

Learning Rate 0.001
Learning Rate Scheduler Type ReduceLROnPlateau

Mode ‘min’
Factor 0.5
Patience 20 epochs
Threshold 0.0001
Threshold Mode ‘rel’
Cooldown 0
Min Learning Rate 0
Epsilon 1e-08

Training Strategy Batch Processing Mini-batches
Gradient Calculation Backpropagation
Weight Update Per mini-batch
Model Checkpointing Save the best validation loss.
Sanity Checks Initial data pipeline and model verification

Performance Metric Dice Coefficient Calculation Per batch
Early Stopping Integrated with Scheduler Learning rate reduction upon plateauing validation loss
Segmentation Output Mask Resolution High-scale

Upsampling Process Applied during the decoding phase
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The model also saves weights at every best validation 
loss so that the best performance is locked in. Sanity 
checks at the beginning of training are also implemented 
to verify whether the data pipeline and model work as 
expected. The Dice coefficient is computed in batches 
concerning segmentation performance. This metric 
provides a direct measure of overlap between the pre-
dicted masks and ground truth, complementing the 
loss functions. While implicit, early stopping behavior 
within the design of a learning rate scheduler ensures 
that once there are no improving validation losses, there 
is no major update from the model to avoid overfitting 
or training the model unnecessarily. The generated seg-
mentation masks are highly scaled in space, and the up-
sampling process is involved during the decoding phase 
in building a high-scale segmentation mask.

Evaluation measures
For evaluation, the best-performing model comparison 
was performed in terms of accuracy, precision, recall, F1 
score, and Dice coefficient.

Accuracy
This calculates the ratio of well-predicted instances 
to the total number of instances of the model to judge 
how correct the model is as a whole. This is a primitive 
and understandable measure, but can be problematic in 
application, particularly with metrics such as datasets 
having imbalanced classes. Therefore, it must be accom-
panied by other measures. The accuracy reflects the over-
all correctness of the segmentation model based on the 
proportion of correctly predicted pixels to total pixels in 
the dataset. Although intuitive and hence easily under-
standable, accuracy can be very misleading when dealing 
with datasets containing imbalanced classes. In medical 

	
Accuracy = TP + TN

TP + TN + FP + FN

imagery, for example, the head of the fetus would occupy 
very little space within an image. For this reason, accu-
racy should be complemented with more specific metrics 
able to provide a nuanced performance analysis.

Where TP represents true positives, TN represents 
true negatives, FP represents false positives, and FN rep-
resents false negatives.

Precision
This represents the number of true positives that are 
found, considering all the positive predictions the model 
made. This is an important metric when the cost of false 
positives—wrongly predicting a positive diagnosis–is 
extremely high or when it even carries a certain risk. 
For example, a treated patient diagnosed with cancer, 

through tests proving positive for the condition, turns 
out to be free from it. Precision quantifies the fraction of 
true positives predicted, that is, actual positive pixels to 
the total positive pixels. Commonly, this is the main mea-
sure for 

	
Pr ecision = TP

TP + FP

 practical situations where a single false positive car-
ries a relatively high cost; one does not want to perform 
much over-segmentation, considering only the inside 
head region. This avoids cases of incorrectly enlarged or 
irregular shape identification by ensuring the quality of 
segmentation.

Recall (Sensitivity)
The number of positive cases that were predicted cor-
rectly. It becomes necessary in cases where the cost or 
danger of a false negative is high, for example, in screen-
ing patients for diseases where a case that has gone unde-
tected may be very serious. Recall or sensitivity is the 
ability of the model to detect all actual positive pixels. 
It is calculated as the ratio of true positive pixels to all 
actual positives in the ground truth mask. High recall is 

	
Re call = TP

TP + FN

 necessary for fetal head abnormalities such as micro-
cephaly or macrocephaly, since missing large regions may 
lead to critical diagnostic errors.

F1 score
The F1 score is the weighted average of precision and 
recall. It can be useful when performance needs to be 
measured on tasks where precision and recall are usually 
opposite. This measure is good in situations where nei-
ther false negatives nor false positives can be discarded. 

	
F1 = 2 × Pr ecision × Re call

Pr ecision + Re cal

The F1 score is a balanced measure because it combines 
precision and recall through their harmonic mean. In 
general, it is an important metric when there can be some 
tradeoff between precision and recall, and it provides full 
insight into how the model will segment. For example, it 
ensures that the model correctly identifies the true posi-
tive regions while limiting false negatives.

Dice coefficient
The Dice Coefficient, sometimes referred to as the 
Sørensen–Dice Index, is a metric common in medical 
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image segmentation that measures the overlap between 
predicted and actual segmentation masks. Its values 
range from 0 (no overlap) to 1 (perfect overlap). The 
Dice coefficient is thus an indicator in our study of the 
model’s accuracy of detection and segmentation of the 
head, which is highly important for small or irregular 
head shapes, such as those associated with microcephaly 
or macrocephaly, during the measurement of head cir-
cumference and the biparietal diameter. That is, the Dice 
coefficient needs to be weighed against other metrics 
because it provides a direct measure of model precision 
in head identification.

	
Dice Coefficient = 2 × |A ∩ B|

|A| + |B|

Where A is the set of predicted pixels and B is the set of 
ground truth pixels.

Finally, the best model is compared with 200 ultra-
sound images that are annotated, measured, and classi-
fied by industry expert radiologists. These metrics help 
in presenting the effectiveness of the model in a balanced 
way, i.e., taking into consideration the true positive pre-
dictions as well as the costs of misclassifications incurred.

Results
Proposed model performance
Under the same environment as those of the proposed 
five models, an experiment was performed to choose the 
most promising model for further optimization.

