
Ascl1/Mash1 Is a Novel Target of Gli2 during Gli2-
Induced Neurogenesis in P19 EC Cells
Anastassia Voronova, Anna Fischer, Tammy Ryan, Ashraf Al Madhoun, Ilona Sylvia Skerjanc*

Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada

Abstract

The Sonic Hedgehog (Shh) signaling pathway is important for neurogenesis in vivo. Gli transcription factors, effector
proteins of the Shh signaling pathway, have neurogenic properties in vivo, which are still poorly understood. To study the
molecular basis of neurogenic properties of Gli2, we used a well-established embryonic stem cell model, the P19 embryonal
carcinoma (EC) cell line, which can be induced to differentiate into neurons in the presence of retinoic acid (RA). We found
that, in the absence of RA, overexpression of Gli2 induced P19 EC cells to differentiate into neurons, but not astrocytes
during the first ten days of differentiation. To our knowledge, this is the first indication that the expression of Gli factors can
convert EC cells into neurons. Furthermore, Gli2 upregulated expression of the neurogenic basic helix-loop-helix (bHLH)
factors, such as NeuroD, Neurog1 and Ascl1/Mash1 in P19 EC cells. Using chromatin immunoprecipitation assays, we
showed that Gli2 bound to multiple regulatory regions in the Ascl1 gene, including promoter and enhancer regions during
Gli2-induced neurogenesis. In addition, Gli2 activated the Ascl1/Mash1 promoter in vitro. Using the expression of a
dominant-negative form of Gli2, fused to the Engrailed repression domain, we observed a reduction in gliogenesis and a
significant downregulation of the bHLH factors Ascl1/Mash1, Neurog1 and NeuroD, leading to delayed neurogenesis in P19
EC cells, further supporting the hypothesis that Ascl1/Mash1 is a direct target of Gli2. In summary, Gli2 is sufficient to induce
neurogenesis in P19 stem cells at least in part by directly upregulating Ascl1/Mash1. Our results provide mechanistic insight
into the neurogenic properties of Gli2 in vitro, and offer novel plausible explanations for its in vivo neurogenic properties.
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Introduction

Central nervous system (CNS) development is orchestrated by

numerous signaling pathways, including the Shh signaling

pathway, which in mammals is mediated by the transcription

factors Gli 1, 2, and 3 (reviewed in [1–3]). During neurogenesis in

vivo, Shh-mediated signaling in the notochord and floor plate is

essential and sufficient for the specification of ventral cell types in

CNS [4–9]. Based on mammalian knockout (KO) experiments

reviewed in [1], Gli1 is a transcriptional activator that is

dependent on Gli2 and/or Gli3-mediated transcription [1]. Gli2

is a primary mediator of Shh signaling and mainly functions as a

transcriptional activator [1], however, it was shown to have

repressor functions in CNS and skeletal muscle development

[10,11]. Gli3 is mainly a transcriptional repressor [1], but it also

has been shown to have activator functions in embryonic

development [9–11].

Gli proteins are known to have individual as well as

combinatorial functions [12]. Although Gli1 KO mice do not

exhibit any phenotype [13], zebrafish embryos lacking Gli1 show

partial ventral CNS patterning defects [14]. Mice lacking Gli3

protein function exhibit neural tube closure defects [15,16].

Dysregulation of Gli2 is lethal and causes complete loss of floor

plate and reduction of V3 interneurons [17,18]. Complimentary

functions of Gli proteins are evidenced by their ability to rescue, at

least in part, each other’s KO phenotype [9,11,13,19]. Moreover,

Gli proteins were recently shown to cooperate during neurogenesis

in vivo, creating a dynamic physical network [20]. Thus, all Gli

proteins participate in early CNS development; however, teasing

out the specific roles for each Gli factor has been somewhat

complicated.

All Gli proteins have neurogenic properties in vivo as demon-

strated by several studies [9,10,20,21]. Xenopus embryos injected

with Gli1, Gli2 or Gli3 showed concentration-dependent ectopic

neurogenesis. Of the three family members, Gli2 had the strongest

neurogenic properties [21]. It was later found that Gli2 can induce

formation of motor neurons while inhibiting floorplate and neural

crest differentiation [10]. In a recent study, Gli2, as well as other Gli

factors, were shown to regulate the expression of some neurogenic

basic helix-loop-helix (bHLH) genes such as Ncam, Neurog1 and

NeuroD [20]. This correlates with the expression profile of Gli

proteins in animal cap and neural plate primordium, which

precedes the expression of neurogenic bHLH genes [22]. This

expression pattern is also observed during neurogenesis in vitro,

where expression of Gli transcription factors coincides with

expression of Sox1/2 [23], followed by expression of NeuroD1

(referred to as NeuroD herein), Ascl1 (also known as Mash1) and

culminating in NeuN and b-III tubulin (Tuj1) [24–26].

Ascl1 belongs to bHLH transcription factors of the achaete-scute

family and is important for the successful differentiation of neural
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progenitors in vivo [27–30]. Ascl1 has recently gained new

attention as a master-regulator of neurogenesis in vitro [31]. Ascl1

was shown to convert mouse embryonic and postnatal fibroblasts

into induced neurons [31], complementing previously described

induction of neurogenesis in P19 EC cells [32]. Ascl1 has also been

proposed to be a downstream target of Shh signaling in adult

neural progenitor cells [33], although whether the effect is direct

or indirect is unknown.

Although the neurogenic properties of Gli transcription factors

in primary neurogenesis have been established [10,20,21], the

mechanistic insight into how Gli factors regulate the expression of

neurogenic bHLH genes, such as Ascl1, and induction of

neurogenesis, remains unknown. Since Gli2 was shown to have

the strongest neurogenic properties in Xenopus [21], we aimed to

study the molecular mechanism of Gli2-induced neurogenesis in a

well-established embryonic stem cell model, the P19 EC cell line.

