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Abstract

We seek the development and evaluation of a fast, accurate, and consistent method for general­

purpose segmentation, based on interactive machine learning (IML). To validate our method, we 

identified retrospective cohorts of 20 brain, 50 breast, and 50 lung cancer patients, as well as 

20 spleen scans, with corresponding ground truth annotations. Utilizing very brief user training 

annotations and the adaptive geodesic distance transform, an ensemble of SVMs is trained, 

providing a patient-specific model applied to the whole image. Two experts segmented each cohort 

twice with our method and twice manually. The IML method was faster than manual annotation 

by 53.1% on average. We found significant (p < 0.001) overlap difference for spleen (DiceIML/

DiceManual = 0.91/0.87), breast tumors (DiceIML/DiceManual = 0.84/0.82), and lung nodules 

(DiceIML/DiceManual = 0.78/0.83). For intra-rater consistency, a significant (p = 0.003) difference 

was found for spleen (DiceIML/DiceManual = 0.91/0.89). For inter-rater consistency, significant 

(p < 0.045) differences were found for spleen (DiceIML/DiceManual = 0.91/0.87), breast (DiceIML/

DiceManual = 0.86/0.81), lung (DiceIML/DiceManual = 0.85/0.89), the non-enhancing (DiceIML/

DiceManual = 0.79/0.67) and the enhancing (DiceIML/DiceManual = 0.79/0.84) brain tumor sub­

regions, which, in aggregation, favored our method. Quantitative evaluation for speed, spatial 

overlap, and consistency, reveals the benefits of our proposed method when compared with manual 

annotation, for several clinically relevant problems. We publicly release our implementation 

through CaPTk (Cancer Imaging Phenomics Toolkit) and as an MITK plugin.
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1. Introduction

Medical image segmentation is an important task in clinical and research environments 

[1–4], facilitating subsequent computational analyses, which depend on the accuracy of the 

segmentation [5,6]. Manual expert annotations are currently considered the gold standard, 

which tend to be tedious, time-consuming, and often have limited reproducibility [3], even 

with the assistance of various tools [4].

A plethora of fully automatic machine learning (ML) methods that can achieve state-of­

the-art results have been proposed, but tend to face various challenges [7] that hinder 

clinical translation. Some of the most important challenges are generalization to unseen 

datasets and need for extensive expert corrections and refinements [4,8]. Interactive machine 

learning (IML) methods fill the void between manual and automatic approaches by allowing 

an operator to train a patient-specific model via quick and rough drawings, which then 

automatically segments the entire scan [9–11]. IML approaches provide the option for 
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expedited refinements, and the final segmentation tends to get closer to the desired result as 

a function of the invested time.

Two popular tools offering IML functionality are ITK-SNAP [8] and 3D Slicer [12]. 

ITK-SNAP has seen success; however, it requires users to follow a complex protocol to 

achieve multi-label segmentation. The user first provides quick drawings for the different 

ROIs and trains a model. Afterwards and separately for each class, the user must place 

seeds and evolve a contour. 3D Slicer has tools for both interactive and automated methods 

using traditional techniques such as region-based statistical methods. Specifically regarding 

IML, 3D Slicer’s “grow from seeds” effect works using GrowCut, but it can only support 

one image as input, putting at a disadvantage for segmentation of complex structures, like 

glioblastoma regions, which typically requires combination of information from multiple 

co-registered images, such as FLAIR, T1, T2, and T1Gd. Deep learning can also be used for 

IML segmentation [13], but there has not been many successful methods in this category and 

it has only been demonstrated in simpler tasks. It is not simple to create and train methods 

that handle the diversity of biomedical image techniques, as well as the variable number of 

input channels.

For manual segmentation, apart from the aforementioned tools, the Medical Imaging 

Interaction Toolkit (MITK) [14] v2021.02 has a complete set of segmentations utilities, 

with some allowing for interaction by means of seed placement, however they are target 

towards segmentation of homogenous lesions and use only one image as input. On the 

other end of the spectrum, the current state-of-the-art for fully automatic medical image 

segmentation is nnU-Net [15], a self-configuring U-Net-based method [16], which surpassed 

most specialized existing approaches in 23 public datasets used in international biomedical 

segmentation competitions.

In this study, we propose an IML method leveraging adaptive geodesic distance (AGD) 

[17] maps alongside an ensemble of support vector machines (SVMs) that is agnostic to 

image type/dimensionality. We aimed to create a method that is easy-to-use, and supports 

multiparametric input images, in an effort to address obstacles that we identified were 

keeping interactive approaches from wider use, while also remaining fast and allowing the 

radiologist to control the decision-making. We systematically evaluated the performance 

of the proposed method against manual expert segmentation across different anatomical 

structures and image modalities. Evaluation endpoints comprised speed, spatial overlap 

agreement, and consistency between different time-points and raters.

