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Nonalcoholic fatty liver disease (NAFLD) has gradually become one of the most serious liver diseases threatening human health in
the world. Currently, Chinese herbal medicine is a potentially important treatment option for NAFLD, and the development of
effective Chinese herbal medicine has a good prospect. Previous studies have suggested that Ficus hirta Vahl. (FV) has various
protective effects on the liver. In this study, we investigated the therapeutic outcomes of FV treatment for the liver disease and
its underlying mechanism using HepG2 cell lines induced by palmitate (PA) and mouse model fed with high-fat diet (HFD).
FV mainly exerts pharmacological effects by mediating lipid metabolism and inflammation. During the lipid metabolism
regulation process, CD36, SREBP-1, SCD1, PPAR γ, ACOX1, and CPT1α are the key factors related to the healing effects of
FV on NAFLD. During the inflammation process, the downregulation of IL-6, IL-1β, and TNF-α is involved in alleviation of
NAFLD. Furthermore, CD36 overexpression promotes lipid abnormal metabolism and inflammation in PA-induced HepG2
cells, while CD36 knockdown and FV supplementation reverse these responses. In addition, FV also modulates gut microbiota
composition, such as Allobaculum, Faecalibaculum, and Butyricicoccus in HFD-fed mice. In summary, our findings
demonstrated that FV exerted a beneficial preventive and therapeutic effect on NAFLD by improving lipid metabolism and
inflammation as well as regulating the structure of gut microbiota, and therefore, FV may be a candidate for the treatment of
NAFLD.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) includes a wide
range of liver damage, including NAFL (simple steatosis;
NAFL), nonalcoholic steatohepatitis (NASH) with inflam-
mation and hepatocyte injury, and advanced fibrosis and
cirrhosis [1]. The prevalence of NAFLD in the general pop-
ulation is estimated to be 25% worldwide [2]. The develop-
ment of NAFLD is closely related to the abnormal lipid
metabolism; variations in intracellular cholesterol transport
and imbalance of cholesterol homeostasis in NAFLD can

cause the accumulation of hepatic free cholesterol [3]. The
imbalance between lipid intake and disposal leads to the
accumulation of hepatic fat [4]; in addition, NAFLD is often
accompanied by a high risk of type 2 diabetes and cardiovas-
cular disease [5]. Furthermore, several studies have demon-
strated the close association between gut microbiota and
the occurrence and the development of NAFLD. There
may be a possible direct association between gut microbiota
and inflammation [6]. Therefore, it is generally believed that
NAFLD is a liver manifestation of metabolic syndrome (MS)
[7]. Nonalcoholic steatohepatitis (NASH) is a subtype of
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NAFLD and has the potential to progress and result in liver
fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and
liver transplantation [8]. NASH-related complications bring
severe physical, economic, and patient experience pressures
to patients, families, and society [9]. Unfortunately, there
are limited approaches available for the treatment of NAFLD
other than lifestyle changes and reduction of high-calorie,
low-fiber diets. Therefore, it is urgent to develop pharmaco-
logically approved treatments for NAFLD [10].

CD36 (cluster of differentiation 36) is a scavenger recep-
tor, which acts as a promoter of transport and uptake of the
oxidized low-density lipoprotein (ox-LDL) and long-chain
fatty acids [11]. The uptake of fatty acid by the liver may
be promoted by fatty acid transport proteins (FATPs) and
FAT/CD36 (fatty acid translocase), which have been
reported to be higher in obese individuals and NAFLD
patients [12]. Oxidized LDL and fatty acid bind to alpha
helix at the exposed distal end of the CD36 membrane.
CD36 is a lipid-binding pocket containing key Lys164 that
initiates downstream signal transduction or promotes fatty
acid binding and internalization [13]. Currently, the studies
have shown that CD36 is an important factor in liver injury
associated with metabolic diseases. In the condition of high
expression of CD36, a large amount of fatty acid can be
synthesized and then promote the development of fatty liver
[14]. The stimulation by palmitate can lead to the elevation
of the expression of CD36 in HepG2 cells and the formation
of a lipid droplet, which facilitates fatty acid uptake and lipid
accumulation [15]. When the liver is exposed to excessive
fatty acid for a long period, the function of CD36 will be
dysregulated, which may reflect the increased palmitoylation
of hepatic CD36. This phenomenon has been reported to be
related to NAFLD [16].

Ficus hirta Vahl. is a traditional food and medicinal
material in southern China. The water extracts of its roots
have been widely used clinically in the treatment of NAFLD
[17]. Previous studies have focused on the chemical investi-
gation of the roots of Ficus hirta Vahl. The predominant
chemical constituents of Ficus hirta Vahl. mainly include
psoralen, bergapten, luteolin, and apigenin [18]. Several stud-
ies have shown the pharmacological activities of Ficus hirta
Vahl., such as antioxidation [19], anti-inflammation, analge-
sic, antitussive, antiasthmatic [20], and hepatoprotective
[21]. In addition, Ficus hirta Vahl. is effective to prevent the
occurrence of alcohol-induced hepatic damage in mice via
scavenging free radical inhibiting lipid peroxidation [22].
These results have revealed that extracts of Ficus hirta Vahl.
can be used as a candidate drug for liver protection for the
treatment of liver diseases.

To clarify the role of Ficus hirta Vahl. (FV) in the treat-
ment of NAFLD, we studied the effects of FV on lipid metab-
olism and inflammation in NAFLD using the HepG2 cell line
induced by PA and the mouse model fed with HFD and
determined the therapeutic potential of FV. More impor-
tantly, we also found that Ficus hirta Vahl. can alleviate
abnormal lipid anabolism and improve inflammation via
downregulating the expression of CD36. Meanwhile, Ficus
hirta Vahl. relieved liver inflammation in HFD-fed mice by
changing gut microbiota component.