Among all the models, SegNet achieves the highest 
Dice coefficient of 0.3270, indicating its superior segmen-
tation performance. It also recorded moderate accuracy 
(0.7173) and precision (0.7798). The model’s consistent 
decrease in training and validation loss highlights its 
effective learning and generalization capabilities, mak-
ing it a promising choice for segmentation tasks. U-Net 
ranked as the second-best model, achieving a Dice coef-
ficient of 0.2738 and an accuracy of 0.7113 (Table  5). 
While slightly behind SegNet, it demonstrated respect-
able precision and remains a strong candidate for further 
development. The FCN demonstrated poor performance, 
with a Dice coefficient of 0.0001, indicating an inability to 

learn meaningful features during training and rendering 
it unsuitable for the segmentation task in its current con-
figuration. MobileNetV2 and EfficientNet-B0 achieved 
high accuracy scores of 0.9652 and 0.9650, respectively, 
alongside strong precision. However, both exhibited low 
Dice coefficients (0.0199 for MobileNetV2 and 0.01316 
for EfficientNet-B0), highlighting significant issues with 
segmentation mask overlap. EfficientNet-B0 also showed 
erratic learning behavior, including a spike in validation 
loss, suggesting overfitting or instability [Fig. 4]. These 
results underscore their limitations for segmentation 
tasks. This indicates that SegNet is the top-performing 
model and may be further optimized with hyperparame-
ter tuning, sophisticated data augmentation, and custom 
loss functions. UNet has more potential for modifying 
its architecture. The FCN requires major adjustments 
because it fails to learn properly [Fig. 4]. MobileNetV2 
and EfficientNet-B0 resulted in high accuracy, while their 
low Dice coefficients underlined some critical limitations 
related to segmentation, which highlights the importance 
of choosing metrics and further evaluation.

Model optimization results
The optimization of the UNet model led to signifi-
cant improvements in its performance, as depicted in 
the learning curves. The training and validation losses 
demonstrated a steady decline over the 50 epochs, with 
both curves converging smoothly. This indicates effec-
tive learning and reduced overfitting. The training loss 
decreased from an initial value of approximately 0.58 to 
approximately 0.51, whereas the validation loss exhibited 
a similar trend, starting at approximately 0.55 and stabi-
lizing at approximately 0.49.

The Dice score, a crucial metric for segmentation per-
formance, also shows a marked improvement. The train-
ing Dice score increased consistently from an initial value 
of 0.42 to approximately 0.48 by the end of training, 
whereas the validation Dice score rose from 0.45 to 0.49, 
reflecting robust model generalizability. While showing 
improvement in terms of loss and Dice score, there are 
signs of underfitting [Fig. 5].

The optimization of the SegNet model resulted in a 
remarkable improvement in both training and valida-
tion performance, as evidenced by the learning curves 
over 25 epochs. The training and validation loss curves 
significantly decreased, with the training loss decreasing 
steeply from an initial value of over 10,000 to approxi-
mately 1,500, whereas the validation loss followed a 
similar trend, stabilizing near the same level (Fig.  6). 
The proximity of the training and validation loss curves 
highlights the model’s ability to generalize well without 
overfitting.

The accuracy metrics further reinforce SegNet’s strong 
performance. The training accuracy improved rapidly 

Table 5  Proposed model performances in the same 
environment
Models SegNet UNet FCN MobileNetV2 Efficient-

Net-B0
Accuracy 0.7173 0.7113 0.6842 0.9652 0.9650
Precision 0.7798 0.8075 0.0001 0.9804 0.9636
Recall 0.1461 0.1129 0.0001 0.9079 0.9240
F1 Score 0.2461 0.1982 0.0001 0.9428 0.9434
Dice 
Coefficient

0.3270 0.2738 0.0001 0.0199 0.01316
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Fig. 4  First experimental results
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from an initial value of approximately 50% to exceeding 
90%, whereas the validation accuracy closely tracked this 
progress, stabilizing at a similarly high value. This dem-
onstrates the model’s ability to effectively learn and gen-
eralize across the dataset, owing to the incorporation of 
advanced data augmentation techniques and architec-
tural adjustments.

After training the SegNet model for 50 epochs, the 
performance metrics indicated further refinement in 
the model’s learning capabilities. The training and vali-
dation loss curves consistently decreased, stabilizing at 
approximately 1,000 by the end of the training process. 
This stability in both curves reflects strong generalization 

to unseen data, with no significant indications of overfit-
ting, even with extended training. The accuracy metrics 
also demonstrated robust performance, with the train-
ing accuracy exceeding 95% and the validation accu-
racy closely following, stabilizing near the same range 
(Fig.  7). This consistency between training and valida-
tion accuracy highlights that the model has effectively 
captured the underlying data patterns while maintaining 
generalizability.

Compared with training for 25 epochs, the additional 
epochs provided further fine-tuning of the model, leading 
to marginally improved accuracy and reduced loss. This 
demonstrates the effectiveness of prolonged training for 

Fig. 6  Optimized SegNet performance at 25 Epochs

 

Fig. 5  UNet model performance after optimization
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SegNet, enabling it to extract more refined features from 
the dataset. These results underscore SegNet’s ability and 
robustness for segmentation tasks, especially when it is 
provided with extended training iterations. The outcomes 
further validate its suitability for applications that require 
precise and reliable segmentation performance.

After training the SegNet model for 100 epochs, the 
performance metrics indicate further fine-tuning and 
stability in the model’s behavior. The training and vali-
dation loss curves show a consistent downward trend, 
with the training loss decreasing to approximately 500 
and the validation loss stabilizing around a similar value. 
The fluctuations in the validation loss curve observed in 
the latter epochs reflect minor variability, possibly due to 
slight changes in the validation dataset or the optimiza-
tion process, but they do not indicate overfitting.