2. Materials and Methods

2.1. Data

Experiments were approved by the Institutional Review Board (IRB) of the University of 

Pennsylvania (UPenn). Quantitative evaluation was based on public and private clinical 

data from four retrospective cohorts (spleen (3D-CT, n = 20/41, Medical Segmentation 

Decathlon [18]); breast tumor (2D-DCE-MRI, n = 50, multimodality trial at UPenn; NIH 

P01CA85484); lung nodules (2D-CT, n = 50/89, The Cancer Imaging Archive [19–21]); 

brain glioblastoma (3D-MRI, n = 20/335, BraTS’19 [3,4,22])). Cohort subsets were created, 
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following random selection, to facilitate the exhaustive manual annotations described 

hereafter. The brain (11 males, 9 females: mean age = 62.84/64.36, age range = 44.82–

77.48/39.64–77.09) and breast (female: mean age = 50.41, age range = 32.68–71.97) 

datasets were acquired from 2006–2014 and 2002–2006, respectively. The spleen (13 males, 

7 females: mean age = 63.85/58, age range = 40–81, 48–68) and lung (34 males, 16 

females) were acquired from 2000–2013 and 2004–2011, respectively. Age information 

was not available for the lung dataset. Ground truth segmentations were available for all 

datasets, except for lung which were created by a fellowship-trained, board-certified thoracic 

radiologist (S.K., 21 years of experience).

2.2. Proposed Segmentation Algorithm

The algorithm can segment N regions of interest (ROIs) at one time by initializing N + 1 

different labels, where the additional one accounts for the “background”. As a first step, the 

user briefly draws over the different ROIs using distinct labels (Figure 1). All co-registered 

images are given to the algorithm as input. Every available co-registered sequence can be 

included; for instance, in brain tumor applications, this typically includes FLAIR, T1, T2, 

T1Gd.

Pre-processing is performed for anisotropic and/or large images. With a margin of 0.1 mm, 

if the input images have anisotropic spacing, i.e., the largest and the smallest voxel spacing 

values of an image are different by more than 0.1 mm, images are resampled to have the 

same spacing in all dimensions. The new selected universal spacing value is the lowest 

value, equal or higher than the lowest spacing value of the original images, that allows 

the resultant image to have less than 10 million voxels. The voxel number threshold was 

implemented for performance reasons. Likewise, if isotropic input images have more than 

10 million voxels, they are resampled to the lowest spacing value, in all dimensions, that 

allows the voxel count to not exceed that limit. Resampling of labeled images is done using 

the nearest neighbor interpolation. The aforementioned resampling operations are part of 

the implementation and are not expected to be performed by the user. Results are always 

resampled back to the original image space. Lastly, all images are standardized to have 0 

mean and 1 standard deviation.

For each pair of image and class labels, an adaptive geodesic distance (AGD) map [17] 

(Figure 2) is produced reflecting a composite of intensity and spatial distance from the 

drawings, such that voxels far away and/or with very different intensity have higher values. 

The process is parallelized; each AGD map is created independently of each other. AGD 

maps are normalized in the [0, 1] range. To provide more spatial information, three 

“coordinate” maps are used, one for each dimension of the image, where the values range 

from 0 to the size of the image in that dimension.

Images are parsed using ITK [23] iterators and the image values are added to a two 

dimensional array (OpenCV’s [24] mat implementation is used), where size across the 

first dimension is the number of pixels/voxels in an image and across the second is the 

number of co-registered images. Likewise, pixels/voxels of the labeled image are added 

to a one-dimensional array. Only labeled samples are used for training. For performance 

reasons, if the number of labeled samples exceeds 3000, a balanced, i.e., retaining the ratio 
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of samples per class, subset of 3000 labeled samples is used for training. Lastly, the selected 

training and labeled data are added to OpenCV’s “TrainData” structure, which is the format 

expected by the OpenCV’s machine learning implementations.

An ensemble [25] of SVMs is trained on voxels that belong to the drawings and segments 

the remainder of the image. Each training sample (i.e., voxel) is described by the following 

features: (i) intensity across all co-registered images, (ii) distance in all AGD maps, and 

(iii) value in all coordinate maps. Three SVM classification models (i.e., radial basis 

function (RBF), chi-squared, histogram intersection kernels) are trained in parallel and their 

hyperparameters are selected through cross-validation, using OpenCV’s [24] default grid 

search for optimizing the hyperparameters. Each voxel’s final prediction is obtained by 

fusing the three model predictions via majority voting and the RBF classifier is used to 

resolve ties.