2. Materials and Methods

2.1. Materials and Reagents. Ficus hirta Vahl. was bought
from Kangmei Pharmaceutical Co., Ltd. (Guangdong,
China); palmitic acid (PA, P9697) was bought from Sigma-
Aldrich (St. Louis, MO, USA); primary antibodies against
IL-6 (DF6078, 1 : 1500), IL-1β (AF5103, 1 : 1500), TNF-α
(AF7014, 1 : 500), SREBP-1 (AF6283, 1 : 1500), CPT1α
(DF12004, 1 : 1500), ACOX1 (DF12046, 1 : 1500), and GAPDH
(AF7012, 1 : 2000) were purchased from Affinity Biosciences
Co., Ltd. (Jiangsu, China); antibody against CD36 (18836-1-
AP, 1 : 1000) was bought from Proteintech (Wuhan, China);
HMGCR (ab171830, 1 : 5000) was purchased from Abcam
(Shanghai, China); RIPA buffer and BCA protein assay kit were
bought from Beyotime Biotechnology (Shanghai, China); the
high-fat diets (HF60), including 60% fat, 20% carbohydrate,
and 20% protein, were purchased from Dyets (Dyets Biotech-
nology Co., Ltd., USA); the normal fat diets including 20kcal
% fat were purchased from Guangdong Medical Laboratory
(Guangzhou, China); and D-(+)-glucose (CAS: 50-99-7) and
fructose (CAS: 7660-25-5) were bought from Macklin Bio-
chemical Co., Ltd. (Shanghai, China).

2.2. Preparation and Identification of FV. The root of Ficus
hirta Vahl. (FV) was extracted by purified water. The com-
ponents of FV were detected by UPLC-Q/TOF-MS/MS
(X500R, AB SCIEX, USA). The sample was separated by an
UPLC C18 analytical column with the size of 2:1mm× 100
mm, I.D. 1.8μm (ACQUITY UPLC®HSS T3, Waters, USA).
In the modified method, the binary gradient mobile phase
with water (0.05% acetic acid) was used as mobile phase A,
and acetonitrile (ACN) was used as mobile phase B. Supple-
mentary Table 1 shows the time program of the gradient
elution. The sample injection volume was 5μL. Mass
spectrometric analysis was conducted by a SCIEX X500R,
which was equipped with electrospray ionization (ESI)
Turbo V™ ion source, operating in positive and negative ion
modes. Supplementary Table 2 lists the parameters in the
method. We performed qualitative and relative quantitative
analysis using SCIEX O.S. software V 2.0 (AB SCIEX).

2.3. Cell Culture. HepG2 cells (human liver carcinoma cell
line) were obtained from Cell Resource Center, Shanghai
Institute for Biological Sciences, Chinese Academy of Sciences
(Shanghai, China). The obtained HepG2 cells were incubated
in Dulbecco’s modified Eagle’s medium (DMEM; Gibco,
Grand Island, NY) supplemented with 10% fetal bovine serum
(FBS, Gibco, United States), in which the concentration of
penicillin was 100U/mL and the concentration of streptomy-
cin was 100U/mL, under the condition of 37°C and 5% CO2.
HepG2 cells were incubated with 0.25mM PA to establish cell
model of lipid accumulation and were supplied with different
doses of FV extract (high-dose 30mg/mL, low-dose 15mg/
mL, raw medicinal material content) for 24h.

2.4. Animals and Experimental Design. C57BL/6J mice
(male, eight-week, weight of 18-25 g) were obtained from
the Experimental Animal Centre, Guangdong Medical Labo-
ratory (Guangzhou, China). All subjects were acclimated in
a 12 h light/dark cycle in pathogen-free (SPF) laboratory in
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a controlled environment (temperature: 25 ± 2°C, humidity:
50-75%) and fed with a certified laboratory diet ad libitum.
The mice were provided with tap water ad libitum. After 2
weeks of habilitation, we randomly divided the mice into 4
groups: the NFD group (n = 8) was fed with a normal fat
diet; the HFD group (n = 10) and FV treatment groups
(FV-L, FV-H group, n = 10 each group) were fed with
high-fat diet and aqueous solution of glucose and fructose
for 17 weeks to establish a nonalcoholic fatty liver disease
model. The animals in the FV-L and FV-H groups were
administered with the water extract of FV at the doses of
5 g/kg and 10 g/kg (raw medicinal material content), respec-
tively. The other groups were administrated with equivalent
amount of saline. Body weight was measured once per week.
At the end of the experiment, mice were fasted for 18 hours
and anesthetized with a 1% pentobarbital (50mg/kg BW)
via intraperitoneal injection. We collected blood samples
from the subjects eyeballs and centrifuged the sample at
3000 rpm and 4°C for 15min to collect serums. In addition,
liver tissues of all animals were collected and stored at
-80°C for later use. All the animal studies were in accordance
with the relevant national legislation and local guidelines on
the ethical use of animals. In addition, all the procedures in
the study have been approved by the Institutional Animal
Care and Use Committee of Jinan University.

2.5. Hematoxylin-Eosin (H&E) and Oil Red O Staining. Oil
red O was used to stain the HepG2 cells according to the
instruction of Solarbio kits (Cat# G1262, Beijing, China).
Three images per sample were taken using an optical micro-
scope (Nikon, Shanghai, China). Then, the tissue sections
were performed for H&E staining and oil red O staining
according to the instruction of Solarbio kits (Cat# G1262,
Beijing, China).