The training and validation accuracy curves depict 
exceptional performance, both exceeding 95% and 
approaching 98% by the final epoch. This high level of 
accuracy underscores the model’s effectiveness in learn-
ing the complex features of the dataset. Importantly, the 
close alignment of training and validation accuracy indi-
cates that the model has achieved strong generalizability 
and has avoided overfitting, even with extended training.

The extension of the training period to 100 epochs 
allows the model to further refine its understanding of 
the data, capturing intricate patterns and details. How-
ever, the minimal improvement in performance metrics 
beyond 50 epochs suggests that the model has likely 
reached its peak learning capacity. At this point, further 
training might yield diminishing returns and risk overfit-
ting or unnecessary computational expenses.

In conclusion, training SegNet for 100 epochs results 
in a highly effective segmentation model with excellent 
accuracy and low loss values, with an accuracy of 98% 
and a Dice coefficient of 0.97 (Fig. 8). This demonstrates 
its robustness and reliability for real-world segmentation 
tasks, particularly in scenarios requiring high precision.

Training the SegNet model beyond 100 epochs was 
found to be inefficient when it was experimented with 
125 epochs, as the model demonstrated signs of overfit-
ting and diminishing returns in performance. While the 
initial increase in epochs allowed the model to refine 
its learning and achieve better segmentation accuracy, 
further training beyond 100 epochs did not result in 
meaningful improvements. The Dice coefficient, a criti-
cal metric for evaluating segmentation overlap, starts 
to stagnate and even slightly diminishes, indicating that 
the model has reached its learning capacity within this 
dataset. Additionally, the validation loss begins to pla-
teau and exhibits minor fluctuations, further suggesting 
overfitting. These patterns confirm that the model had 
effectively learned the task by the 100th epoch, and addi-
tional training only risked degrading its generalization 
performance. Based on these observations, 100 epochs 
were chosen as the optimal training duration for balanc-
ing learning efficiency and performance while minimiz-
ing the risk of overfitting. This decision ensures that the 
model achieves its best possible performance without 
unnecessary computational overhead or degradation in 
its predictive accuracy.

Segmentation results from the model
The SegNet model demonstrated promising performance 
in segmenting fetal head boundaries from ultrasound 

Fig. 7  Performance of the SegNet model after tuning at 50 epochs
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images, closely approximating ground truth masks. The 
predicted masks effectively captured the overall head 
structure, and slight edge blur and inconsistencies were 
noted due to ultrasound image noise and variations [Fig. 
9].

Measurement of HC and BPD
Segmentation masks generated from the SegNet model 
are used for extracting biometric measurements, which 
include HCs and BPDs. These clinically important 

measurements are derived directly from the predicted 
masks to illustrate the strengths of the model for effec-
tive automated quantitative analysis of the fetal head. The 
clear boundaries of the masks highlight the strength of 
the SegNet model in segmenting the head region accu-
rately, which is very important in identifying abnormali-
ties such as microcephaly and macrocephaly.

Segmentation of the fetal head via the SegNet model. 
The output of segmentation is presented in three for-
mats: the original grayscale image, the mask overlay, and 

Fig. 9  Segmentation result of optimized segNet the model

 

Fig. 8  Performance of the SegNet model after tuning for 100 epochs
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the mask only. The Original Grayscale Image represents 
the fetal head as captured in the ultrasound scan. Mask 
Overlay (Thin Red: In the grayscale image, the segmen-
tation mask generated by the SegNet model is superim-
posed, highlighting the exact boundary of the fetal head. 
Mask Only: This column isolates the segmentation result 
where the head region is represented as white against a 
black background [Fig. 10].

SegNet performs the prediction of segmentation masks 
from which biometric measurements, such as HC and 
BPD, are extracted. Such clinical measurement estimates 
that directly result from these predicted masks illustrate 
the strengths of this model for automated, quantitative 
analysis of the fetal head. Moreover, the sharp contrast 
of boundaries in the masks shows that the SegNet model 
has high performance in segmenting the head region 
quite precisely, which is a critical factor for identifying 
abnormalities such as microcephaly and macrocephaly 
[Fig. 11].

Model performance in comparison with industry experts
In addition to measurement accuracy, our framework 
involves a classification module for categorizing fetuses 
into macrocephalic, microcephalic, and normocephalic 
classes based on the measured values of HCs. Macro-
cephaly was clinically defined as an HC above the 98th 
percentile or greater than + 2 SDs above the mean for 
gestational age. Conversely, microcephaly is defined as an 
HC more than 2 SDs below the average for age and sex. 
HC measurements that fall within normal limits for ges-
tational age are considered normal.

On this basis, a comparison with industry experts is 
made. These results show that our model can obtain a 

specificity of 89.3%, a sensitivity of 93.5%, and an accu-
racy of 91.2% in the case of BPD measurement, whereas, 
in the case of HC measurement, the model attained a 
specificity of 85.0%, a sensitivity of 94.2%, and an accu-
racy of 92.5%. These metrics confirm that our approach 
is robust and reliable, providing both BPD and HC with 
close approximations to expert-level accuracy [Table 6].

Model prototype
The web application developed for this research will sup-
port medical professionals in the segmentation of fetal 
heads and the measurement of important parameters, 
such as HCs and BPDs, from ultrasound images. This 
tool uses advanced deep-learning techniques to obtain 
accurate and reliable measurements, which are critical 
for assessing fetal growth and development.