P19 EC cells are isolated from a teratocarcinoma created by the

transplantation of E7.5 mouse embryo cells into the testes of a

C3H/He mouse [34]. P19 EC cells resemble mouse embryonic

stem (mES) cells as they maintain a pluripotent, undifferentiated

state when cultured, and can differentiate into three germ layers,

ectoderm, endoderm and mesoderm upon addition of various

chemical stimuli [34–36]. When P19 EC embryoid bodies are

treated with RA, they differentiate into neurons on day 6, and

astrocytes on day 10 [35]. Neurogenesis in P19 cells has been

extensively studied [24,37–40] and is similar to neurogenesis in

mES cells [41,42]. In this study we have found that overexpression

of Gli2 induced neurogenesis, but not gliogenesis, in P19 EC cells

during the first ten days of differentiation. We also found that Gli2

induced the expression of neurogenic bHLH factors such as

NeuroD, Neurog1 and Ascl1. Conversely, a repressive dominant-

negative Gli2 factor resulted in decreased gliogenesis and

downregulated expression of NeuroD, Neurog1 and Ascl1 leading

to delayed neurogenesis in P19 EC cells. Finally, Gli2 was found to

bind directly to Ascl1 gene regulatory elements during Gli2-

induced neurogenesis in P19 EC cells and was able to activate the

Ascl1 promoter in vitro. Therefore, expression of Gli2 can convert

EC cells into neurons at least in part through the direct

upregulation of Ascl1.

Materials and Methods

P19 EC cell culture
P19 EC cells (ATCC, #CRL-1825) and P19 EC cells stably

overexpressing either Gli2, a dominant negative fusion protein of

Gli2 with the engrailed repression domain, or an empty vector,

termed P19[Gli2], P19[Gli/EnR], or P19[Control], respectively,

were described in [43]. Cells were cultured as described previously

[44] and differentiated in 1% DMSO (vehicle) (Sigma-Aldrich,

Canada) with or without 0.5 or 1 mM RA (Sigma Aldrich,

Canada) as in [45,46]. Briefly, cells were aggregated or cultured in

monolayer in the presence of chemical stimuli at the density of

100,000 cells/ml. RA and/or DMSO was added for the first 4

days of aggregation or throughout monolayer differentiation.

Media was changed every other day.

Immunofluorescence
Antigenic analysis of differentiated cells was performed using

neurofilament 68- (NF68) (Sigma-Aldrich, Canada), Tuj1- (b III

tubulin) (Research Diagnostics, MA) or glial fibrillary acidic

protein- (GFAP) (Zymed Laboratories, CA) specific antibodies as

described in [47–49]. Cy3- or FITC-conjugated secondary

antibodies (Jackson Immuno Research Laboratories, USA) were

used for detection of indirect immunofluorescence. Briefly, cells

were fixed using ice-cold methanol or 4 percent paraformaldehyde

(PFA) (Fischer Scientific, Canada), and incubated with primary

and secondary antibodies in phosphate buffer saline (PBS) with or

without 3% BSA (Serologicals Proteins Inc, IL) and 0.3% Triton

X-100 (Bio-Rad Laboratories, Canada). Hoechst dye was used as a

nuclear marker. Indirect immunofluorescence was captured using

a Leica DMI6000B microscope (Leica Microsystems GmbH,

Germany). Images were collected at 400x magnification using a

Hamamatsu Orca AG camera (Hamamatsu Photonics, Germany)

and processed using Velocity 4.3.2 software (Perkin Elmer,

Canada).

Quantitative Polymerase Chain Reaction (QPCR) analysis
RNA from differentiating P19 EC cells was harvested using

RNeasy Mini Kit (Qiagen, Canada) and analyzed using real-time

quantitative PCR (QPCR) as described in [48,50]. Briefly, 1 mg of

RNA was reverse-transcribed (RT) to synthesize cDNA using

Quantitect Reverse Transcription Kit (Qiagen, Canada). One-

twentieth of the RT reaction was used as a template for QPCR

amplification using the specific primers listed in Table 1 and the

FastStart SYBR Green kit (Roche Applied Sciences, Canada) or

Promega GoTaq qPCR Master Mix (Promega, WI). Data was

acquired using ABI7300 and ABI7500 QPCR (Applied Biosys-

tems, CA) or Eppendorf Realplex2 (Eppendorf, Canada) instru-

ments, normalized to b-actin and analyzed as described in [51].

Data represents mean 6 SEM from at least two independent

biological experiments and using two clonal populations per

cell line.

Chromatin immunoprecipitation (ChIP) analysis
150 mg of chromatin from day 4 differentiating P19[Gli2] cells

in the absence of RA was immunoprecipitated using 2 mg of Gli2-

specific (Santa Cruz, G-20) or goat IgG non-specific antibodies

(Invitrogen, Canada) and analyzed as described in [52]. Briefly,

cells were cross-linked with 4 percent formaldehyde (Fischer

Scientific, Canada) and chromatin was sheared as described in

[52]. Sheared chromatin was incubated with Gli2 or IgG

antibodies and the immune complexes were captured using

protein G sepharose beads as described in [52]. Gli2 or IgG-

bound chromatin was quantified as a percent chromatin input

Table 1. Oligonucleotide sequences of primers utilized for
real-time QPCR.