2.6. Biochemical Analysis. The concentration of total choles-
terol (TC, A111-1-1), triglyceride (TG, A110-1-1), alanine
aminotransferase (ALT, C009-2-1), aspartate aminotransfer-
ase (AST, C010-2-1), and low-density lipoprotein choles-
terol (LDL-C, A113-1-1) of the mouse serum samples was
determined according to the instruction of diagnostic kits
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China).

2.7. Western Blot Analysis. Total protein was extracted from
liver tissue and hepatocytes by RIPA lysis, and its concentra-
tion was measured by a BCA protein assay kit. Western blot
analysis was routinely conducted with primary antibodies
against GAPDH, IL-6, IL-1β, TNF-α, SREBP-1α, HMGCR,
ACOX1, CD36, and CPT1α. 30μg protein was placed in
each well. An ECL (Affinity Biosciences LTD, Jiangsu,
China) was used to detect the protein bands. The band
intensity by densitometry for quantification was evaluated
using ImageJ 1.48 analysis software and expressed as the
mean area density.

2.8. Determination of Inflammatory Cytokine Levels in
Serum. The levels of IL-6 (EMC004), IL-1β (EMC001b),
and TNF-α (EMC102a) in each mouse serum sample were

determined by ELISA kits, which were produced by Neo-
bioscience (Shenzhen, China).

2.9. RT-qPCR Analysis. The gene expression of HepG2 cells
and mouse liver tissues was performed by RT-qPCR. Trizol
regent was used to isolate the total RNA of the HepG2 cells
and liver tissue, and HiScript II Q RT SuperMix for qPCR
(cat no. R223-01, Vazyme, Nanjing, China) was used to
reverse transcribe them into cDNA. The synthesized cDNA
was used as a template and quantified using the BioEasyMas-
ter Mix Kit (cat no. BSB25L1B, SYBR Green, High ROX) and
a real-time PCR detection system (Line Gene 9600 Plus,
Bioer Technology, China). Supplementary Table 3 lists the
human and mouse primer sequences for quantitative real-
time PCR.

2.10. RNA-seq, KEGG Analysis, and Gene Set Enrichment
Analysis. The transcriptome sequencing was performed by
Novogene (Beijing, China). After generating clusters, we
sequenced the library preparations on the Illumina Novaseq
6000 platform.

In order to analyze Kyoto Encyclopedia of Genes and
Genomes (KEGG) as well as Gene Ontology (GO) biological
process, the crossover differentially expressed genes (DEGs,
P < 0:05 and jlog2FCj > 2:0) were submitted into the Web-
based gene set analysis toolkit (WebGestalt, http://www
.webgestalt.org/option.php) [23]. Then, the Gene Set Enrich-
ment Analysis (GSEA) was conducted on the Java GSEA
platform. We calculated the fold change of gene expression,
and the gene list was generated according to the change of
|log2FC|. The genes involved in each KEGG pathway were
denoted as a gene set. Then, a ranked list and a “gene set”
permutation type of the gene set was generated. P < 0:05
was set as the cutoff criterion.

2.11. Cell Transfection. The plasmid overexpressing CD36
was designed and built by iGene Biotechnology Co., Ltd.
(Guangzhou, China) to generate a CD36-overexpressed
(CD36 OE) cell line, and an empty vector was used as a con-
trol. siCD36 was synthesized by RIBOBIO Co., Ltd. (Guang-
zhou, China). The experiment of cell transfection was
performed. The efficiency of knockdown and overexpression
of CD36 were confirmed by western blot analysis and RT-
qPCR.

2.12. 16S rRNA Sequencing. Frozen mouse fecal samples
were used to characterize the gut microbiota. The genomic
DNA was extracted and used to amplify the V3–V4 region
of the 16S rRNA genes. First, the amplicons were purified
and then combined in equal amounts for sequencing library
preparation and Miseq sequencing analysis. The PE reads
were obtained from Miseq sequencing, and then, they were
spliced based on the overlapping relationship. Next, the
sequence quality was simultaneously controlled and filtered.
The samples were distinguished and then went through
OTU cluster analysis and species taxonomy analysis. Based
on the taxonomic information, the community structure
can be statistically analyzed at different taxonomic levels.
Multiple samples were used in various statistical and visual
analyses to study the community composition and
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phylogenetic information, such as multivariate analysis and
significance of differences tests. In addition, we performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis to further study the biological signaling path-
ways in the gut microbiota.

2.13. Spearman’s Analysis. The correlation between the 8
genera of microbiota and 4 signaling pathways was analyzed
using Spearman’s correlation coefficient (r). In the correla-
tion analysis, P < 0:05 was considered as the significant
criterion.

2.14. Statistical Analysis. The data was expressed as the
mean ± standard deviations (SD). Furthermore, statistical
analysis was implemented using GraphPad Prism 5.0 soft-
ware (GraphPad Software, Inc.; San Diego, CA, USA). The
statistical analyses in this study including one-way ANOVA
and Tukey’s post hoc test were used to compare multiple
groups. In the statistical test, P < 0:05 was considered statis-
tically significant.

3. Results

3.1. Identification of Bioactive Components for FV Extract.
The total ion chromatogram (TIC) of FV was investigated by
UPLC-Q/TOF-MS/MS. The results are shown in Figure 1.
The components were characterized by matching with SCIEX
high-resolution MS/MS database or ChemSpider online data-
base. The results identified a total of 54 chemical constituents
in FV. Among them, 23 ingredients were determined in
positive ion mode, while 31 ingredients were determined in
negative ion mode. The FV extract contained 11 types of cou-
marins, 11 types of flavonoids, 5 types of carboxylic acids, 3
types of terpenes, 6 types of aldehydes, and other types of com-
pounds. The detailed information is shown in Table 1.