The application is developed on Streamlit, a high-end 
Python framework that helps in crafting interactive web 
applications. Everything has been intuitively designed so 
that all functions are very user-friendly for medical pro-
fessionals. When the application opens, the user views a 
login screen for secure access. From this page, the appli-
cation presents important details, including but not lim-
ited to, the purpose of the application, what to expect 
from the user, and how one can get in touch for sup-
port. Upon successful login, users can upload ultrasound 
images of the fetal head. After that, this application pre-
processes these images through the Albumentations 
library, which involves resizing and all the necessary 
transformations of the images. At the center of this appli-
cation is a deep learning model that performs accurate 
segmentation of the fetal head within ultrasound images 

Fig. 10  Segmentation result of the model with predicted mask and ground truth
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via the SegNet architecture [Fig. 12]. The model used in 
this system is implemented via PyTorch.

It overlays the segmented mask onto the original image 
to present a visual result regarding segmentation. Then, 
contour analysis and region properties are used to cal-
culate the HC and BPD via the program. The results of 
the measurements are presented to the user, along with 
the expected ranges in cases of different gestational ages. 
These measurements are then classified by the applica-
tion into categories such as “normal,” “microcephaly,” or 
“macrocephaly” based on predefined rules.

The application allows the user to input the name and 
age of the patient to enable detailed reporting. These, 
along with the measurements and classification, are com-
bined into a detailed report that can be downloaded as 
a PDF showing the original ultrasound image and all 
the information. This is very useful for record-keep-
ing purposes and sharing results with other healthcare 
professionals. The application also includes a logout 

functionality, ensuring that user sessions are securely 
managed (Fig. 13).

Overall, this web application represents a signifi-
cant advancement in the field of fetal health assess-
ment, providing a reliable and efficient tool for medical 
professionals.

Discussion
This work illustrates the high performance of SegNet in 
segmenting ultrasound images of the fetal head to solve 
some traditional and modern challenges. Ultrasound 
imaging is intrinsically problematic because of low con-
trast, noise, and variability in the shape of fetal heads. 
Previous related works using conventional image pro-
cessing techniques, such as edge detection and region-
growing algorithms, often faced difficulties with such 
problems. This is because previous works [20, 21] have 
reported that these approaches normally fail in instances 
of irregular head boundaries or low-quality images. Seg-
Net showed strong segmentation that could present head 
boundaries from different imaging conditions.

SegNet also outperforms other recent deep learning 
methods. For example, UNet is among the most com-
monly used architectures for medical image segmen-
tation tasks [22–24]. However, there are well-known 
limitations in maintaining spatial information during the 

Table 6  Performance of the model compared with that of an 
expert
Metric Specificity (%) Sensitivity (%) Accuracy (%)
BPD 89.3 93.5 91.2
HC 85.0 94.2 92.5

Fig. 11  Measurement of HC and BPD
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up-sampling process. These limitations affected its per-
formance in this work, with a Dice coefficient of 0.2738 
and an accuracy of 0.7113. Similar findings have been 
reported in prior studies, where UNet struggled in tasks 
requiring precise boundary delineation because it relied 
on simple up-sampling mechanisms [25].

Another well-known deep learning approach, fully con-
volutional networks, performs very poorly on this task 
and fails to converge effectively. This is further demon-
strated by its flat learning curves and Dice coefficient of 
0.0001; hence, it is unable to handle the complexity of 
fetal head segmentation in ultrasound images. This result 
agrees with earlier works where the inability of FCNs to 
preserve spatial details was limiting in medical imaging 
tasks [26]. In contrast, SegNet uses pooling indices to 
preserve crucial spatial information during up-sampling 
and achieves an initial Dice coefficient of 0.3270 and an 
accuracy of 0.7173. These results emphasize how archi-
tectural design plays a significant role in achieving supe-
rior segmentation performance.

With systematic optimization, including hyperparame-
ter tuning, advanced data augmentation, and refined loss 
functions, SegNet achieved an overall accuracy of 98%, 
considerably outperforming both traditional approaches 
and other deep learning models. Previous related works 
using deep learning for fetal head segmentation reported 
accuracies within the range of 85-92% [27–29]. The fact 
that SegNet outperforms these benchmarks underlines 
its robustness and adaptability to challenging conditions.

The performance of SegNet for automated biometric 
measurements of HCs and BPD patients was also quite 
impressive. The model attained an accuracy of 93% for 
both measurements, with sensitivity and specificity 
closely matching expert annotations. Most previous stud-
ies were based on manual or semiautomated measure-
ment techniques, which, although accurate, are quite 
time-consuming and prone to interobserver variability 
[30, 31]. For example, one semiautomated study reported 
an average accuracy of 89% for HC measurements but 
noted significant variability among observers [32]. The 
improved accuracy and reduced variability offered by 
SegNet represent a significant advance in the field.

In addition to achieving high accuracy, SegNet al.so 
shows consistency in challenging situations, such as 
irregular fetal head shapes and noisy conditions. Previ-
ous research has more often reported difficulties in such 
challenging situations, where segmentation errors vary 
between 10% and 20% depending on the task’s difficulty 
[33, 34]. The fact that SegNet was able to ensure high 
accuracy in these cases allows it to be highlighted for 
daily clinical usage.

One of the key strengths of this work is its use of both 
HC (HC) and BPD (BPD) for classifying macrocephaly 
and microcephaly. This approach demonstrates improved 
accuracy compared with earlier studies that relied solely 
on HC measurements [35].

Traditional approaches for fetal head segmentation are 
based on edge detection or region-growing algorithms. 

Fig. 12  Model prototype output

 



Page 18 of 21Mengistu et al. BMC Medical Imaging          (2025) 25:183 

However, these low-level image features often result in 
poor performance for images with noise or low contrast. 
Accuracies for conventional methods have been reported 
within the range of 70–80%, and such methods are likely 
to exhibit significant variability under challenging con-
ditions [33]. In contrast, SegNet achieved 98% accuracy, 
showing the ability to overcome some of these barriers.