Target Forward primer Reverse Primer

Ascl1 ACTTGAACTCTATGGCGGGTT CCAGTTGGTAAAGTCCAGCAG

b-actin AAATCGTGCGTGACATCAAA AAGGAAGGCTGGAAAAGAGC

GFAP CCAAGCCAAACACGAAGCTAA CATTTGCCGCTCTAGGGACTC

Gli/EnR GGAGAGTGTGGAGGCCAGTA CTGGGTTCCGGCTGTCTCT

Gli1 CCAAGCCAACTTTATGTCAGGG AGCCCGCTTCTTTGTTAATTTGA

Gli2 CAACGCCTACTCTCCCAGAC GAGCCTTGATGTACTGTACCAC

Gli3 AGCAACCAGGAGCCTGAAGTC GTCTTGAGTAGGCTTTTGTGC

MEF2C TCTGTCTGGCTTCAACACTG TGGTGGTACGGTCTCTAGGA

Nanog TCTTCCTGGTCCCCACAGTTT GCAAGAATAGTTCTCGGGATGAA

Nestin CCCTGAAGTCGAGGAGCTG CTGCTGCACCTCTAAGCGA

NeuroD GCATGCACGGGCTGAACGC GGGATGCACCGGGAAGGAAG

Neurog1 CCAGCGACACTGAGTCCTG CGGGCCATAGGTGAAGTCTT

Sox2 GACAGCTACGCGCACATGA GGTGCATCGGTTGCATCTG

doi:10.1371/journal.pone.0019174.t001

Ascl1 Is Direct Target of Gli2 during Neurogenesis
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using QPCR analysis as described above. Data represents mean 6

SEM from three independent biological experiments. Primers

listed in Table 2 were designed for specific conserved Gli binding

motifs, which were identified as described in [53].

Immunoblot analysis
P19[Control] and P19[Gli2] cells were differentiated without

RA as described above. On days 0, 4, 6 and 9 cells were washed

twice with ice-cold PBS and lysed with RIPA buffer containing 1x

protease inhibitor cocktail (Roche, Canada) and 0.5 mM phenyl-

methanesulfonylfluoride (PMSF) (Sigma-Aldrich, Canada). Lysates

were clarified by centrifugation for 15 min at 13 krpm. 20 mg of

total protein was resolved using 4–12% gradient NUPAGE gels

(Invitrogen, Canada) according to the manufacturer’s protocol

using MOPS SDS running buffer. Resolved proteins were

transferred to polyvinylidene fluoride (PVDF) or nitrocellulose

membranes, blocked in 5% milk, and reacted with Gli2- [54],

NF68- (Sigma-Aldrich, Canada), a-tubulin- (Sigma-Aldrich,

Canada) or b-actin-specific antibodies (Sigma-Aldrich, Canada).

Signal was detected using Horseradish Peroxidase (HRP)-conju-

gated secondary anti-mouse (Cell Signalling, MA) or anti-rabbit

(Santa Cruz, CA) antibodies, followed by a chemiluminescence

reaction using Pierce ECL substrate (Fisher Scientific, Canada).

Ascl1 promoter analysis
HEK-293 cells were plated at a density of 300,000 cells per

35 mm tissue culture grade dish and transiently co-transfected

24 h later using FuGENE (Promega, WI) with a total amount of

4 mg of DNA with or without Gli2 and/or Gli/EnR expression

plasmid described in [43] and a luciferase expression vector driven

by Ascl1-8 kb promoter (termed Ascl1-luc) described in [55].

Transfection efficiency was monitored by transfecting Renilla as

described in [52]. 24 h after transfection, cells were washed twice

with ice-cold PBS and lysed according to the Dual Luciferase Kit

protocol (Promega, WI). Luciferase activity was assayed using 10–

15 ml of lysate and LmaxII384 luminometer (Molecular Devices,

USA).

Statistical analysis
ANOVA followed by post-hoc Tukey HSD test was performed

using XLSTAT software (Addinsoft, NY) to determine statistical

significance between mean values of two groups (*, p,0.05; **,

p,0.01).

Results

Gli2 is expressed during neurogenesis in P19 EC cells
We first sought to determine whether Gli2 is expressed during

endogenous P19 EC neurogenesis. P19 EC cells were aggregated

for 4 days in the presence of DMSO, with or without RA, and

then plated into tissue culture dishes in the absence of drug. Cells

were fixed on days 6 and 10 for examination by immunofluores-

cence. P19 cells were able to differentiate into Tuj1- and NF68-

positive neurons by day 6 as well as GFAP-positive astrocytes by

day 10 in the presence, but not in the absence, of RA (Fig. 1A–

1C), in accordance with previous reports [35].

Neurogenesis was also followed by QPCR analysis of the

expression of several neurogenic markers as well as by the loss of

embryonic stem cell pluripotency markers, Nanog and Sox2

[56,57] (Fig. 1D) during a 10-day time course of P19 cell

differentiation with (+RA) and without RA (-RA). Expression of

Nanog and Sox2 was downregulated by days 1–2 or 2–3 of

differentiation + or 2RA, respectively (Fig. 1D, panels Nanog and

Sox2). Thus P19 EC cells lost pluripotency markers during

differentiation under both conditions. Furthermore, Sox2 is also a

marker of neural progenitor cells in vitro [58] and Sox2 transcripts

were detected on days 3–5 of differentiation +RA but not –RA,

supporting the RA-induction of neural progenitors cells in these

cultures (Fig. 1D, panel Sox2). Expression of Nestin, which is

present in neural, glial and muscle progenitor cells [59,60], was

upregulated by day 3 or 5 of differentiation + or – RA, respectively

(Fig. 1D, panel Nestin). Notably, MEF2C, which is expressed

during P19 EC neurogenesis [61,62], was upregulated on days 1–3

of differentiation +RA but not –RA (Fig. 1D, Panel MEF2C).

Subsequent upregulation of MEF2C on days 4–10 could be

indicative of cardiac or skeletal myogenesis in –RA differentiation

[63]. Expression of the neuronal bHLH factors, NeuroD, Ascl1,

and Neurog1, peaked from days 3–5 of differentiation +RA but

not - RA (Fig. 1D, panels NeuroD, Ascl1 and Neurog1).

Therefore, neuronal markers were expressed during days 3–5

and their expression was specific to RA-induced differentiation of

P19 cells.

The expression of GFAP, a glial marker [35], was specific to

RA-induced differentiation and was upregulated starting at day 7

(Fig. 1D, panel GFAP). Transcription factors Gli1-3 were

expressed throughout the differentiation and were elevated during

days 2–6 of RA-induced differentiation (Fig. 1D, panels Gli1, Gli2

and Gli3). Therefore, Gli factors, including Gli2, are expressed

during P19 EC neurogenesis. The summary of gene expression

from Fig. 1 is listed in Table 3.