3.2. Amelioration of Lipid Accumulation and Inflammation
by FV In Vitro. We used oil red O staining to explore the
effect of FV on lipid homeostasis in PA-induced HepG2 cells.
As shown in Figure 2(a), PA caused a significant increase in
the number of lipid droplets in HepG2 cells, while FV reversed
it in a dose-dependent manner; the oil red O score is showed
in Figure 2(b). Furthermore, western blot and RT-qPCR were
performed to determine the protein and mRNA expression
levels of biomarkers related to lipogenesis and inflammation
in HepG2 cells. The results demonstrated that after FV treat-
ment, the expression levels of HMGCR (Figures 2(f) and
2(l)), SREBP-1 (Figure 2(l)), FABP1 (Figure 2(c)), SCD1
(Figure 2(d)), CD36 (Figures 2(e) and 2(l)), and ACACA
(Figure 2(g)) were remarkably suppressed while the levels of
key enzymes regulating fatty acid oxidation (ACOX1 and
CPT1α) (Figure 2(l)) were increased. Meanwhile, we found
that FV treatment significantly ameliorated inflammation in
the HepG2 cell line induced by PA by decreasing the level of
proinflammatory factor, including IL-1β (Figures 2(i) and
2(k)), IL-6 (Figure 2(k)), TNF-α (Figure 2(k)), and CCL5
(Figure 2(h)). These results suggested that FV might restore
PA-induced lipogenesis and inflammation responses.

3.3. Attenuation of Hepatic Steatosis and Serum Lipid Levels
in HFD-Fed Mice by FV. A mouse model fed with HFD was
utilized to further explore the beneficial effects of FV. As
shown in Figures 3(a) and 3(c), HFD-fed mice exhibited
an increased body weight and a higher liver index, and a
17-week FV administration alleviated these gains. Compared
with normal diet mice, HFD-fed mice showed liver enlarge-
ment and discoloration, which were much improved by the
FV administration (Figure 3(b)).

To evaluate the extent of liver injury in mice, we per-
formed H&E staining and measured transaminase level in
mouse serum. The liver tissue of mice in the HFD group
showed obvious changes in morphology, including extensive
cell necrosis, loss of hepatic structure, and a large amount of
inflammatory cell infiltration. However, compared with the
HFD group, the prophylactic use of FV obviously rescued
the injured area in a dose-dependent manner (Figure 3(d)).
In addition, compared to the mice fed with high-fat diet,
the serum ALT and AST levels in the FV treatment group
were decreased (Figures 3(i) and 3(h)).

As shown in oil red O staining, the accumulations of
lipid droplets in hepatocytes were significantly severe in
the HFD group, which were reduced in the liver of mice with
FV administration (Figure 3(d)). Furthermore, compared
with the HFD group, the increased levels of TC and TG in
the liver of mice with FV treatment were much recovered
(Figures 3(f) and 3(g)); similarly, the increased level of TC
and LDL-C in serum was also removed by FV treatment
(Figures 3(e) and 3(j)).

3.4. Attenuates Lipogenesis and Inflammation in the Liver of
HFD-Fed Mice by FV. To analyze the influencing mecha-
nisms of FV on the accumulation of lipid, we further studied
the beneficial effects of FV in the in vivo model. Compared
with HFD-fed mice, FV treatment significantly reduced the
mRNA expression of Srebp-1, Acaca, Hmgcr, Fabp1, Pparγ,
and Cd36. Meanwhile, FV treatment led to the increase
(Figures 4(a)–4(h)) in the level of key enzymes related to
the regulation of fatty acid oxidation (Pparα and Cpt1α)
(Figures 4(c) and 4(f)). It is worth noting that compared
with the mice fed with HFD, FV treatment caused the reduc-
tion of the expressions of lipid metabolism-related proteins,
which included SREBP-1, HMGCR, and CD36. However,
ACOX1 and CPT1α levels in the livers of animals with
NAFLD were increased after FV treatment (Figure 4(i)).

ELISA results showed that compared with HFD-fed
mice, FV significantly downregulated the levels of IL-6, IL-
1β, and TNF-α in serum (Figures 4(j)–4(l)). As shown in
Figure 4(p), the upregulated proteins of TNF-α, IL-6, and
IL-1β in the liver tissues in the mice fed with HFD were also
suppressed by FV administration. In addition, the mRNA
expression of Tnf-α, Il-1β, and Ccl5 in liver tissues was suc-
cessively suppressed by FV administration (Figures 4(m)–
4(o)). These data indicated that FV partially alleviated the
hepatocyte damage by reducing inflammation in serum
and hepatocytes.

3.5. FV Regulated Gene Expression and Signaling Pathways
in the Liver of HFD-Fed Mice. In order to systematically
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investigate the potential mechanism of FV on NAFLD mice,
we conducted transcriptome analysis through RNA sequenc-
ing of liver tissues in the mice fed with NFD and the mice fed
with HFD with or without FV treatment.