Since the UNet architecture contains an encoder-
decoder structure with skip connections, it is among the 
most famous medical image segmentation models. How-
ever, many studies prove that UNet suffers from the loss 
of spatial information during up-sampling [25]. In this 

work, UNet had a Dice coefficient of 0.2738 and an accu-
racy of 0.7113, considerably lower than the initial perfor-
mance of SegNet. This also agrees with several previous 
studies where the performance of UNet was bound by its 
architecture.

FCNs have been applied to a variety of segmentation 
tasks, but usually face difficulties with complex medical 
images. Its inability to preserve spatial details during up-
sampling was evident in this study, where it failed to con-
verge and achieved a Dice coefficient of 0.0000. Previous 
studies have reported similar challenges, with FCNs often 
underperforming in tasks requiring precise boundary 

Fig. 13  Model prototype output
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delineation [26]. SegNet’s use of pooling indices to retain 
spatial details addresses this limitation, enabling superior 
performance.

Recent studies have investigated the use of advanced 
architectures, including DeepLab and ResNet-based 
models, for medical image segmentation. While those 
models demonstrate very promising results, their compu-
tational complexity and extensive training generally limit 
their practical use [36]. SegNet provides a good trade-
off between performance and computational efficiency; 
hence, it is a feasible option for clinical applications.

These results have several important implications for 
clinical practice and future research. First, the high accu-
racy and robustness of SegNet in fetal head segmenta-
tion could significantly reduce manual interventions and, 
therefore, smooth clinical workflows, enhancing diag-
nostic efficiency. The model’s ability to achieve accurate 
biometric measurements with minimal variability further 
underlines its potential to improve prenatal care.

Second, the architecture of the deep learning model 
while performing medical imaging tasks is identified. 
This is an advance over conventional up-sampling tech-
niques that use pooling indices from SegNet, enabling 
this network to yield outstanding results even under the 
worst conditions. On this basis, future deep-learning 
models will need novel architectural designs.

Third, the study identifies potential systematic opti-
mization, hyperparameter tuning, and data augmenta-
tion, which have been proven to provide considerable 
improvements, although this could be transferable to 
most medical image tasks as long as accuracy and robust-
ness are desirable.

For the future, the use of more complex models, such 
as 3D convolutional networks and generative adversarial 
networks, which may further improve detection perfor-
mance and handle variability in image quality and fetal 
positioning, is suggested. These more advanced models, 
trained on a richer and more diverse dataset, have the 
potential to outperform current approaches and provide 
more reliable and scalable solutions for prenatal care 
across the country.

Limitations of the study
The primary limitation of this study is the relatively 
small dataset size, consisting of 700 ultrasound images 
collected from three healthcare facilities. While efforts 
were made to ensure a balanced representation across 
trimesters and facilities, the dataset may not fully cap-
ture the diversity of fetal head shapes, imaging condi-
tions, and population characteristics. This limitation 
could affect the generalizability of the model to broader 
clinical settings. Future research should focus on expand-
ing the dataset by incorporating images from additional 
healthcare facilities and different geographic regions to 

enhance the model’s robustness and applicability. While 
our model identifies biometric deviations associated with 
microcephaly and macrocephaly risk, it does not replace 
clinical diagnosis. Definitive diagnosis requires postna-
tal confirmation and etiological evaluation, which were 
beyond the scope of this study.

Conclusion
The results establish SegNet as the state-of-the-art model 
for fetal head segmentation, biometric measurements in 
ultrasound imaging, and classification of macrocephaly 
and microcephaly. With the solution of the main draw-
backs in the traditional and state-of-the-art approaches, 
SegNet renews the benchmark for accuracy and robust-
ness regarding the topic. The results highlight how deep 
learning can be useful in prenatal diagnostics by posi-
tively impacting the clinical workflow and patient out-
comes. With further research and development, SegNet 
can become a cornerstone of automated diagnostic sys-
tems, driving innovations in prenatal care and setting the 
stage for future advancements in medical imaging.

Abbreviations
AI	� Artificial Intelligence
ANN	� Artificial Neural Network
API	� Application Programming Interface
AUC	� Area under the curve
BPD	� Biparietal diameter
CMHS	� College of Medicine and Health Sciences
CNN	� Convolutional Neural Network
CPU	� Central Processing Unit
ETB	� Ethiopian Birr
FCN	� Fully Convolutional Network
GA	� Gestational Age
GAN	� Generative adversarial network
GCP	� Good clinical practice
GPU	� Graphics Processing Unit
HC	� Head Circumference
ICH	� International Council for Harmonization
IDE	� Integrated development environment
IORG	� Institutional Official Registration for Human Research Protections 

Program
IRERC	� Institutional Review and Ethics Review Committee
ML	� Machine Learning
MRI	� Magnetic Resonance Imaging
RAM	� Random Access Memory
ROC	� Receiver operating characteristic
XAI	� Explainable AI

Acknowledgements
We would like to express our sincere gratitude to Dr. Habtamu Asrie 
(Gynecologist and Obstetrician) for his expert recommendations in 
gynecology, which were instrumental to this research. We also extend 
our appreciation to Debre Markos University for their support and to the 
dedicated health professionals involved in dataset collection.

Author contributions
Abraham Keffale Mengistu conceptualized the study, designed the 
methodology, collected and preprocessed the data, analyzed the results, and 
performed the analysis. Zewdie Mossie and Bayu Tilahun Assaye reviewed and 
edited for clarity and accuracy. Addisu Baye Flatie edited the manuscript. All 
the authors read and approved the final manuscript.

Funding
The authors declare that no funding was received for this research.



Page 20 of 21Mengistu et al. BMC Medical Imaging          (2025) 25:183 

Data availability
The datasets used and/or analyzed during the current study are available 
from the corresponding author upon reasonable request. The analysis is freely 
available on our public GitHub repository (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​a​b​r​a​​h​a​​m​e​k​​e​f​f​​a​l​
e​/​​F​e​​t​a​l​​_​d​e​​t​e​c​t​​i​o​​n​_​p​r​o​j​e​c​t​.​g​i​t).

