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In the present paper, we explore operator norm independent inertial type accelerated iterative algorithm solving
generalized split common fixed point problem, which is the problem of finding a point that belongs to the
intersection of a finite family of fixed point sets of demimetric mappings such that its image under a finite number
of linear transformations belongs to the intersection of another finite family of fixed point sets of demimetric
mappings in the image space. We adopt rules for selecting the step size such that the implementation of our

proposed algorithm does not need any prior information about the operator norms. The strong convergence
result is analyzed and some applications of our proposed algorithm are demonstrated. Our result in this paper
will improve and generalize many results in the literature. Numerical experiments show that our iteration method
is very effective for approximating the solution point of problem under consideration.

1. Introduction

Censor and Segal [1] introduced the following split common fixed-
point problem (SCFP):

X € F(U) such that Ax € F(T), (€8

where A : H, — H, is nonzero bounded linear operator, U : H; -» H,
and T : H, - H, are directed operators, H, and H, are real Hilbert
spaces, and F(U) and F(T) stand for the fixed point sets T and U,
respectively. In particular, if 7 and U are projection operators, then
the SCFP is reduced to the well-known split feasibility problem [2, 3],
which is the problem of finding x € C such that Ax € Q, where C and Q
are nonempty closed convex subsets in H; and H,, respectively. Censor
and Segal [1] took the following iterative scheme, in finite dimensional
spaces, solving SCFP (1):

Xl = U(xn - }’,,A*(I - T)Axn), 2)

where y, =7y € (0, %) and 4 is the largest eigenvalue of the matrix A’A.
Subsequently, after the work of Censor and Segal [1], this result was
extended to different class of operators, see for example [4, 5, 6, 7, 8].
For a real Hilbert space H, the self-mapping T : H — H is called
x-demimetric [9] if F(T)# @ and there is x € (—, 1) such that

1-

2K||x—Tx||2, Y(x,%) € H X F(T). 3)

(x=x,x—=Tx)>
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The class of x-demimetric mappings in Hilbert space contains the
classes of k-strict pseudocontractions mappings, firmly nonexpansive
mappings, nonexpansive mappings, 2-generalized hybrid mappings
[10], firmly quasi-nonexpansive mappings, quasi-nonexpansive map-
pings, demicontractive mappings and directed mappings, see [9, 11,
12]. Moreover, several well known types of mapping arising in opti-
mization belong to the class of demimetric mappings, see for example
[9, 13] and references therein.

Generalized Split Inverse Problem (GSIP) [14] is formulated as a
problem of

find x* € X that solves IP1
such that (O]
A (x) =y €Y and Vi solves IP2, VkeA

where A CR is an index set, IP1 and IP2 are two inverse problems in-
stalled in space X and Y, respectively, A, : X — Y for each k € A. GSIP
will be reduced to Split Inverse Problem (SIP) [15] if A = A, for all
k € A. Many models of inverse problems can be cast in this framework
by choosing different inverse problems for IP1 and IP2. There is a con-
siderable investigation in the framework of SIP, see for example [4, 16,
17, 18] and the many references therein. In this paper, we consider the
type of GSIP called the generalized split common fixed point problem (in
short, GSCFP) [14], formulated as finding
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N M
x e[| F(U,) such that Ak(:‘c)eﬂF(Tj), vke{l,...,R}, (5)
i=1 Jj=1
where A, : H — H, is a linear operator for all k € {1,...,R} (ReN),
Ui : H — H, and T; : H, - H, are nonlinear operators for all i €
{l,....,N} (NeN), je{l,...,.M} (M €N), H, and H, are two real
Hilbert spaces. If A, = A for all k € {1,...,R}, GSCFP (5) will be re-
duced to the problem of finding
N M
%€ () FW)) such that A%) € () F(T)). ©)
i=1 J=1

Moreover, if Ay = A for all ke {1,...,R}, U=U, for all ie {1,...,N}
and T = T; forall j € {1,..., M}, GSCFP (5) will be reduced to SCFP (1).