The results from principal component analysis (PCA)
indicated that the gene expression profile of mice from the
FV group clustered with the NFD group but separated from
the HFD group (Figure 5(a)). The volcano plots demon-
strated that the differentially expressed genes (DEGs) in
the HFD group underwent significant changes compared
to those in the NFD group or high-fat diet treated with FV
assumption group (Figure 5(b)). Compared with the mouse
group fed with HFD, there were 394 DEGs in the mice fed
with NFD and 261 in mouse group treated with FV. Next,
we also studied the therapeutic effect of FV on NAFLD’s
main signaling pathways. GO biological process and KEGG
enrichment analyses were conducted using WebGestalt.
Figure 5(c) shows the top 10 KEGG pathways which have
the most significant false discovery rate (FDR) and P value,
including PPAR signaling pathway, fatty acid elongation,
and biosynthesis of unsaturated fatty acids. According to
GO enrichment analysis results, the 10 most significantly
enriched GOBP terms are listed in Figure 5(d) (P < 0:05).
The results suggested that DEGs participated in the regula-
tion of metabolic processes for lipid, small molecule, unsat-
urated fatty acid, etc.

In addition, the GSEA pathway enrichment results indi-
cated that the cellular signaling pathways related to inflam-
mation (such as the T cell receptor signaling pathways),
lipid metabolism (such as the PPAR signaling pathway and
biosynthesis of unsaturated fatty acids), and fibrosis (such
as the extracellular matrix (ECM) receptor interaction) were
enriched and significantly downregulated by FV treatment
(Figures 5(e) and 5(f)). The results of RNA-seq showed that
lipid metabolism-related genes, such as CD36, had signifi-
cantly different expressions between the HFD-fed mice
treated with FV and the mice without FV treatment. This
indicated that the CD36 differential gene may be one of
the primary responsive targets that cause the FV to affect
HFD-fed mice (Figure 5(g)). Therefore, we hypothesized
that potential targets of FV might be present in the CD36
gene of the lipid metabolism signaling pathway. The follow-
ing experiments were conducted to confirm this hypothesis.

3.6. CD36: A Potential Target of FV for Ameliorating Lipid
Accumulation. We confirmed that FV treatment restored
the level of CD36 in the liver of mice, which was significantly
elevated by high-fat diet daily. To evaluate the functional
role of CD36 in the pathological process of lipid accumula-
tion, we generated plasmid overexpressing CD36 in HepG2
cells (Figure 6(c)) and observed that the overexpression of
CD36 significantly increased the lipid accumulation through
oil red O staining and TG level; in addition, the overexpres-
sion of CD36 was obviously reversed by FV administration
(Figures 6(d) and 6(f)). Moreover, after the overexpression
of CD36, the levels of PPARγ, SREBP-1, and HMGCR were
upregulated and were significantly suppressed by FV treat-
ment (Figures 6(h) and 6(j)). Also, after the overexpression
of CD36, the expression of ACOX1 related to fatty acid oxi-

dation was decreased in HepG2 cells and was reversed by FV
treatment (Figure 6(j)). We also utilized siRNA to knock
down the mRNA level of CD36 in HepG2 hepatocytes
(Figure 6(a)). Through oil red O staining and TG level
(Figures 6(b) and 6(e)), we observed that siRNAs targeting
CD36 significantly attenuated PA-induced lipid accumula-
tion, which was consistent with the role of FV. In addition,
lipid metabolism-related proteins, including PPARγ, SCD1,
ACACA, SREBP-1, and HMGCR, were downregulated by
the FV+siCD36 group (Figures 6(g) and 6(i)), while the
expression of ACOX1 was upregulated by siCD36 and FV.

Considering the important role of chronic inflammation
in NAFLD, we evaluated the influence of CD36 on the
inflammatory response. As shown in Figure 6(h), CD36
overexpression marked an increase in the mRNA expression
of IL-1β and TNF-α, which were ameliorated by FV treat-
ment, while the mRNA expression of IL-1β and CCL5 was
obviously suppressed by CD36 knockdown (Figure 6(g)).

3.7. Modulation of Gut Microbiota Composition in HFD-Fed
Mice by FV. In order to investigate the effects of FV treat-
ment on the gut microbiota, we used 16S rRNA genetic
sequencing to study the composition of the microbiota in
mice. From the PCoA results for the gut microbiota, we
found that the NFD group, the HFD group, and the FV-H
group were clustered into three isolated groups, and the
values for the FV-H group were clustered between the other
groups (Figure 7(a)). Moreover, the relative abundance of
bacteria at the phylum level in the three groups was calcu-
lated and shown in Figure 7(b). From the figure, the amount
of Firmicutes of mice in the HFD group is higher and the
amount of Bacteroidetes is lower. In addition, the Firmi-
cutes/Bacteroidetes ratio in the HFD group was higher than
that in the NFD group, but lower in the FV-H treatment
group (Figure 7(c)). In obese individuals, the Firmicutes/
Bacteroidetes ratio in gut microbiota is usually higher [24].
Therefore, the reduction of Firmicutes/Bacteroidetes ratio
in the FV-H group indicates that FV administration can
reverse this parameter of obesity.