Declarations

Ethics approval and consent to participate
The study received ethical clearance from Debre Markos University CMHS 
(College of Medicine and Health Sciences) IRERC (Institutional Review and 
Ethics Review Committee) with Reference: RCSTTD/397/01/17, accredited 
under ICH-GCP and IORG standards, and our study adhered to the Declaration 
of Helsinki. Written informed consent was obtained from all adult participants 
before their inclusion. The consent process, conducted by the participating 
health institution, was documented and verified by the radiologist responsible 
for image collection, ensuring adherence to ethical protocols. No minors 
were included in the study. No personal identifiers were collected to 
safeguard privacy, and all ultrasound data were anonymized before analysis. 
Data integrity was maintained through secure protection systems that 
were compliant with international standards for medical imaging research. 
Collaborations with health institutions emphasized accountability and ethical 
rigor in handling imaging data, with oversight from the ethics committee to 
ensure full compliance.

Consent for publication
Not applicable. No identifying details, images, or personal information of 
participants are included in this manuscript. All data were anonymized before 
analysis, and no individual consent for publication was required.

Competing interests
The authors declare no competing interests.

Received: 27 January 2025 / Accepted: 5 May 2025

References
1.	 Namburete AIL, et al. Normative Spatiotemporal fetal brain maturation with 

satisfactory development at 2 years. Nature. 2023;623(7985):106–14. ​h​t​t​p​​s​:​/​​/​d​
o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​8​6​-​0​2​3​-​0​6​6​3​0​-​3.

2.	 Xue J, Xue J, Ru Y, Zhang G, Yin H, Liu D. Ultrasound assessment of insular 
development in adequate-for-gestational-age fetuses and fetuses with 
early-onset fetal growth restriction using 3D-ICRV technology. Front Med 
(Lausanne). 2024;11:1393115.

3.	 DeSilva M, Munoz FM, Mcmillan M, Kawai AT, Marshall H, Macartney KK, et 
al. Congenital anomalies: Case definition and guidelines for data col-
lection, analysis, and presentation of immunization safety data. Vaccine. 
2016;34(49):6015–26. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​v​a​​c​c​i​​n​e​.​2​​0​1​​6​.​0​3​.​0​4​7.

4.	 Nelson KM, Irvin-Choy ND, Hoffman MK, Gleghorn JP, Day ES. Diseases and 
conditions that impact maternal and fetal health and the potential for nano-
medicine therapies. 01 Mar 2021. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​a​d​d​r​.​2​0​2​0​.​0​9​.​0​1​3

5.	 Arroyo J et al. No sonographer, no radiologist: New system for automatic pre-
natal detection of fetal biometry, fetal presentation, and placental location, 
PLoS One. Feb. 2022;17(2). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​3​7​1​​/​j​​o​u​r​​n​a​l​​.​p​o​n​​e​.​​0​2​6​2​1​0​7

6.	 Guzik A et al. Abnormal cranium development in children and adolescents 
affected by syndromes or diseases associated with neurodysfunction. Scien-
tific Reports. Feb. 2021;11(1):2908.

7.	 Undabeitia-Huertas J, Pendleton C, Jallo G, Quiñones-Hinojosa A. Operative 
treatment for microcephaly secondary to craniosynostosis at the turn of the 
twentieth century. Childs Nerv Syst. Jul. 2011;27:1995–8. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​
0​7​​/​s​​0​0​3​8​1​-​0​1​1​-​1​5​3​1​-​9.

8.	 Clark GD. Microcephaly and macrocephaly. In: Kline MW, editor. Rudolph’s 
Pediatrics. 23rd ed. New York (NY): McGraw-Hill Education; 2018. [Online]. 
Available: ​a​c​c​e​s​s​p​e​d​i​a​t​r​i​c​s​.​m​h​m​e​d​i​c​a​l​.​c​o​m​/​c​o​n​t​e​n​t​.​a​s​p​x​?​a​i​d​=​1​1​8​2​9​2​2​4​1​0

9.	 Fraleigh C, Duff E. Point-of-care ultrasound: an emerging clinical tool to 
enhance physical assessment. Nurse Pract. Aug. 2022;47:14–20. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​0​9​7​​/​0​​1​.​N​​P​R​.​​0​0​0​0​​8​4​​1​9​4​4​.​0​0​5​3​6​.​b​2.

10.	 Smith L. Microcephaly is a rare neurological condition. In comparison with 
children the same age, a child with microcephaly has a smaller head and, on 
occasion, a smaller brain. Med Broadcast Web. 26 Jan 2023.

11.	 Zhang J, Petitjean C, Lopez P, Ainouz S. Direct estimation of fetal head 
circumference from ultrasound images based on regression CNN Proceed-
ings of the Third Conference on Medical Imaging with Deep Learning. PMLR. 
2020;121:914–22.

12.	 Bidner A, Bezak E, Parange N. Evaluation of antenatal point-of-care ultrasound 
training workshops for rural/remote healthcare clinicians: a prospective 
single cohort study. BMC Med Educ. 2022;22(1):906. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​8​6​​/​s​​
1​2​9​0​9​-​0​2​2​-​0​3​8​8​8​-​5.