Gli2 upregulates expression of neurogenic bHLH factors
and induces neurogenesis in P19 EC cells

To test whether Gli2 has neurogenic properties in stem cells, we

first aimed to establish a stem cell model, where parental

differentiating stem cells would fail to undergo neurogenesis. If

overexpression of Gli2 resulted in neurogenesis in the context of

this model, it would indicate that Gli2 possessed neurogenic

properties in vitro. Based on the results from Fig. 1, -RA

differentiation was chosen to study the effect of Gli2 on

neurogenesis.

We stably overexpressed Gli2 in P19 EC cells, termed

P19[Gli2], and examined P19[Gli2] cells differentiated –RA for

the presence of neurogenic markers by immunofluorescence and

western blot analysis (Fig. 2). On day 6 of differentiation, Tuj1-

and NF68-positive cells with neuronal morphology were seen in

P19[Gli2] cultures, indicating that neurogenesis was indeed

induced (Fig. 2A, panels III and IV and Fig. 2B, panels III and

IV). P19[Control] cells failed to undergo neurogenesis under the

same conditions (Fig. 2A, panels I and II and Fig. 2B, panels I and

II). On day 10 of differentiation, the absence of GFAP-positive

cells in both P19[Control] (Fig. 2C, panels I and II) and P19[Gli2]

(Fig. 2C, panels III and IV) cells indicated no or delayed

Table 2. Oligonucleotide sequences of primers utilized for
ChIP experiments.

Target
gene Forward primer Reverse Primer

Ascl1 A CTGGACTCACTGGGTGGTCT AGAGGCTGCTAGCCATGTGT

Ascl1 B TCTTTCTCTGTCGCCATTCA GGACGCTCCGGTTTGTATAG

Ascl1 C TTCTTTGAGGCCTCTTCTTCA TGAAATGCTGACCTCTTCCA

Ascl1 D CCTAAGATCAATGGGCCAAA CCCACCCAACTGTCCTAGAG

Gli1 GCACCCCCTCTCTAGCTTCTATC GGACCACCCGCGAGAAGCGCAAACT

doi:10.1371/journal.pone.0019174.t002

Ascl1 Is Direct Target of Gli2 during Neurogenesis
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gliogenesis. Thus, overexpression of Gli2 induced neurogenesis but

not gliogenesis in aggregated P19 cells in the first ten days of

differentiation.

To estimate the extent of neurogenesis induced by exogenous

Gli2, Tuj1- and NF68-positive cells were counted and normalized

to the number of Hoechst stained nuclei. P19[Gli2] cells

differentiated into neurons by day 6, and they represented about

4 percent of total cells (Fig. 2D). No neurons were detected in

P19[Control] cells differentiated under the same conditions

(Fig. 2D). This result was confirmed by immunoblot analysis

Figure 1. Induction of neurogenesis in P19 EC cells by RA. P19 cells were differentiated using embryoid bodies in the presence of RA as
described in [35]. (A): Formation of Tuj1-, and NF68- positive cells with neuronal morphology on day 6 and GFAP-positive cells with astrocyte
morphology on day 10 of RA-induced (+RA) differentiation. Nuclei were stained with Hoechst, scale bar is 30 mM. (B): P19 EC cells fail to form Tuj1-,
NF68- and GFAP- positive cells in the absence of RA (-RA) on the days indicated. Nuclei were stained with Hoechst, scale bar is 30 mM. (C): Tuj1-, NF68-
and GFAP-positive cells from (A–B) were counted in 10 random fields and expressed as % of the total number of nuclei (3,000 nuclei). (D): The
temporal pattern of expression of indicated genes during P19 EC differentiation +/2RA. Representative QPCR analysis is shown in which fold changes
are relative to day 0. Error bars represent +/2 SEM.
doi:10.1371/journal.pone.0019174.g001

Ascl1 Is Direct Target of Gli2 during Neurogenesis
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using NF68 antibodies, which showed an induction of NF68

protein in two clonal populations of P19[Gli2] cells when

compared to the P19[Control] cell line (Fig. 2E). P19 EC cells

differentiated in the presence of RA served as a positive control

(Fig. 2E). Gli2 protein expression was confirmed by western blot

analysis to be at higher levels in P19[Gli2] cells compared to

control cells on days 4, 6, and 9, with the highest levels of Gli2

protein observed on day 4 (Fig. 2F). Thus, the expression of

exogenous Gli2 in P19 EC cells leads to induction of neurogenesis,

thereby confirming the neurogenic properties of Gli2 in vitro.

Table 3. Summary of gene expression for P19 cells treated + and 2 RA, P19[Gli2] cells treated - RA, and P19[Gli/EnR] cells treated +
RA.

Cell line and
treatment Gli1 Gli2 Gli3 Gli/EnR Nanog Sox2 Nestin MEF2C NeuroD Ascl1 Neurog1 GFAP Ref

P19 + RA + + + N/A 2 + + + + + + + Fig. 1D

P19 - RA + + + N/A 2 2 + + 2 2 2 2 Fig. 1D

P19[Gli2] -RA + ++ + N/A 2 +/2 + +# + + + +/2 Fig. 3 and unpublished
observations

P19[Gli/En] +RA 2 2 2 ++ +/2* 2 2 + 2 2 2 2 Fig. 5

‘‘++’’ means high upregulation as a result of overexpression, ‘‘+’’ means upregulation, ‘‘+/2’’ means no change, and ‘‘2’’ means downregulation of gene expression as
compared to day 0. ‘‘N/A’’ means not applicable. For P19[Gli2] and P19[Gli/EnR] cell lines gene expression was compared to their respective control cell lines.
*Expression of Nanog was downregulated only in undifferentiated P19[Gli/EnR] cells;
#Voronova and Skerjanc, unpublished observations.
doi:10.1371/journal.pone.0019174.t003