Some authors proposed methods solving (6) for a different class of
mappings; for example, for directed operators [1, 19], demicontrac-
tive mappings [20], asymptotically quasi-nonexpansive mappings [21],
quasi-nonexpansive operators [5, 22]. However, the implementation of
the proposed algorithm requires the estimate of the operator norm || A||,
and operator norm is global invariant and is often difficult to estimate,
see Theorem of Hendrickx and Olshevsky in [23]. The turning point of
avoiding the estimate of ||A|| came when Lépez et al. [24] introduced
a variable step size that does not depend on the operator norm | A||
solving SFP (SCFP (1) where U = P and T = Pp). Initialed by Lépez
et al. [24], some authors modified (2) and established a modified step
size for SCFP (1) in general so that its choice does not need any priori
knowledge of || A||, see for example in [25, 26, 27, 28].

The purpose of this paper is twofold. Firstly, to present a com-
putationally simple algorithm to approximate the solution point of
GSCFP (5) for demimetric mappings U; and T;. To be precise, the al-
gorithm is formulated in a parallel computing platform and reduced
to a simpler structure. Moreover, we constructed an extended variable
step-sizes generated by the algorithms at each iteration, based on previ-
ously evaluated iterations so that the implementation of our algorithm
does not need any prior information about the operator norms ||A||
(k € {1,...,R}). Note that iterative algorithms with a step size that
does not require any prior knowledge of the operator norm are more
desirable and efficient in practice. Secondly, to present inertial-type al-
gorithm to solve the GSCFP (5) for demimetric mappings U; and 7}, and
provide the strong convergence theorem for the proposed algorithm. An
inertial-type algorithm is algorithm incorporating inertial extrapolation
term «,(x, — x,_;) by making use of the previous two iterates x, and
x,_;- The inertial extrapolation term «,(x, — x,_,) is employed in al-
gorithm for the purpose of speeding up the rate of convergence of the
algorithm. The vector (x, — x,_,) is acting as an impulsion term and «,
is acting as a speed regulator, see [29]. Many inertial type accelerated
iterative methods are proposed for different kind of problems, see for
example [22, 30, 31] and references therein.

The outline of this paper is as follows. In Section 2, we present some
necessary definitions, interesting properties and results. The main result
of the paper is contained in Section 3 and Section 4, where in Section 3,
we introduce our proposed algorithm and discuss its structure, and in
Section 4, the strong convergence analysis of our proposed method is
investigated. In Section 5, we give some applications that follow from
our main result. Finally, in Section 6, we end the paper with numerical
results about the new iteration method.

2. Preliminary

Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Then, the metric projection on C is a mapping P : H - C
defined by

Pc(x)=argmin{||ly—x| : y€C}, xe€H.

Given x € H and z € C, then z = P-(x) if and only if (x — z,y — z) <
0, VyecC.
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Definition 1. The mapping T : H — H is called
(a) firmly nonexpansive if

ITx =Tyl < llx = ylI> = I =T)x =T =T)ylI*>, Vx,y€ H;

(b) «-strict pseudocontraction [32] if there exists a « € [0, 1) such that

ITx=Tyll> < llx = ylI* + xlI( = T)x = (I =T)yll>, Vx,yeH;

(c) directed [1] if F(T)# @ and

ITx = %I? < llx = %I? = |Ix = Tx||>, V¥(x,%) € H x F(T).

It is clear that (3) is equivalent to the following:

ITx - x||> <llx—x|I>+xllx —Tx||?>, V(x,%) € H x F(T).

Definition 2. Let 7 : H — H be a mapping, I — T is called demiclosed

at 0 if for a sequence {x,} in H such that x, = x and lim ||x,—Tx,|| =0,
n—oo

then Tx = x holds.

Lemma 1. [9] The set of all fixed points F(T) of x-demimetric mapping
T : H — H is closed and convex.

Lemma 2. [33] Let {T',} be a sequence of real numbers that does not de-
crease at infinity, in the sense that there exists a subsequence {T', },», of
{Ty} such that T, <T, ., for all t > 1. Also consider the sequence of in-
tegers {@(n)} >, defined by ¢(n) = max{k €N : k<nT; <Ty,}. Then
{9}z, is a nondecreasing sequence verifying nlgg @(n) = oo, and for all

n>n, the following estimates hold: T, <T yand T, <T,

@(n @(n)+ @(n)+1+

Lemma 3. [34] Let {c,} and {y,} be sequences of nonnegative real num-
bers, {B,} be sequences of real numbers such that

Cup1 < ¢! _an)cn +ﬁn +¥, R 1,
where 0 < a, <1 and Yy, < co.