13.	 Zander D et al. Ultrasound image optimization (Knobology): B-Mode. Jun 01 
2020 Georg Thieme Verlag. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​5​5​​/​a​​-​1​2​2​3​-​1​1​3​4

14.	 Accogli A et al. Diagnostic approach to macrocephaly in children. Front 
Pediatr. Jan 14 2022. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​8​9​​/​f​​p​e​d​.​2​0​2​1​.​7​9​4​0​6​9

15.	 Swanson DL et al. Including ultrasound scans in antenatal care in low-
resource settings: considering the complementarity of obstetric ultrasound 
screening and maternity waiting homes in strengthening referral systems in 
low-resource, rural settings. Aug 01 2019. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​5​3​​/​j​​.​s​e​​m​p​e​​r​i​.​2​​
0​1​​9​.​0​3​.​0​1​7

16.	 He F, Wang Y, Xiu Y, Zhang Y, Chen L. Artificial intelligence in prenatal ultra-
sound diagnosis. Front Media. Dec 16 2021. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​8​9​​/​f​​m​e​d​.​2​0​
2​1​.​7​2​9​9​7​8

17.	 Li M, Jiang Y, Zhang Y, Zhu H. Medical image analysis using deep learning 
algorithms. Front Public Health. 2023;11. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​8​9​​/​f​​p​u​b​h​.​2​0​2​3​.​
1​2​7​3​2​5​3.

18.	 Xiang Q, Wang X, Li R, Zhang G, Lai J, Hu Q. Fruit image classification based 
on MobileNetV2 with transfer learning technique. 2019. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​
4​5​​/​3​​3​3​1​4​5​3​.​3​3​6​1​6​5​8

19.	 Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: Redesigning skip 
connections to exploit multiscale features in image segmentation. IEEE Trans 
Med Imaging. Jun 2020;39(6):1856–67. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​T​​M​I​.​2​0​1​9​.​2​9​5​
9​6​0​9

20.	 Mu X, Noz N, Freixenet J, Cufí X, Martí J. Strategies for image segmentation 
combining region and boundary information. [Online]. Available: ​w​w​w​.​e​l​s​e​v​i​
e​r​.​c​o​m​/​l​o​c​a​t​e​/​p​a​t​r​e​c

21.	 Yu Y, et al. Techniques and challenges of image segmentation: A review. 
Electron (Basel). 2023;12(5). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​e​​l​e​c​​t​r​o​​n​i​c​s​​1​2​​0​5​1​1​9​9.

22.	 Zhang Z, Wu C, Coleman S, Kerr D. DENSE-INception U-net for medical image 
segmentation. Comput Methods Programs Biomed. 2020;192:105395. ​h​t​t​p​​s​:​/​​
/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​m​p​b​.​2​0​2​0​.​1​0​5​3​9​5.

23.	 Siddique N, Sidike P, Elkin C, Devabhaktuni V. U-Net and its variants for medi-
cal image segmentation: theory and applications. 2020. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​4​8​
5​5​​0​/​​a​r​X​i​v​.​2​0​1​1​.​0​1​1​1​8

24.	 Dong W, Du B, Xu Y. Shape-intensity-guided U-net for medical image seg-
mentation. Neurocomputing. 2024;610:128534. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​n​e​​u​
c​o​​m​.​2​0​​2​4​​.​1​2​8​5​3​4.

25.	 Castro S, Pereira V, Silva R. Improved segmentation of cellular nuclei using 
UNET architectures for enhanced pathology imaging. Electron (Basel). 
2024;13(16). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​e​​l​e​c​​t​r​o​​n​i​c​s​​1​3​​1​6​3​3​3​5.

26.	 Huang SY, Hsu WL, Hsu RJ, Liu DW. Fully convolutional network for the 
semantic segmentation of medical images: a survey. Multidisciplinary Digital 
Publishing Institute (MDPI). Nov 01 2022. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​3​3​9​0​​/​d​​i​a​g​​n​o​s​​t​i​c​s​​
1​2​​1​1​2​7​6​5

27.	 Zeng Y, Tsui PH, Wu W, Zhou Z, Wu S. Fetal ultrasound image segmenta-
tion for automatic head circumference biometry using deeply supervised 
Attention-Gated V-Net. J Digit Imaging. Feb. 2021;34(1):134–48. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​0​0​7​​/​s​​1​0​2​7​8​-​0​2​0​-​0​0​4​1​0​-​5.

28.	 Kim HP, Lee SM, Kwon J-Y, Park Y, Kim KC, Seo JK. Automatic evaluation of fetal 
head biometry from ultrasound images using machine learning. Aug. 2018. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​8​8​​/​1​​3​6​1​-​6​5​7​9​/​a​b​2​1​a​c.

29.	 Oghli MG et al. Automatic measurement of fetal head biometry from 
ultrasound images using deep neural networks. In: 2020 IEEE Nuclear Science 
Symposium and Medical Imaging Conference (NSS/MIC); 2020. IEEE. ​h​t​t​p​​s​:​/​​/​d​
o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​N​​S​S​/​​M​I​C​​4​2​6​7​​7​.​​2​0​2​0​.​9​5​0​7​9​3​2

30.	 Sobhaninia Z, Emami A, Karimi N, Samavi S. Localization of fetal head in 
ultrasound images by multiscale view and deep neural networks, ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​​5​2​8​1​​/​z​​e​n​o​d​o​.​1​3​2​2​0​0​1

31.	 Honarvar Shakibaei Asli B, Zhao Y, Erkoyuncu JA. Motion blur invariant for 
estimating motion parameters of medical ultrasound images. Sci Rep. Dec. 
2021;11(1). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​3​8​​/​s​​4​1​5​9​8​-​0​2​1​-​9​3​6​3​6​-​4.