Figure 2. Expression of Gli2 induces neurogenesis in P19 EC cells. (A–C): P19[Gli2] and P19[Control] cells were stained with Tuj1 and NF68
antibodies on day 6 or GFAP antibodies on day 10 of –RA differentiation. Nuclei were stained with Hoechst, scale bar is 30 mM. (D): Tuj1-, NF68- and
GFAP-positive cells from (A)–(C) were counted in 10 random fields and expressed as a percentage of the total number of nuclei (10,000 cells; n = 4)
(**p,0.01, n.s. = not significant). (E): NF68 immunoblot using total protein from day 6 differentiated P19, P19[Control] and two clonal populations of
P19[Gli2] cell lines. P19 cells were differentiated in the presence of RA and served as a positive control. a-tubulin served as a loading control. (F): Total
protein from –RA differentiating P19[Control] and P19[Gli2] cells was harvested on the days indicated, separated and immunoblotted with Gli2-
specific antibodies. b-actin served as a loading control. Asterisk denotes non-specific binding of Gli2 antibodies.
doi:10.1371/journal.pone.0019174.g002

Ascl1 Is Direct Target of Gli2 during Neurogenesis
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To determine the expression pattern of neuronal markers

induced by Gli2, we performed a time-course of QPCR gene

expression analysis of markers from Fig. 1D. Overexpression of

Gli2 was fairly stable throughout the differentiation (Fig. 3, panel

Gli2). Upregulation of Gli1 and Gli3 expression on day 3 in

P19[Gli2] cells as compared to the control cell line (Fig. 3, panels

Gli1 and Gli3) suggested that overexpression of Gli2 activated the

Shh signaling pathway. The expression of Nanog was signifi-

cantly decreased in P19[Gli2] cells by day 2 (Fig. 3, panel

Nanog), compared to P19[Control] cells, resembling the

accelerated loss of Nanog observed during RA-induced differen-

tiation (Fig. 1D). Sox2 was downregulated in both P19[Control]

and P19[Gli2] cells by day 2 (Fig. 3, panel Sox2), indicating a loss

of pluripotency.

Notably, later expression of Sox2 in P19[Gli2] and control cells

remained low during most of the differentiation, suggesting that

Gli2 did not induce neurogenesis via Sox2 upregulation (Fig. 3,

panel Sox2). Furthermore, the expression of Nestin, which is

expressed in neuro-glial and muscle progenitor cells [59,60], was

significantly downregulated on day 3, but upregulated on day 5 in

P19[Gli2] cells (Fig. 3, panel Nestin). Finally, the expression of

neurogenic bHLH factors NeuroD, Ascl1 and Neurog1 was

upregulated by overexpression of Gli2 by days 5 or 6 (Fig. 3,

panels NeuroD, Ascl1 and Neurog1). This correlated with the

induction of neurogenesis as observed in Fig. 2. The expression of

GFAP was not changed by overexpression of Gli2 even on day 9 of

differentiation (Fig. 3, panel GFAP), which correlated with the

absence of GFAP-positive cells on day 10 of differentiation

Figure 3. Expression of Gli2 induces expression of neuronal bHLH factors. Expression of indicated genes was assayed by QPCR analysis,
n = 4. RNA from differentiating P19[Control] (grey bars) and P19[Gli2] cells (black bars) was harvested on days 0, 2–6 and 9 of differentiation without
RA. Error bars represent +/2 SEM from at least two biological replicas using two clonal populations (*p,0.05, **p,0.01).
doi:10.1371/journal.pone.0019174.g003

Ascl1 Is Direct Target of Gli2 during Neurogenesis
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(Fig. 2C). Gene expression analysis is summarized in Table 3.

Thus, overexpression of Gli2 induced the expression of neuronal

markers by days 5 and 6 of differentiation while gliogenesis was

unaffected in the first ten days of differentiation.

Expression of dominant-negative Gli/EnR delays
neurogenesis, reduces gliogenesis and reduces
expression of neurogenic bHLH factors in P19 EC cells

Since Gli factors play complimentary roles [12], we utilized a

Gli2 dominant-negative construct, created by fusing the Gli2 DNA

binding domain to the Engrailed repressor domain, termed Gli/

EnR. Gli/EnR would bind to the Gli DNA binding domain and

recruit repressors, inhibiting transcription in a fashion that cannot

be rescued by other Gli factors, such as Gli1 or Gli3 [64,65].

Parental P19 and P19[Gli/EnR] cells were differentiated in the

presence of RA using a monolayer procedure as described in [46],

where the formation of neurons is detected within 3 days, and the

formation of astrocytes is detected within 7 days. Antigenic

analysis revealed a decrease in Tuj1- and NF68-positive neurons

as compared to control P19 cells on day 3 of differentiation

(Fig. 4A, 4B, 4F and 4G). However, by day 6, the levels of Tuj1-

Figure 4. Expression of Gli/EnR delays neurogenesis and decreases gliogenesis in P19 EC cells. Cells were differentiated using a
monolayer procedure described in [46] in the presence of RA. (A–D): Day 3 or day 6 differentiated P19[Gli/EnR] and P19 cells were stained with Tuj1-
or NF68-specific antibodies. (E): Day 7 differentiated P19[Gli/EnR] and P19 cells were stained with GFAP-specific antibodies. Nuclei were stained with
Hoechst, scale bar is 30 mM. (F–H): Tuj1-, NF68- and GFAP-positive cells from (A-E) were counted in 10 random fields and normalized with the number
of nuclei (10,000 cells; n = 4), *p,0.05, **p,0.01, n.s. = not significant.
doi:10.1371/journal.pone.0019174.g004

Ascl1 Is Direct Target of Gli2 during Neurogenesis

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e19174



and NF68-positive neurons were similar (Fig. 4C, 4D, 4F and 4G),

indicating that expression of Gli/EnR in P19 EC cells resulted in

delayed neurogenesis. Day 7 differentiated P19[Gli/EnR] cultures

showed a decrease in GFAP-positive astrocytes as compared to

P19 control cells (Fig. 4E and 4H).