@) If B, < a,M for some M >0, then {c,} is a bounded sequence.
(i) If Y @, = and limsup 22 <0, then ¢, > 0asn— oo

n—o0 n

3. Proposed method

Lemma 4. Suppose U; : H, — H, is n;-demimetric mapping for all
i€f{l,...,N} and T; : H, » H, is fj;-demimetric mapping for all j €
{1,....M}. For x € H,, define i, € argmax{||(I = U)x|| : i€ {1,...,N}}
and

Uxoky) € argmax{||(I = THAx|| = G, k) €{1,...., M} x {1,...,R}}.

Then, Ay - T; A x+U - Uix)xll =0 iff x solves GSCFP (5).

Proof. Suppose A, - T; )A x+ I —U; )x||=0.For peT’, we have

0=l4; (I =T; A, x+U =U, )xllllx - pll
> (A;’;X(I =T, JA x+U —U; )x,x -p)
= (Azx(l =T; YA x,x—p)+{UI —U; )x,x —p)
=((I =T} ) A x. A x = Ay_p)+{((I = U, )x.x - p)
1 —1j, 2 1 _ﬂix 2
> I =T A X1+ —5== I = Uy x|
This implies ||(I — T, )A; xIl = I - U; )x|| =0. Using the definition of

i, and (j,,k,), we have ||[(I = T)A.x|| = (I = Upx|| =0 for all (i, j,k) €
{1,...,N}x{1,...,M} x{l,..., R}. Therefore, x solves GSCFP (5).
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The converse is straightforward. []

We now establish a self-adaptive iterative method with inertial term
for solving the GSCFP (5) by making use of the following three assump-
tions:

(A1) The mapping U; is #;-demimetric and I — U; is demiclosed at 0 for
allie(l,...,N};

(A2) The mapping 7} is §;-demimetric and I —T; is demiclosed at O for
all je{l,...,M};

(A3) The mapping A, is nonzero bounded linear operator and A; de-
notes the adjoint of A, for k € {1,...,R};

(A4) T denotes the solution set of the GSCFP (5) and I'" is nonempty.

Algorithm 1 Choose u,x(,x; € H,. Let {«,}, {6,} and {p,} be a non-
negative real sequences.

STEP 1. Evaluate z, = x, +6,(x, — x,_).
STEP 2. Compute t, = (I - U, )z, and y, = (I =T, )A, (z,), where

i, €argmax{||(I —U)z,|l : i€ {l,...,N}} and
Un k) €argmax{||(I = T)A(z)Il : G, k)€ (1,...., M} X {1,...,R}}.

If ||A; (y,) +1,ll =0, Stop. Otherwise, go to STEP 3.
STEP 3. Evaluate

> + e, II?

Xy =@ u+(l—:1)(z -y ——————
e AT A G P

(4, 0 +1,)): @

STEP 4. Set n :=n+1 and go to STEP 1.

Lemma 5. The stopping condition (in STEP 2) of Algorithm 1 is satisfied
(1A} () +1,ll =0 for some n € N) iff z, solves GSCFP (5).

Proof. Straightforward using Lemma 4. []

In the next section, we analyze the strong convergence of the infi-
nite sequence {x,} generated by Algorithm 1 to the solution point of
GSCFP (5) assuming that Algorithm 1 does not terminate (the stopping
condition (in STEP 2) is not satisfied, i.e., u(z,) = |4} y, +1,|l #0 for
all n eN), or by ignoring the stopping condition (in STEP 2) and setting
Xp41 in (7) (STEP 3) by

llyall? + Iz, 11>

w00 0))

Xpy1 =Xy + a- an)<zn ~Pn
where u(z,) = ||Ain(y") +1,|% if ||Azn(yn)+t,,|| #0, u(z,) =1 otherwise.
4. Convergence analysis

Here in this section, we analysis the convergence of our proposed
iterative method, Algorithm 1, for solving GSCFP (5).