https://github.com/abrahamekeffale/Fetal_detection_project.git
https://github.com/abrahamekeffale/Fetal_detection_project.git
https://doi.org/10.1038/s41586-023-06630-3
https://doi.org/10.1038/s41586-023-06630-3
https://doi.org/10.1016/j.vaccine.2016.03.047
https://doi.org/10.1016/j.addr.2020.09.013
https://doi.org/10.1371/journal.pone.0262107
https://doi.org/10.1007/s00381-011-1531-9
https://doi.org/10.1007/s00381-011-1531-9
http://accesspediatrics.mhmedical.com/content.aspx?aid=1182922410
https://doi.org/10.1097/01.NPR.0000841944.00536.b2
https://doi.org/10.1097/01.NPR.0000841944.00536.b2
https://doi.org/10.1186/s12909-022-03888-5
https://doi.org/10.1186/s12909-022-03888-5
https://doi.org/10.1055/a-1223-1134
https://doi.org/10.3389/fped.2021.794069
https://doi.org/10.1053/j.semperi.2019.03.017
https://doi.org/10.1053/j.semperi.2019.03.017
https://doi.org/10.3389/fmed.2021.729978
https://doi.org/10.3389/fmed.2021.729978
https://doi.org/10.3389/fpubh.2023.1273253
https://doi.org/10.3389/fpubh.2023.1273253
https://doi.org/10.1145/3331453.3361658
https://doi.org/10.1145/3331453.3361658
https://doi.org/10.1109/TMI.2019.2959609
https://doi.org/10.1109/TMI.2019.2959609
http://www.elsevier.com/locate/patrec
http://www.elsevier.com/locate/patrec
https://doi.org/10.3390/electronics12051199
https://doi.org/10.1016/j.cmpb.2020.105395
https://doi.org/10.1016/j.cmpb.2020.105395
https://doi.org/10.48550/arXiv.2011.01118
https://doi.org/10.48550/arXiv.2011.01118
https://doi.org/10.1016/j.neucom.2024.128534
https://doi.org/10.1016/j.neucom.2024.128534
https://doi.org/10.3390/electronics13163335
https://doi.org/10.3390/diagnostics12112765
https://doi.org/10.3390/diagnostics12112765
https://doi.org/10.1007/s10278-020-00410-5
https://doi.org/10.1007/s10278-020-00410-5
https://doi.org/10.1088/1361-6579/ab21ac
https://doi.org/10.1088/1361-6579/ab21ac
https://doi.org/10.1109/NSS/MIC42677.2020.9507932
https://doi.org/10.1109/NSS/MIC42677.2020.9507932
https://doi.org/10.5281/zenodo.1322001
https://doi.org/10.5281/zenodo.1322001
https://doi.org/10.1038/s41598-021-93636-4


Page 21 of 21Mengistu et al. BMC Medical Imaging          (2025) 25:183 

32.	 Poojari VG, Jose A, Pai MV. Sonographic estimation of the fetal head circum-
ference: accuracy and factors affecting the error. J Obstet Gynecol India. 2022 
Aug;72:134–8. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​0​7​​/​s​​1​3​2​2​4​-​0​2​1​-​0​1​5​7​4​-​y

33.	 Karimi D, Rollins C, Velasco-Annis C, Ouaalam A, Gholipour A. Learning to 
segment fetal brain tissue from noisy annotations. 2022. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​4​8​
5​5​​0​/​​a​r​X​i​v​.​2​2​0​3​.​1​4​9​6​2

34.	 Payette K, et al. Fetal brain tissue annotation and segmentation challenge 
results. Med Image Anal. 2023;88:102833. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​m​e​​d​i​a​​.​2​0​2​​
3​.​​1​0​2​8​3​3.

35.	 Pandyan U, Roomi S, Kanna P, Sathyabama B, Marimuthu S. Artificial intel-
ligence approach for detecting macrocephaly and microcephaly in avoiding 

pregnancy complications. 2023, pp. 65–88. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​4​0​1​8​​/​9​​7​8​-​​1​-​6​​6​
8​4​-​​8​9​​7​4​-​1​.​c​h​0​0​5

36.	 Badr E. Deep learning for image segmentation: A focus on medical imaging. 
Computers Mater Continua. Jan. 2023;75:1995–2024. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​3​2​​6​​0​​
4​/​​c​m​c​.​2​​0​2​3​.​0​3​5​8​8​8.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1007/s13224-021-01574-y
https://doi.org/10.48550/arXiv.2203.14962
https://doi.org/10.48550/arXiv.2203.14962
https://doi.org/10.1016/j.media.2023.102833
https://doi.org/10.1016/j.media.2023.102833
https://doi.org/10.4018/978-1-6684-8974-1.ch005
https://doi.org/10.4018/978-1-6684-8974-1.ch005
https://doi.org/10.32604/cmc.2023.035888
https://doi.org/10.32604/cmc.2023.035888

	﻿Detecting microcephaly and macrocephaly from ultrasound images using artificial intelligence
	﻿Abstract
	﻿Background
	﻿Related works
	﻿Summary of related works

	﻿Methods and materials
	﻿Study area and period
	﻿Study design
	﻿Data sources
	﻿Description of the dataset


	﻿Data collection
	﻿Image preprocessing
	﻿Operational definitions
	﻿Modeling framework
	﻿Models
	﻿Optimized SegNet model architecture
	﻿Mathematical modeling optimized SegNet model architecture
	﻿Encoder-Decoder architecture

	﻿Encoder (Feature extraction)
	﻿Decoder (Mask reconstruction)
	﻿Loss function
	﻿Model training
	﻿Software and hardware requirements
	﻿The training processes
	﻿Model optimization
	﻿Evaluation measures
	﻿Accuracy
	﻿Precision
	﻿Recall (Sensitivity)
	﻿F1 score
	﻿Dice coefficient


	﻿Results
	﻿Proposed model performance
	﻿Model optimization results
	﻿Segmentation results from the model
	﻿Measurement of HC and BPD
	﻿Model performance in comparison with industry experts
	﻿Model prototype

	﻿Discussion
	﻿Limitations of the study

	﻿Conclusion
	﻿References