Subsequently, in order to determine the changes in spe-
cific bacterial taxa after the intervention of FV supplementa-
tion, we used the linear discriminant analysis (LDA) effect
size (LEfSe) to identify the difference in the fecal microbiota
composition between the HFD group and the FV-H group.
At the genus level, the LDA score was used to analyze spe-
cific taxa in different test groups of the mice (Figures 7(d)
and 7(e)). Compared with the NFD group, the abundance
of g_Ileibacterium, g_Lachnospiraceae_UCG-006, g__Rumi-
nococcus_UCG_004, and g_Lachnoclostridium (Figure 7(d))
in feces of HFD-fed mice was increased, which has been
reported to be associated with liver and colon inflammation
and relevant mouse or human diseases, including metabolic
syndrome, gastrointestinal injury, and immune system
disinfection [25, 26]. The same result was obtained in the
abundance of g_Desulfovibrio, which is a key producer of
endotoxins in animal models of obesity (Figure 7(l)) [27].
The FV supplementation significantly reduced these genera
(Figure 7(e)). Correspondingly, the abundance of g_Alloba-
culum, g_Faecalibaculum, g_norank_f_Muribaculaceae, and
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g_Butyricicoccus was increased by FV treatment in HFD-fed
mice (Figures 7(f)–7(i)). However, the abundance of g_Ilei-
bacterium, g_Lachnospiraceae_UCG-006, and g_Ruminococ-
cus_torques_group was decreased by FV treatment in HFD-
fed mice (Figures 7(j), 7(k), and 7(m)). The bacterium of
g_Allobaculum, g_Faecalibaculum, and g_Butyricicoccus is
acted as the producer of short-chain fatty acids (SCFAs) in
the gut, such as formic acid, acetic acid, propionic acid,
butyric acid, and valerate acid. More and more studies have
emphasized on SCFAs’ alleviating effects on inflammation
and protective effects on gut barrier function [28]. It has
been proved that supplementing animals with butyrate can
reduce liver fat accumulation and liver inflammation [29].
The g_norank_f_Muribaculaceae also showed a strong nega-
tive correlation with several obesity-related indicators in
mice with a high-fat diet [30].

3.8. Correlations among the Gut Microbiota, Signaling
Pathways, and Metabolic Parameters. In order to study the
relationship between the fecal microbiota and the liver path-
ological condition, we compared 8 bacterial genera and 4

signaling pathways with 10 metabolic parameters using cor-
relation analyses. The results indicated that Muribaculaceae
had significantly negative correlation with the level of liver
index, body weight, serum TC, and liver TG. And Allobacu-
lum was negatively correlated with liver index, body weight,
serum IL-6, and serum TNF-α. In addition, Faecalibaculum
had an obviously negative correlation with liver index,
serum IL-1β, and AST, while Ruminococcus_torques_group
was positively correlated with these parameters. Moreover,
Lachnospiraceae_UCG_006, Desulfovibrio, and Ileibacterium
were positively correlated with liver index, liver weight, body
weight, serum TC, IL-6, IL-1β, and TNF-α (Figure 8(a)).

Consistently, the results also demonstrated that benefi-
cial bacterium was negatively correlated with the 4 signal-
ing pathways, including NAFLD pathway, MAPK signaling
pathway, fatty acid biosynthesis, and biosynthesis of unsat-
urated fatty acid. In particular, Muribaculaceae was signif-
icantly negatively correlated with all signaling pathways,
and Faecalibaculum was positively negatively correlated
with NAFLD and fatty acid biosynthesis signaling path-
way. However, Ileibacterium, Lachnospiraceae_UCG_006,
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Figure 1: UPLC-Q/TOF-MS/MS analysis. The total ion chromatogram (TIC) of FV of by UPLC-Q/TOF-MS/MS in the (a) negative and (b)
positive ion modes.
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Figure 2: Continued.
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and Ruminococcus_torques_group were significantly posi-
tively correlated with all signaling pathways, and Desulfovi-
brio was significantly positively correlated with NAFLD and
fatty acid biosynthesis signaling pathways (Figure 8(a)). As
shown in Figures 6(b) and 6(c), Allobaculum had a negative
linear correlation with IL-6, TNF-a, body weight, and liver
index (P < 0:05); Faecalibaculum had a negative linear corre-
lation with AST, TNF-α, and liver index (P < 0:05). More-
over, Figures 6(d) and 6(e) show that Lachnospiraceae_
UCG_006 had a positive linear correlation with TC, body
weight, and liver index (P < 0:05), while Desulfovibrio had a
positive linear correlation with IL-1β, IL-6, TNF-α, body
weight, and liver index (P < 0:05).

4. Discussions

The UPLC-Q/TOF-MS/MS identification result of Ficus
hirta Vahl. showed 54 compounds, including apigenin,
luteolin, psoralen, vitexin, and bergamot lactone. Previous
studies have found that apigenin can regulate hepatocyte
lipid metabolism and oxidative stress by adjusting PPARγ
[31], Nrf2 [31], and XO/NLRP3 pathways [32], thereby
attenuating HFD-induced NAFLD. Psoralen is one of the
main components of FV, which has the ability to relieve lipid
accumulation in PA-induced primary hepatocyte model of
NAFLD through downregulating the intracellular content
of TC and TG [33]. Simultaneously, the 8-methoxypsoralen,
a vitamin D receptor ligand with a promising antisteatosis
action, can relieve the symptoms of NAFLD by binding to
vitamin D receptor [27]. Furthermore, other ingredients,
such as naringenin [34], luteolin [35], and bergapten [36],
can also improve NAFLD by relieving liver inflammation
or regulating lipid metabolism. Therefore, we speculate that
FV may play the role of treating NAFLD through the above
components.

In this study, our results proved that natural herbs Ficus
hirta Vahl. can prevent and treat NAFLD using in vitro and
in vivo models. In comparison with the mice in the HFD
group, FV administration alleviated obesity, ameliorated
the accumulation of lipid, and attenuated liver inflammation
and lipogenesis in HFD-fed mice. Moreover, we firstly dis-
covered that CD36 as a potential target of FV for NAFLD
and then FV exerted pharmacologic effects against NAFLD
partly by reducing the expression of CD36 to improve lipid
metabolism and inflammation. Meanwhile, we revealed that
the regulation of the gut microbiota structure by FV supple-
mentation can improve liver inflammation in HFD-fed
mice. These results have demonstrated that FV may be used
as a candidate to treat lipid metabolism including NAFLD
and inflammatory disorders in the future (Figure 9).