Theorem 1. If the real parameters {a,}, {0,} and {p,} in Algorithm 1
satisfy the following conditions:

(C1) 0<a, <1, lima,=0and Y, a, = co;
n—oo n:l

(C2) 0<0,<0<1and nlirgj—:llxn—xn_]ll;
(C3) 0<p, <d=min{l—n,...,1=nn,1=P,,...,1— By} and liminf p,(5—
n—oo
pn)>0;

then the sequence {x, } generated by Algorithm 1 converges strongly to x €T’
where X = Pr(u).

2 2
Proof. Lets, =z, — p,,% (A% (3,)+1,) and let x = Pr(u).
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Now, using the definition of s,, we have

_ 1y, 11 + N2, 117 _112
s, — XII*> = ||z, — p, ————2— ) X (A,tn(y,,)+t,,) —x”
1y, 11 + l12,117 2
<llz, - xI* + || p, ————L— (A* +1t 8
llz, — %Il Pn iz ( &, ) ) ®
1y, 112 + ll2,,11?
—-2{p,——— (A (y,)+1,),z, —X).
<'l ”(zn) ( ky™n ") n >

The result (8) in view of

Iyl + 1,02 2 1pall® + a2 N2 2
-1 (A} +1t =( —) Al +1
n ”(Zn) ( k"(yn) n) n H(Zn) ” k"(yn) n”
> Uyl + 1,117
o H(z,)

and

2 412112
( nM(Ain(yn)+tn)7zn_)_‘>

H(z,)
>+ 1,017,
=p —— (A7 +1,,2,—X
p" ﬂ(zn) ( k”(yn) e x>
llyall* + N2, 112
= p " ((y Ay X, — Ay XY+ (1., — %)
n M(Zn) ( n ky,?n ky, n>*n )
o Il + e ( Ly 2 )
=Fn ﬂ(zn) 2 n 2 n
8 Iyl + lls, 112 2 2
=pys + ||t
. (ILyull® + Nz, 11%)
- 8 Ulyall® + N7, 11%)?
"2 u(z,)
gives

. . Uyl + N1z, 1
lls, = XI* <llz, = %I° + - 2

5 (1yall? + 12,172
n

u(z,) g u(z,)
' 2 242 ' ©
- Uy, 1= + 112,117
< _ %12 _g)—nr- _"nt’
<llz, =3I+ oy, =8
From condition (C3) and (9), we have that
Is, = xIl < Iz, — %I 10)
By (10) and the definition of x,,;, we get
1% = X1 =11 = @,)s,, + ,u — X||
=1 —a,)(s, —X) + a,—%)||
<A =aplls, — x| + a,,|lu — x|
< =a)lz, — %l + o, llu — x|
= =a)llx, + B,(x, = x,_1) = X|l + @, |lu— x|
<A =a)llx, = xll + B, (1 = ap)llx, = X,y | + &, llu — %Il
- I/} -
= (1 = a,)llx, — %]l + @, ((1 - an)a—" llx, = Xy Il + Nl = 211)
n
<1 -alx, — x|l + a,0,, an

where v, = (1 —a,,)ﬁ—“ [Ix, —x,_; || +|lu—x||. From condition (C1) and (C2),
we see that lim,_, v, = |lu — x||. Hence, {v,} is bounded. Let d > 0 such
that v, <d for all n € N. Then, (11) becomes

Ixp01 = XNl <A = a)lIx, - x| + a,d.

Thus, by Lemma 3 (i) the sequence {x,} is bounded. Since {x,} is
bounded, there exists L > 0 such that ||x, — x|| < L for all n € N. Now
using the definition of x,,,, z, and (9), we get
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1,41 = ZII? = 11(1 = &, )(s,, — %) + @, (u — )|
<A =a)ls, — %l + a, llu—
<1 -alz, — 2I* + a,llu— x|
Ul + N1z, 1)
u(z,)
= (] _an)”xn +9n(xn - xn—l) - )_Cllz +an|lu _-’_C“2
Uyl + 112, 11%)?
u(z,)
_ 2 —12
<A =a)(llx, = 2l +0,lx, = x,_1 1) +a,llu— x|
Uyl + 112,117
u(z,)
< llx, = %II* + 0%]|x, — I +26,Lllx, - |+ a, Il — %I
> Xn X n xﬂ x,,_l n x” xn_] a,, u X
Uy, I + 112,117

+(=a)p,(p,—8)— . (12)
u(z,)

+ (= a,)p,(p, —6)
+ (I =a,)p,(p, = 6)

+ A —a,)p,(p, — )

Let us distinguish the following two cases related to the behavior of the
sequence {I',} where T, = ||x, — %||.