To determine the expression pattern of neuronal markers

affected by expression of Gli/EnR, we performed a time-course of

QPCR gene expression analysis using markers from Fig. 1D. Gli/

EnR was fairly stably overexpressed throughout the differentiation

(Fig. 5, panel Gli/EnR). Downregulation of Gli1, Gli2 and Gli3 in

P19[Gli/EnR] cells as compared to P19 control cells confirmed

suppression of the Shh signaling pathway (Fig. 5, panels Gli1, Gli2

and Gli3).

The expression of Nanog, a direct target of Gli2 in neural stem

cells [66], was significantly downregulated by the expression of

Gli/EnR in undifferentiated cells (Fig. 5, panel Nanog, day 0), but

was relatively unchanged by Gli/EnR expression during differen-

tiation (Fig. 5, panel Nanog, days 1–6). Another direct target of

Gli2 in neural stem cells, Sox2 [67], was expressed at the same

level in undifferentiated P19[Gli/EnR] and P19 control cells

(Fig. 5, panel Sox2, day 0). However, Sox2 was significantly

downregulated by the expression of Gli/EnR on days 1 and 2 of

differentiation (Fig. 5, panel Sox2). There was a trend in

downregulation of the expression of Nestin in P19[Gli/EnR]

cultures throughout the differentiation, however, the decrease in

the Nestin mRNA levels was only statistically significant (p,0.05)

Figure 5. Expression of Gli/EnR reduces expression of neuronal bHLH factors. Expression of indicated genes was assayed by QPCR analysis
(Gli1, Gli3, n = 8; Gli2, MEF2C, n = 6; Gli/EnR, Sox2, Nestin, Ascl1, Neurog1, GFAP, n = 4; NeuroD, n = 3) by QPCR analysis. RNA from differentiating P19
(grey bars) and P19[Gli/EnR] cells (black bars) was harvested on days 0–6 +RA differentiation. Error bars represent +/2 SEM from at least three
biological replicas using two clonal populations (*p,0.05, **p,0.01).
doi:10.1371/journal.pone.0019174.g005
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on day 2 of differentiation (Fig. 5, panel Nestin). Thus, the neural

progenitor markers Sox2 and Nestin were downregulated

predominantly on days 1 and 2 of differentiation by dominant-

negative Gli2 expression.

Surprisingly, expression of MEF2C was upregulated on days 1

and 4 in P19[Gli/EnR] cells as compared to P19 control cells

(Fig. 5, panel MEF2C). Since MEF2C can initiate neurogenesis

and upregulate Ascl1 expression [47], it is possible that MEF2C

may compensate, at least partially, for the Gli/EnR inhibition of

neurogenesis.

The neurogenic bHLH factors, NeuroD, Ascl1, and Neurog1

were downregulated by the expression of Gli/EnR throughout the

timecourse and were most significantly downregulated ranging

from days 2–4 (Fig. 5, panels NeuroD, Ascl1, and Neurog1). By

day 6 the extent of downregulation lessened with only NeuroD

remaining significantly downregulated, suggesting a delay in

neurogenesis rather than an inhibition, in agreement with the

immunofluorescence analysis.

The expression of GFAP was severely downregulated in

P19[Gli/EnR] cells on days 5 and 6 of differentiation (Fig. 5,

panel GFAP), which correlated with a decrease in GFAP-positive

cells in P19[Gli/EnR] cultures (Fig. 6H). Thus both the

immunofluorescence and the gene expression analysis support

an inhibition of gliogenesis by dominant negative Gli2

expression. The summary of gene expression from Fig. 5 is

listed in Table 3.

Figure 6. Gli2 binds Ascl1 gene regulatory elements in P19 EC cells. (A–B): TRANSFAC (#M01037) Gli binding motif in forward and reverse
direction, respectively. (C): Custom tracks of Ascl1 and Gli1 genes using UCSC genome browser (http://genome.ucsc.edu). Triangles designate the
direction of transcription, and black boxes designate exons. The Ascl1 gene (+/2 100 kb) from mouse and human genomes was searched for
conserved theoretical Gli binding as described in [53], which are designated as A–D. Their positions relative to the transcriptional start site (+1) are
indicated as numbers. The known Gli binding site in the Gli1 gene is designated as A [68] (D): Comparison of mouse and human sequences of Ascl1
A–D sites from (C). The sequence of the Gli binding site (GBS) is marked in bold. (E): ChIP analysis showing enrichment by Gli2 antibodies of Ascl1
chromatin fragments corresponding to sites A–C, from (C). Sheared chromatin from day 4 -RA differentiated P19[Gli2] cells was immunopurified using
Gli2-specific (black bars) or IgG non-specific (grey bars) antibodies. The Gli1 promoter served as a positive control. Percent chromatin input was
calculated using QPCR analysis and primers listed in Table 2. Error bars represent +/2 SEM from three biological replicas (*p,0.05, **p,0.01, n.s. =
not significant).
doi:10.1371/journal.pone.0019174.g006
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In summary, a dominant negative Gli2 mutant attenuated

neurogenesis in P19 EC cells shown by the downregulation of the

neurogenic bHLH factors. In addition gliogenesis was inhibited, as

shown by the downregulation of GFAP.

Gli2 binds to Ascl1 gene regulatory elements and
activates its promoter

Since overexpression of Gli2 elevated the expression of several

neurogenic bHLH genes, including Ascl1, (Fig. 3, panel Ascl1),

which was previously proposed to be a downstream target of the

Shh signaling pathway [33], we were interested whether Gli2

could bind directly to the Ascl1 gene regulatory elements. In silico

analysis of the Ascl1 gene using the TRANSFAC Gli binding motif

(Fig. 6A and 6B) revealed 4 theoretical, conserved Gli binding sites

both upstream and downstream of the transcriptional start site

(Fig. 6C and 6D), suggesting that Ascl1 might be a novel direct

target of Gli2. Since day 4 differentiating P19[Gli2] cells showed

the highest expression of Gli2 mRNA (Fig. 3, panel Gli2) and

protein (Fig. 2F), this time point was chosen for ChIP analysis

using Gli2-specific antibodies or IgG-nonspecific antibodies. We

observed an enrichment of chromatin fragments corresponding to

the Ascl1 A–C sites, but not to the Ascl1 D site (Fig. 6E) with Gli2

antibodies, as compared to non-specific IgG antibodies. The Gli1

promoter was used as a positive control based on a previous report

[68] (Fig. 6E). Thus, Gli2 binds directly to multiple sites located

up- and downstream of the Ascl1 gene.