Accumulation of lipid in hepatocyte is an important indi-
cator for the pathogenesis of NAFLD [37]. In hepatocytes,
fatty acids are mainly stored and transported in the form of
TG [38]. However, TG can be excessively accumulated in
hepatocytes in NAFLD due to the metabolic disorder of fatty
acid [39]. Our data have indicated that compared with NFD-
fed mice, TG contents of liver tissue increased obviously in
HFD-fed mice, as shown in Figure 3(h), which is consistent
with the above results. In contrast, FV supplementation alle-
viated this symptom in a dose-dependent manner, which
indicated that FV was a great contributor to suppress the
TG accumulation. Besides, the outcome of oil red O staining
revealed that FV supplementation remarkably suppressed the
formation of lipid droplet in liver tissue of HFD fed mice.

To provide further insights into the role of FV in hepatic
lipid metabolism, we studied the expression of genes related
to lipid metabolism using both in vivo and in vitro models.
SREBP-1 and its downstream proteins involving ACACA
and SCD1 are important transcription factors that regulate
the synthesis of fatty acid. CPT1α, ACOX1, and PPARα
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Figure 2: Amelioration of lipid accumulation in PA-induced HepG2 cells by FV. (a) Oil red O was used to measure the level of lipid
accumulation (magnification 100x, scale bar = 250 μm). (b) The oil red O-positive area was analyzed and quantified. (c–j) The relative
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are associated with fatty acid oxidation, and CD36 and
FABP1 are related to lipid uptake. Previous study suggested
that dioscin can help ameliorate NAFLD by inhibiting the
expression of ACACA, SCD1, and SREBP1 of the liver in
HFD-fed mice [40], which is in agreement with our results
on the effect of FV treatment. Additionally, we found that
after FV treatment, the expression of CPT1α and PPARα
in mice was significantly upregulated. These findings were
similar to previous studies [41]. All the outcomes above con-
firmed that FV contributed to lipid metabolism.

In order to comprehensively reveal the role of FV in
NAFLD and the associated mechanism, we conducted
RNA-seq analysis of liver tissues in the HFD-fed mice and
corresponding diet mice with FV supplementation. GSEA
revealed transcriptional levels involved in significant regula-
tion of lipid metabolism, inflammation, and fibrosis. CD36 is
a central regulator for cells metabolism, lipid maintenance,
and glucose metabolism. In addition, CD36 transduces
signals to mediate its role in inflammation [42] and lipid
metabolism, thus accelerating the progression of metabolic
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Figure 3: Effects of FV on accumulation of liver fat and lipid levels in serum in HFD-fed mice. (a) Body weight, (b) macroscopic observation
of livers in subjects in different groups, (c) weekly food intake per mouse in each group, (d) liver index, (e) light microscopic H&E image and
oil red O staining image of liver tissues of subjects in different groups (x100 original magnification, scale bar = 250 μm; 400x original
magnification, scale bar = 50μm), H&E score and oil red O score, (f) serum TC, (g) liver TC, (h) liver TG, (i) serum AST, (j) ALT, and
(k) serum LDL-C. The data are expressed in the format of mean ± SD (n = 8, 10, 10). #P < 0:05 means there is a significant difference
between the NFD group and the HFD group. ∗P < 0:05 means the difference between the HFD group and the FV-L group or the FV-H
group is significant. NFD: normal fat diet group; HFD: high-fat diet group; FV-L group: high-fat diet with FV administration at dose of
5 g medicinal materials/kg body weight; FV-H group: high-fat diet with FV at dose of 10 g medicinal materials/kg body weight.
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diseases including obesity, atherosclerosis, NAFLD, and type
2 diabetes [43]. From the RNA-seq results, FV treatment
significantly downregulated the mRNA level of CD36, which
may use a feed-forward loop to facilitate the entry of fatty
acids, thereby providing positive effects on its own de novo
synthesis and functioning as a ligand for PPARγ. PPARγ
increases the gene expression of essential proteins that
support lipid droplet expansion [44] and it is expressed at
low levels in normal liver, whereas increased expression of
PPARγ is a common feature of hepatic steatosis [45]. Impor-
tantly, PPARγ can activate the transcription of CD36. CD36
silencing ameliorates lipid accumulation and improves
hepatic steatosis by restoring the reduction in fatty acid
oxidation in vitro [46]. CD36 has been implicated in inflam-
matory signaling induced by ox-LDL [47]. CD36 can bind to
ox-LDL and activate the JNK signaling pathway to induce
inflammation; in addition, CD36 can mediate the produc-
tion of ROS by activating the NLRP3 inflammasome [48].
Our data proved that CD36 intensified the accumulation of
the hepatocyte lipid in NAFLD. Interestingly, FV suppressed
the expression and activity of CD36, and FV treatment

rescued the exacerbated effects of CD36 on lipid metabolism
and inflammation. After the HFD-fed mouse group and PA-
induced HepG2 cells were treated with FV, the genes related
to lipid synthesis, including SREBP-1, ACACA, and SCD1,
were apparently decreased, but the genes involved in fatty
acid oxidation, such as CPT1α, ACOX1, and PPARα, were
significantly elevated. These results indicated that FV could
be a potential candidate for NAFLD by attenuating the over-
accumulation of lipid.