Case 1. Suppose the sequence {I',} decrease at infinity. Thus, there ex-
ists ny € N such that I',, | <T, for n > ny. Then, {I',} converges and
r,-r,;;—>0asn-0.

From (12), we have

Uyl + 112, 11%)? -
(I =a,)p, (6 — Pn)% <@, =Tpp) +a,llu—x||?
n

+0201x, —x,_ 1> +26, Lllx, — x4 Il
(13)
Since I', — T, ; — 0 and using (C1) and (C2), we have from (13) that

2 242
(1 =)y (6 — py Wl NI o (14)
w(z,)

The conditions (C1) and (C3) together with (14) yields

Uyl + 1,17

) -0, n- oo. (15)

Now, if ||A]tn (y,) + 1,1l #0, we have
lyall? + 6,07 Uy, 1% + 112,117
max{[|4; 11,1} B max{[|Ag 112 131y, 17 + 117,117
Uy, 1 + N1z, 1%
A 1P, 112+ 1,112
P+ N1, 0172
B ||A,’:n||2||yn||2 + e, 112
Uy, 1% + 112,112
B ||147(”(Yn)||2 + Iz, 112

< 230yl + a2 2001yall® + N7, 11%)?

- = . (16)
14, O+ 1l WGz,
Moreover, if 1A, ) +1,11=0, then |y, | + |1,/ = 0 and thus
2 2 2 2
=+ ||t 2 + ||t
.l + NIz, —0=_90 _ Ulyall” + 1124l )_ an

max({[| Ay, 1%, 1} uz)  pz)

Hence, by (16) and (17), for all n € N we get

1]l + 112, 11> Ulyall® + Nz, 112
max{[|4; II*.1} ~ H(z,)

B

and so this together with (15) gives

. 2 2 . .
lim ([[y,[I” + [I17,11) = 0 & lim [ly,[| = lim ||z,[| =0.
n—co n—oo n—oo
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By definition of ¢, and y,, we have ||(I — U))z,|| < (I - Ui )zl = i,
for all j & {1,...,M}, and I = T)) Azl < I = T} Ay, z,]l = lly, I for
all (j,k)ye{l,...,M} x{1,...,R}. Therefore,

lim [|[(I = T)Agz,|| = lim ||(1 = Up)z,|l =0, 18
n—oo n—oo

for all (i,j,k)e{l,...., N} x{1,...,M}x {l1,...,R}. Now, using the defi-
nition of s,, we obtain

1y, 11 + Iz, 11 2
s, = z,l* = n#(flzn(h) +1,)
2 2
o ( Iyl + 112l )2 . 2
< "<7/4(zn) 45 o+,
2 242
+ ||t
Sé2(|Iyn|| ll7,119) 19
H(z,)
Thus, (19) together with (15) gives
sy =24l >0, n— oo. (20)
Moreover, using the definition of z, and (C2), we have
I, =z, Il = I, =%, = By = X, DIl = By llxy =X, | 20, n>00.  (21)
By (20) and (21), we get
s, = x, 1l < llx, = z,ll + Is, = 2,1l = 0, n—c0. (22)

Using (22), definition of x,, (C1) and noting that {x,} is bounded, we
have
%1 = spll = lla,u — a5,

=1 =a,)(s, —x,) +a,—x,)+(x,—s,)l

<({- an)llsn _Xn” +an”u - xn” + ”Sn _Xn”

<2|ls, = x,ll + a,llu = x,|| >0, n- oo (23)
Results from (22) and (23) give
%41 = Xull S WXy = sl + 115, =X, > 0, n—> o0 24)

Let p be a weak cluster point of {x,}, there exists a subsequence {x,,}
of {x,} such that X, =~ pasl— oo Using (21), we have z, —p as
I - o0, and hence Az, — Aypas!— oo forall k € {1,..., R}. Hence, by
demiclosedness assumptions of I —U; and I —T; together with (18), we
obtain peT.