To assess the functionality of the ChIP results, we performed

Ascl1 promoter analysis with Gli2. The Ascl1 B site is located

within the Ascl1 promoter region, which has been characterized

previously and contains 3 additional, non-conserved Gli binding

sites [55]. Promoter studies revealed that Gli2 directly activated

the Ascl1 promoter in a concentration-dependent manner up to 13

(61) fold (Fig. 7). Gli/EnR suppressed activation of the Ascl1

promoter by Gli2, confirming the ability of Gli/EnR to bind to the

Gli binding sequences and act as a repressor (Fig. 7). Thus, Gli2

elevates expression of Ascl1, binds directly to its gene regulatory

regions and activates its promoter in vitro.

Discussion

In this paper we have shown, for the first time, that

overexpression of Gli2 induced neurogenesis, but not gliogenesis,

in P19 EC cells during the first ten days of differentiation. We have

also shown that Gli2 regulated the expression of neurogenic

bHLH factors like NeuroD, Neurog1 and Ascl1 during Gli2-

induced neurogenesis in P19 EC cells. The expression of repressive

Gli/EnR resulted in a delay of P19 EC neurogenesis, as well as

decrease in gliogenesis. The expression of neurogenic bHLH

factors including Ascl1 was also decreased by the expression of

Gli/EnR. Additionally, Gli2 directly bound to Ascl1 gene

regulatory elements during P19 EC Gli2-induced neurogenesis,

and activated the Ascl1 promoter in vitro. To our knowledge, this is

the first indication that Gli factors can directly regulate neurogenic

bHLH factor expression.

Our finding that Gli2 could induce neurogenesis supports and

extends previous studies [9,10,20,21]. This is the first indication

that expression of Gli2 induces, rather than enhances neurogenesis

in an embryonic stem cell model. For example, other publications

have demonstrated a 3–10 fold enhancement of neurogenesis by

application of Shh agonist to mES [41] or by overexpression of

Gli1 in hES cells [69]. In our study, we observed an induction of

neurogenesis from 0% of neurons in the control cell line to 4% in

P19[Gli2] cells. Furthermore, the extent of induction of neuro-

genesis caused by expression of Gli2 in our study is similar to the

extent of neurogenesis caused by other transcription factors

[32,47] and to that seen in mES and hES cells [41,69]. In

contrast, mES and hES cells spontaneously differentiate into

neurons [70,71] and thus can only be used to study the

enhancement of neurogenesis but not the induction by exogenous

stimuli.

Our finding that expression of a dominant-negative Gli2 in P19

EC cells results in delayed neurogenesis supports and extends a

previous study, where inhibition of the Shh signaling pathway in

human ES cells resulted in reduced formation of Tuj1-positive

neurons [72]. Since the authors only tested one time-point for the

presence of Tuj1-positive neurons, it is possible that a later time-

point would reveal a restored amount of neurons in cultures

treated with cyclopamine [72].

The expression patterns of Gli1-3 during P19 EC neurogenesis

in vitro shown in this study is supported by previous work showing a

role for Shh signaling in mES cell neurogenesis [23]. Relatively

low fold changes of upregulation for Gli2 (4 fold), as compared to

Ascl1 (1400 fold) or NeuroD (120 fold), are due to high levels of

Gli2 expression in undifferentiated cells (Fig. 2F) [73]. Since Gli

factors are expressed in multiple lineages, including myogenesis

[43,74] and neurogenesis [23], their expression is not specific to

RA-induced neurogenesis (Fig. 1D). This is similar to expression of

Nestin, which is present in both muscle and neuronal precursor

cells [59,60]. Furthermore, a major effect of Shh signaling is the

activation of Gli2 function, as opposed to the upregulation of Gli2

expression [75,76].

It was previously shown that Gli proteins upregulated the

expression of neurogenic bHLH factors such as Ncam, Neurog1

and NeuroD in Xenopus [20], however, the molecular mechanism

for this phenomenon was not elucidated. Using P19[Gli2] cells,

we were able to confirm the ability of Gli2 to elevate the

expression of neurogenic bHLH factors (Fig. 3), although with a

slight delay as compared to RA-induced expression of these

factors (Fig. 1D). Moreover, the expression of dominant-negative

Gli2 resulted in significant downregulation of NeuroD, Neurog1

and Ascl1 expression. This result correlates with a previous

report showing reduced expression of Ascl1 in neural pro-

Figure 7. Gli2 activates the Ascl1 promoter. HEK-293 cells were
transiently cotransfected with or without Gli2 and a construct
containing the Ascl1 8 kb promoter driving the luciferase gene
(Ascl1-luc) in ratios 2:1, 4:1 and 6:1 relative to Ascl1-luc. Equal parts of
Gli/EnR were transfected together with Gli2 at a ratio of 4:1 relative to
Ascl1-luc. Fold changes are relative to Ascl1-luc activity with the Ascl1-
luc plasmid alone. Error bars represent +/2 SEM from three biological
replicas (*p,0.05, **p,0.01). No significant (n.s.) increase was observed
in the presence of Gli/EnR.
doi:10.1371/journal.pone.0019174.g007
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genitor cells treated with cyclopamine [33]. In this study,

Gli2 directly bound to the conserved Gli sites A–C in the Ascl1

gene. The Ascl1 promoter, which contains the B site, was

activated by Gli2 in a concentration-dependent manner. The

Ascl1 C site falls within a novel highly conserved enhancer that

directs expression in the eye (http://enhancer.lbl.gov) [77]. The

Gli proteins along with the Shh ligand are important in eye

development in Xenopus [78,79], mouse [5,80,81] and human

[82]. Ascl1 D site was the least conserved between mouse and

human (Fig. 6B), and did not appear to be bound by Gli2.