A few mechanisms have been suggested for the gut
microbiome and NAFLD, including the gut microbiome
dysbiosis that shifts bacterial components and results in
hepatic inflammation. Also, the gut microbiota may produce
different metabolites that cause NAFLD susceptibility [49].
In addition, some species of microbes can produce specific
enzymes to ferment nutrients into an absorbable form. For
example, the conversion of indigestible carbohydrates into
SCFAs [50] may have anti-inflammatory and immuno-
modulatory effects [51]. Otherwise, when bacteria regulate
the intestinal permeability, certain species may promote the
“leaky gut.” In this case, metabolites related to microbes enter
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Figure 4: Effects of FV on liver lipogenesis-related markers in the mice fed with HFD. (a–h) The relative mRNA expression levels of Acaca,
Cd36, Cpt1α, Srebp-1, Hmgcr, Pparα, Pparγ, and Scd1 were determined by qRT-PCR. (i) The lipid metabolism relevant protein levels of
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Figure 5: Key targets and pathway between the NFD group, the HFD group, and the FV-H group revealed by RNA-seq analyses. (a) PCA of
the RNA-seq data from the NFD group, the HFD group, and the FV-H group. (b) Volcano plot indicating the DEGs (red, upregulated genes;
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the bloodstream from the gut. Consequently, the body pro-
duces cytokines and other mediators to initiate an inflamma-
tory response [52]. Our analysis on the fecal microbiota has
shown that FV can improve the gut microbiota dysbiosis in
the mice fed with HFD. Also, it is suggested that a high Firmi-
cutes/Bacteroidetes ratio increases the energy uptake and
results in obesity because the members of the phylum Firmi-
cutes are more efficient than the members of the Bacteroidetes
in helping the host obtain calories from food [53]. However,
the relative abundance of bacteria at the phylum level
revealed that FV significantly reduced Firmicutes/Bacteroi-
detes ratio in comparison with the HFD group.

Many studies have aimed at identifying the specific
bacteria changes that lead to NAFLD. In our study, after
FV administration, at least eight microbiota genera that
reside have been changed in the gut. Among them, Allobacu-
lum, Faecalibaculum, and Butyricicoccus have been identi-
fied as SCFA-producing bacterium and are inversely
associated with different proinflammatory markers. Butyrate
is an anti-inflammatory metabolite with the known inhabi-
tation effect on the producing pathway of proinflammatory
cytokines [54]. SCFAs inhibit HDAC (histone deacetylase)
activity, promote histone acetylation, affect inflammatory
response, and contribute to intestinal homeostasis [55]. As

bacterial abundance increased sequentially, Ileibacterium,
Lachnospiraceae_UCG_006, Desulfovibrio, and Ruminococ-
cus_torqus_group increased with the progression of NAFLD.
This phenomenon is in line with the study result on the
mouse model that Desulfovibrio is strongly correlated with
obesity, metabolic syndrome, and inflammation [56]. Ilei-
bacterium, a novel member of the family Erysipelotricha-
ceae, was upregulated by LPS induction [57], but its
abundance in HFD-fed mice was downregulated by FV
treatment. Lachnospiraceae_UCG_006 is the main genus of
Lachnospiraceae and has a positive correlation with the
pathological characteristics of colitis [58]. These results have
indicated that a high-fat diet may lead to imbalance of the
gut microecology and activate intestinal pathogenic bacteria
to cope with inflammation, and then, the increase in abun-
dance of beneficial bacteria might be caused by the therapeu-
tic effect of the FV supplementation diet.

In the liver, the mitogen-activated protein kinase (MAPK)
signaling pathway is important in regulating metabolism [59],
as the obesity and the related inflammatory state in insulin-
responsive tissues activate the stress-responsive MAPKs, and
the hypothesis that MAPKs signaling pathway drives liver
metabolic dysfunction has been accepted [60]. In addition,
fatty acids accumulate in the liver by hepatocellular uptake
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Figure 7: Diversity of gut microbiota in mouse models induced by different diets. (a) PCoA result structure of each group. (b) Taxonomic
distribution of bacterial communities of NAFLD mouse fecal samples at the phylum level. (c) Firmicutes/Bacteroidetes ratio at the phylum
level. (d) LDA score of differentially abundant taxa between the NFD group and the HFD group. (e) LDA score of differentially abundant
taxa between the HFD group and the FV-H group. (f) Relative abundance of g_Allobaculum, g_Faecalibaculum, g_Lactococcus, g_norank_f_
Muribaculaceae, g_Ileibacterium, g_Lachnospiraceae_UCG-006, g_Desulfovibrio, and g_Ruminococcus_torques_group at the genus levels.
n = 8, 10, 10; #P < 0:05 vs. the NFD group, ∗P < 0:05 vs. the HFD group.
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and biosynthesis. The metabolic disorders disrupt the balance
of hepatic fatty acid metabolism, thus usually causing the
accumulation of TG in the liver and NAFLD [38]. Our

research results indicated that FV suppressed the MAPK sig-
naling pathway and fatty acid biosynthesis, thereby attenuat-
ing the severity state of NAFLD in HFD-fed mice.
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Figure 8: Correlation analyses between metabolic parameters and genera microbiota. (a) Spearman correlation heat map between 8 genera
microbiota and 10 metabolic parameters; Spearman correlation heat map between 8 genera microbiota and 4 signaling pathways. (b–e)
Linear regression analyses between metabolic parameters and genera microbiota. Significant correlations were marked by ∗P < 0:05.
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5. Conclusion

The results of this study revealed that FV treatment can
commendably ameliorate lipid metabolism and hepatic
inflammation by regulating CD36 and alleviate the progres-
sion of NAFLD by regulating the composition and potential
function of the gut microbiota. Ficus hirta Vahl. is an ideal
medicine to improve the pathophysiology of diet-induced
metabolic diseases and NAFLD.
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