Next, we show that limsup(u — X, x,, — X) < 0. Indeed, since x = P-(u)

n—oo

and p €T, we obtain that

limsup(u — X,x, — X) = Ilim (u—-x,x, —%)=(u-x,p-x)<0. (25)

n—oo

Since ||x,,; — x,|| = 0 from (24), by (25), we have

limsup(u — X, x,,,; — %) <O0. (26)

n—o0o

The definition of x,,; and z, together with (10) yields

%41 — %2 =111 = a,)s, + @, — )|
<A —aplls, — &% +2a,(u — %, x,,1 — X)
< -a)lz, - )'c||2 +2a,(u—X,x,,; —X)
= (1= a,)llx, +0,0x, = X,1) = %[> +2(u = %, %, — %)
<= a,)Ix, = %l +6,l1x, = X, 1D* + 20, (4 = %, %, — %)
= (1= a,)(llx, = %I|* + 07]|x, = x,_, I
+20,l1x, = %llllx, = x,-1 [D* + 20, (u = X, %, — X)

212 1 p2 2
S =ap)llx, = X7+ 0, 1lx, — x|l
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+ 29n”xn - )_C” ”xn — Xp-1 ” + 2an<u - X, Xpt1 — i)
92
<= a)llx, = %I + = lx, = x, 117 (27)
= n n a n n—1
n

+ 2HnLllxn ~ Xp-1 I+ 2“n<u =X, Xpy1 — )_C>.

Therefore, in view of (27), we have

L1 < (1-a,)T, +a,v,, (28)
2
where v, = % lx, = %, |2 + 22 Ljlx, = %, || + 2(u = %,x,4, - %). From
(26) and (C3), we have limsupv, <0. By Lemma 3 (ii) and (28), we get
n—oo

I', = 0 as n— oco. Hence, x, » X as n — co.

Case 2. Assume that {I',} does not decrease at infinity. Let ¢ : N — N be
a mapping for all n > n; (for some n, large enough) defined by

em)=max{leN: [ <n I <}
By Lemma 2, {(p(n)}fl‘;"0 is a nondecreasing sequence, ¢(n) — oo as n —
oo and

Ty < T and T, <Tyiiy, V> ng. (29)

In view of [1x ;) = %II* = 1Xp(nys1 — XN? =Ty — T

and (27), we have for all n > n,

w41 <0 forall n>ng

@(n)
U5 12 + N1t 122

(= py))Pp(6 = P ()
@(n) Pn plﬂ(") ”(Zcp(n))

92

@(n) 2
S @i =Ty + o 1% () = Xgm-1 1
o(n

+ 205 LIX () = X piny=1 1| + 2000 (=% X oy 1 = X)- (30)
Thus, (30) together with (C1) and (C2), we have

U I + N7 1)

-0, n-oo. (31D
H(Zgm)

Using similar procedure as above in Case 1, we have

M {10 = Yoo ll = HM 1Xga41 = Xgun [l = 0.

Since {x,,} is bounded, there exists a subsequence of {x,}, still
denoted by {x,,,} which converges weakly to p. Now repeating the ar-
gument of the proof as in Case 1, we have lim sup(u — X, x (41 — %) < 0.

n—oo

From (28), we have

L1 = (1= @) Ty + @i Vit (32)
where
2 )
Von) = @ 1% g = Y-t I+~ 2L 1% ) = X gy |
a Fop(n)

@(n)
+2(u = X, X (41 — X)-

Using T,y = T ygny41 < 0 for all n > ny, the inequality (32) gives

0 < =) Copty + Fpy Voot

Since a,,,
limsupv,,,, <0, we have nlgg [1x,
— 00

) > 0, we obtain ||x,, — |2 = Ly < V(- Moreover, since

ot = Xl = 0. Thus, lim flx,,) — %I =
0 together with nlgg 1% g1 = Xl = 0, gives nll{glo L ymy+1 = 0. Hence,
from (29), we get lim ', =0, that is, x, > X as n - co.

n—00

This ends the proof. []

It should be noted that our iterative method, Algorithm 1, also works
for approximation of solution of (6) under the assumptions (A1), (A2)
and (A3).
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Algorithm 2 Choose u,x(,x, € H,. Let {a,}, {6,} and {p,} be a non-
negative real sequences.