Focusing on reproducibility, user-friendliness, and minimization of user interaction, 

we integrated the method to the Cancer Imaging Phenomics Toolkit (https://

www.cbica.upenn.edu/captk, last accessed 11 August 2021) (CaPTk) [26] and as an MITK 

[14] plugin (https://github.com/CBICA/InteractiveSegmentation, last accessed 11 August 

2021).

2.3. Experimental Design

2.3.1. The Protocol Provided to Experts—To quantitatively evaluate our method, we 

included eight experts, two for each cohort. Each expert was asked to segment every scan 

four times, thereby producing two manual and two IML-assisted annotations, in addition 

to the extensively defined and verified ground truth (GT) segmentations. The experts 

were given brief instructions for our method and were asked to note the time needed for 

their segmentations. To have a fair assessment of inter-rater consistency for glioblastoma 

segmentation, we instructed the experts to perform the manual segmentation of the various 

tumor sub-regions (enhancing tumor (ET), non-enhancing tumor (NE), and peritumoral 

edematous/infiltrated tissue (ED) [3,4]) in 1 h or less. Figure 3 outlines the experimental 

design.

2.3.2. Experiment 1—Overall Performance Evaluation—We initially evaluated the 

spatial overlap agreement of each approach relative to the ground truth by utilizing the 

Dice Similarity Coefficient (DSC) as a metric to select one IML-assisted and one manual 

segmentation from each rater. For glioblastoma, only the whole tumor (WT) area was used 

for these selections. The DSCs of the two sets were statistically compared. Additionally, the 

volumes calculated for IML and manual segmentations were quantitatively compared with 

the ground truth, by plotting volume pairs in scatterplots. Each pair comprise the volume of 

the approach and the volume of the ground truth for a particular case. Using regression, a 

line can be drawn from the IML-ground truth pairs and another one from the manual-ground 

truth ones. The closer these lines are to the middle line, that splits evenly the quadrant, the 

more similar the approach prediction volumes are to the ground truth ones and the closer 

to parallel the lines are, the more systematic were the potential errors. Furthermore, we 

estimated the Pearson’s Correlation Coefficient [27] for each of the paired segmentations: 
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(i) IML correlation to ground-truth and (ii) manual correlation to ground truth. The average 

active drawing time, i.e., time spent on inspecting images and drawing input annotations, 

was compared for each cohort between IML-assisted and manual segmentation.

2.3.3. Experiment 2—Intra-Rater Segmentation Consistency—The DSCs 

between the two IML-assisted and the two manual segmentations of each rater were 

calculated (i.e., DSCIML1/IML2, and DSCManual1/Manual2) for each case. The DSCs were 

statistically compared. In addition, the existence of significant differences between the DSCs 

of the manual and IML-assisted segmentations relative to ground truth (i.e., DSCIML/GT, and 

DSCManual/GT) were also statistically compared for each rater separately, to see how many 

raters were consistent using our method and how many when doing manual segmentations.

2.3.4. Experiment 3—Inter-Rater Segmentation Consistency—The best 

segmentations of each rater were selected with the same selection criteria as Experiment 1. 

Raters were blind to each other’s segmentations. The DSCs between the best IML-assisted 

segmentations across raters, and between their best manual annotations were calculated for 

each case (i.e., DSCIML Rater 1/IML Rater 2, and DSCManual Rater 1/Manual Rater 2), and their 

significant differences were evaluated.

2.3.5. Statistical Analysis—We used paired Wilcoxon-signed rank non-parametric 

statistical tests [28] for statistical comparisons (assuming a type I error rate of 0.05), because 

the samples were paired and tended not to follow a Gaussian distribution. We used Python’s 

SciPy 1.4.1 package to perform the tests [29].

3. Results

In this section, the results of the experimental validation are presented for 20 spleen, 50 

breast tumor, 50 lung tumor, and 20 glioblastoma cases.

3.1. Experiment 1: Overall Performance Evaluation

In the first experiment, the performance of the proposed method was evaluated (Table 

1, Figure 4). For glioblastomas, manual and IML-assisted segmentations yielded similar 

pairs of DSCs both for WT and individual sub-regions, thereby indicating no significant 

difference between them, whereas the converse was true for other cohorts. Our method 

achieved higher DSC on average for spleen and breast tumors, but lower for lung nodules 

when compared with the manual segmentations. However, our method was substantially 

faster than manual annotation in all cohorts (Table 1) by 53.1% on average.