Therefore, Gli2 upregulates Ascl1 expression, binds to its gene

regulatory elements and activates its promoter during Gli2-

induced neurogenesis in P19 EC cells.

Notably, the Ascl1 gene was not reported to be bound by Gli1

in a genome-wide ChIP-microarray analysis of mES cells

undergoing neurogenesis [83], however its expression was

reported to be attenuated by Shh in both mES [83] and adult

neural stem cells [33]. Furthermore, it is possible that Ascl1 gene

element(s) were bound by Gli1 in differentiating mES cells, but

were not included in the results due to high false-discovery rate

cutoff in reported ChIP-microarray analysis [83]. Finally, it is

possible that Ascl1 is a direct target of Gli2, and not Gli1, during

neurogenesis in vitro.

While Nanog is a direct target of Gli2 in adult neural stem cells

[66] we did not observe easily explained changes in Nanog

expression in differentiating P19[Gli2] or P19[Gli/EnR] cells.

Under pluripotent monolayer conditions, Gli/EnR inhibited

Nanog expression (Fig. 5), but Gli2 did not change Nanog

expression (Fig. 3). The latter phenomenon might be explained by

the similar levels of Gli2 protein expression in pluripotent

undifferentiated P19[Control] and P19[Gli2] cells (Fig. 2F, day

0). In contrast, during differentiation, Gli2 enhanced Nanog

downregulation, whereas Gli/EnR did not affect Nanog expres-

sion. These results are likely due to the difficulty of comparing

results in postnatal rats [66] to an embryonic stem cell model [34],

which is heterogeneous and encompasses different developmental

stages, including pluripotent stem cells, neural progenitors, and

neurons. Thus, while Gli2 function is important for maintaining

stem cell Nanog expression, it cannot further enhance it.

Pluripotency was maintained, despite the decrease in Nanog

expression, in part because Sox2 was still expressed (Fig. 5).

Further, P19[Gli/EnR] cells could still differentiate into cardiac

muscle (Voronova and Skerjanc, unpublished observations) and

neurons (Fig. 4).

Sox2 was also shown to be a direct target of Gli2 during

differentiation of neural stem cells derived from E14.5 murine

telencephalon [67]. Although gain- or loss-of-function of Gli2 did

not affect Sox2 expression in the pluripotent monolayer stem cell

stage, loss of Gli2 function delayed Sox2 upregulation at the neural

progenitor stage (Fig. 5). Notably, expression of Gli2 did not

upregulate Sox2 or Nestin mRNA at the predicted progenitor

stage, although Nestin was upregulated later, at the same time as

the bHLH neurogenic genes (Fig. 3). It is possible that Gli2

upregulated the expression of other Sox factors, like Sox1 and

Sox3, which exhibit redundant biological functions [84]. These

results suggest that Gli2 may bypass the progenitor stage and

induce neurogenesis through upregulation of the bHLH neuro-

genic genes.

Surprisingly, the levels of MEF2C were upregulated in P19 cells

overexpressing Gli/EnR. Since MEF2C was shown to initiate

neurogenesis and drive Ascl1 expression [47], as well as have anti-

apoptotic functions important for the survival of cells during

neurogenesis [62,85,86], it is possible that MEF2C is able to

compensate for the Gli/EnR inhibition of neurogenesis. Notably,

on day 4 when MEF2C is greatly upregulated by Gli/EnR, Ascl1

is downregulated (Fig. 5), suggesting that MEF2C cannot bypass

the inhibition of Ascl1 by dominant negative Gli2 at this time

point. Since Gli/EnR is an active dominant negative mutant, it is

possible that MEF2C could compensate for the simple loss of Gli2

signaling if Gli2 was knocked-down or -out. The relatively mild

phenotype of P19[Gli/EnR] cells is consistent with previous

reports showing that Shh signaling is not essential for the neural

tube development [1,17,18].

The overexpression of Gli2 did not result in the formation of

astrocytes in the first ten days of differentiation, whereas P19[Gli/

EnR] cells showed reduced gliogenesis. Previous reports have

demonstrated increased astrocyte formation in hES cultures

differentiated in the presence of cyclopamine [72]. The

discrepancy in results might be due to the dominant-negative

repressive effect of Gli/EnR, which is capable of overriding the

activity of Gli factors (Fig. 7). Cyclopamine, on the other hand,

binds Smo, and thus prevents activation of Gli transcription

factors by Shh [87]. However, other signaling molecules have

been implicated in the activation of Gli factors, such as TGFb
[88] and Wnt [89]. Moreover, Zic factors have also been

implicated in modulating the transcriptional activity of Gli factors

as well as in binding Gli binding sites in the chromatin [90]. It is

possible that expression of Gli/EnR caused a delay in gliogenesis,

similar to neurogenesis, however, this hypothesis was not tested.

To our knowledge, this is the first indication that dominant-

negative Gli/EnR causes a delay in neurogenesis and a decrease

in gliogenesis in P19 stem cells.

In summary, our findings indicate that Gli2 has neurogenic

properties in vitro. Gli2 is able to directly regulate expression of

the neurogenic bHLH factor, Ascl1, and convert P19 EC cells

into neurons, but not astrocytes in the first ten days of

differentiation. Dominant-negative Gli2 is able to suppress

expression of neurogenic bHLH factors and delay neurogenesis.

Gli2 is probably not a sole regulator of Ascl1 expression during

neurogenesis, as there are several other proteins, including

Notch1 [91], MEF2C [92] and Hes1 [55], which were shown

to regulate Ascl1 expression. Our findings unravel new molecular

mechanistic insight into the neurogenic properties of Gli2 in vitro,

thus offering novel plausible explanations for Gli2 neurogenic

properties in vivo.
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