An analysis of the volume of ground truth, manual and IML-assisted segmentations (Figure 

5, Table 1 “Correlation coefficient” column) shows that errors made by our method were 

mostly systematic. This is more evident in spleen images, where IML-assisted and manual 

segmentations revealed systematic under- and over-segmentation, respectively. Our method 

made some non-systematic errors in lung nodules and the ET glioblastoma sub-region, but 

these areas were also more erroneous in manual segmentations. Notably, ET is regarded as 

the most challenging area of glioblastoma, because it frequently has unclear and smooth 

boundaries [3].
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3.2. Experiment 2: Intra-Rater Segmentation Consistency

The second experiment attempts to quantify intra-rater consistency, comparing the two 

cycles of segmentations of each rater, separately for IML and manual (Table 1, Figure 6). No 

significant difference was found between manual and IML-assisted segmentations for any of 

the cohorts, except spleen where segmentations using our method had higher mean overlap.

Additional analysis of DSC relative to ground truth (Table 2) found a significant difference 

in only one of the raters when using the IML method, while revealing a significant 

difference in 4/8 raters for manual annotations. Furthermore, there was no significant 

difference when using the IML method for any of the two raters for individual sub-regions 

of glioblastoma. The same tests for manual annotations revealed a significant difference in 

all sub-regions, except ET in one of the raters.

3.3. Experiment 3: Inter-Rater Segmentation Consistency

In the last experiment, inter-rater consistency of IML and manual segmentations was 

calculated and compared (Table 1, Figure 7). There was a significant difference for spleen, 

breast, lung, and the NE and ET glioblastoma sub-regions. From those, our method achieved 

a higher overlap for spleen, breast, and the NE glioblastoma sub-region. Conversely, manual 

segmentations had higher agreement for lung and the ET region.

4. Discussion and Conclusions

In this study, we presented a general-purpose, easy-to-use, and fast IML-based segmentation 

method that can be applied in a multitude of research applications without requiring any 

adaptations to different domains or training of users. The method takes as input co-registered 

images and user drawings, to create AGD maps and train an ensemble of SVMs, used for 

segmenting the whole scan. We evaluated our method’s performance on solid structures 

across different cohorts, image modalities, and anatomical sites.

Our method utilizes the power of ML; however, it mitigates one of its known weaknesses, 

i.e., the need for extensive training and lack of reproducibility on new datasets. By virtue of 

being trained interactively, our segmentation models are optimal for the specific individual’s 

scans. Additional benefits include the ability of the method to be parallelized and low 

hardware requirements. The disadvantage of this approach is that it is not fully automated.

Our quantitative evaluation showed great promise for the applicability of the method in 

various structures relevant to medical research. Accuracy and inter-rater agreement were 

comparable to manual segmentation, while intra-rater agreement was high, indicating that 

the method is stable. Volumetric errors were mostly systematic, indicating that results can 

be improved through further iterations or volumetric operations like shrinking/expanding. 

Multiparametric image support allows the method to be used in more complex applications. 

The method was also shown to be fast and not require excessive interaction, which when 

combined with the low amount of training given to the clinical experts shows that the goal 

of creating an easy-to-use method was achieved. According to the evaluation of ITK-SNAP 

[11] on a subset of the BraTS dataset, in the glioblastoma regions, our study also evaluated, 

particularly, ET (DiceIML/DiceITK-SNAP = 0.85/0.69) and WT (DiceIML/DiceITK-SNAP = 
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0.94/0.85), and ITK-SNAP had a lower mean agreement with the ground truth. Time spent 

by users on inspecting images and drawing input annotations was also lower (TimeIML/

TimeITK-SNAP = 21 min/27.8 min), while our methodology was significantly less complex.

Future research can improve this method on multiple fronts. Advanced ML techniques, 

such as semi-supervised learning, can potentially increase the accuracy and consistency 

of the results. Transfer learning could expand the range of tasks to non-solid structures, 

such as brain lesions. If a specific task is targeted, pre-trained population-derived models, 

atlases, and specialized preprocessing techniques can potentially aid in producing better 

segmentations. Furthermore, a prospective dataset, especially one acquired under different 

acquisition settings, would lend further validity to our method.

The results showed that our method has accuracy and inter-rater consistency on par 

with manual segmentation across different solid anatomical structures and modalities. 

Additionally, our method showed high intra-rater consistency and minimized user 

interaction.
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Featured Application:

The proposed interactive segmentation method can be used to facilitate faster 

and consistent creation of annotations for large-scale studies, to enable subsequent 

computational analyses. The proposed method combines strengths of expert-based 

annotations and machine learning.
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Figure 1. 
Example showcasing the result improving as a function of invested time. In the first 

iteration, the user quickly draws over the different areas. In the second iteration, the user 

places few additional labels to correct representative misclassified areas, which are then used 

to retrain the machine learning model. From left to right: (a) Anatomical image; (b) User 

annotations; (c) Result segmentation; (d) Ground truth segmentation.
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Figure 2. 
Example of AGD maps. Darker values indicate lower adaptive geodesic distance from the 

user drawings. In glioblastomas, non-enhancing tumor (NE) and enhancing tumor (ET) 

boundaries are clearer in T1CE, while the boundary between edema (ED) and background 

is clearer in FLAIR. From left to right: (a) Anatomical image; (b) User annotations; (c) 

Adaptive geodesic distance (AGD) map for NE annotation; (d) AGD map for ET; (e) AGD 

map for peritumoral edematous/infiltrated tissue (ED); (f) AGD map for background.
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Figure 3. 
Summary of the main experimental design. The “~” symbol denotes calculation of Dice 

coefficient between two segmentations. DSC = Dice Similarity Coefficient, GT = Ground 

Truth.
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Figure 4. 
Dice coefficient, compared to ground truth, where: (a) All individual labels representing 

different areas of the structure counted as one; (b) Individual areas of glioblastomas.
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Figure 5. 
Scatterplots in which blue points are the pairs of volume of Interactive ML (IML) method 

and volume of ground truth and red are the pairs of manual segmentation volume and ground 

truth. The black line represents the ground truth’s volume. The plots belong to (a) Different 

cohorts where all individual labels, representing different areas of the structure, are counted 

as one; (b) The sub-regions of glioblastomas.
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Figure 6. 
Dice coefficient between the first and second round of the raters where: (a) All individual 

labels representing different areas of the structure counted as one; (b) Individual areas of 

glioblastomas.
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Figure 7. 
Dice coefficient, for inter-rater consistency, between segmentations of different raters, 

where: (a) All individual labels representing different areas of the structure counted as one; 

(b) Individual areas of glioblastomas.
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Table 1.

Results for all three experiments. Experiment 1: Overlap is calculated as dice coefficient relative to ground 

truth. p-values are the result of paired comparisons between the highest scoring interactive ML-assisted and 

manual segmentations for each rater and each case. Correlation coefficient is calculated between the resultant 

and ground truth volumes. Experiment 2: Values indicate overlap between the first and second cycle of 

each rater. p < 0.05 indicates a significant difference between the results of interactive ML and manual 

segmentations. Experiment 3: Values indicate overlap between segmentations of different raters. p < 0.05 

indicates a significant difference in the inter-rater results for the respective cohort.

Experiment 1 Experiment 2 Experiment 3

Mean Overlap with 
Ground Truth

Mean Active 
Drawing Time

Correlation 
Coefficient

Mean Intra-Rater 
Overlap

Mean Inter-Rater 
Overlap

Label IML Manual p IML Manual IML Manual IML Manual p IML Manual p

Spleen

- 0.91 0.87 <10−3 66 s 100 s 0.99 0.99 0.91 0.89 0.003 0.91 0.87 0.003

Breast

- 0.84 0.82 <10−3 19 s 70 s 0.98 0.95 0.88 0.9 0.37 0.86 0.81 <10−3

Lung

- 0.78 0.83 <10−3 93 s 125 s 0.96 0.97 0.96 0.95 0.116 0.85 0.89 <10−3

Brain

WT 0.94 0.92 0.259

21m 60 m

1 0.98 0.91 0.89 0.61 0.89 0.88 0.156

NE 0.81 0.79 0.183 0.97 0.95 0.85 0.86 0.32 0.79 0.67 <10−3

ET 0.85 0.87 0.09 0.96 0.98 0.85 0.88 0.116 0.79 0.84 0.044

ED 0.88 0.87 0.657 1 0.98 0.85 0.83 0.788 0.81 0.8 0.455
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Table 2.

Results (p-values) of a paired Wilcoxon test for each rater, comparing the dice coefficient results of the 

different approaches relative to ground. p < 0.05 indicates a significant difference.

Rater 1 Rater 2

Label IML Manual IML Manual

Spleen

- 0.9405 0.3507 0.1454 0.433

Breast

- 0.2425 0.5116 0.5921 0.1358

Lung

- 0.0422 <0.0001 0.1358 <0.0001

Brain

WT 0.156 0.0001 0.8813 0.0008

NE 0.0522 0.0859 0.9405 0.0001

ET 0.1913 0.3317 0.0522 0.0001

ED 0.4781 0.0001 0.6274 0.0008
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