STEP 1. Evaluate z, = x, +6,(x, —x,_).
STEP 2. Compute 7, =(I - U, )z, and y, = - T, )Az,, where

i, cargmax{||(I —U)z,|l :ie{l,....N}}

and j, €argmax{||(I —=T))Az,|| : j€{l,....,N}}.
STEP 3. Evaluate

1y, lI* + e, 117

Kot =at (1= )2, =, =

(A G +1,))s

where u(z,) = |A*(v,) +t,11* if |A*(y,) +1,Il #0, u(z,) =1 otherwise.
STEP 4. Setn:=n+1 and go to STEP 1.

Corollary 1. If the real parameters {a,}, {6,} and {p,} in Algorithm 2
satisfy the following conditions:

[o]
(C1) 0<a, <1, lima,=0and Y a,=co;
n—o0o VI=1
(C2) 0<6,<0<1and lim =|x, - x,_|;
n—-oo 4p
(C3) 0< p, <6=min{l—ny,...,1=ny,1=P,...,1 =} and liminf p,(5—
n—oo

pn)>0;

then the sequence {x,} generated by Algorithm 2 converges strongly to the
solution point x the problem (6) where X = Py (u) and Q the solution set of

(6).

Corollary 2. Suppose H, and H, be real Hilbert spaces, U : H; —» H, is
n-demimetric mapping, T : H, — H, is f-demimetric mapping, and I — U
and I — T are demiclosed. Then the sequence {x,} generated by iterative
algorithm

u,xg,x, € H; chosen arbitrarily,

Z, =X, + en(xn - Xn—l)’

t,=U-U)z,, y,=(U-T)Az,
P (33)
1A% ) + 1,05 if 1A* () + 1,1 #0,
u(z,) =
1, otherwise,

2 2
Xyt = auu+(1—a,)(z, - ””W (A0 +1,)),
converges strongly to the solution point x the SCFP, i.e., x€®={x€ F(U) :
Ax € F(T)} where x = Py (u), if the real parameters {a,}, {6,} and {p,} in
(33) satisfy the following conditions:

&)
(C1) 0<a, <1, lima,=0and Y a,=co;
n—oo n=1

(C2) 0<6,<0<1and lim 2|x, - x,_|;
n—oo
(C3) 0<p,<é=min{l —n,1— B} and liminf p,(§ — p,) > 0.
n—o0o

Remark 1. In view of all studies done on (6), Algorithm 2 is a new
approach and improvement of an existing result in solving the problem
(6). Moreover, the algorithm (33) (Corollary 2) in also an improvement
of the existing results concerning SCFP.

Remark 2. Condition (C2) of Theorem 1 can easily be satisfied because
the value of ||x, — x,_;|| is known before choosing 6,. For instance, we

can choose 6, such that 0 <6, <8, where

9 = { min {0’ X1 =l }’ if Xn-1 7 X (34)

n-*— .
9, otherwise,

where 6 €[0,1), ¢, >0 and ¢, = o(a,,).
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5. Applications
5.1. Theoretical applications

As a direct consequence of our algorithm, we can have several new
algorithms for different class of mappings; for example, for x-strict
pseudo-contractions mappings, firmly-nonexpansive mappings and di-
rected mappings. Moreover, as applications, we can obtain several new
algorithms to solve problems that can be converted to the fixed point
problem of demimetric mappings. Note that x-strict pseudocontractive
mapping is k-demimetric mapping, and firmly nonexpansive mapping is
-1-demimetric mapping. Moreover, both «-strict pseudocontractive and
firmly nonexpansive mapping are demiclosed [35].

For a real Hilbert space H and maximal monotone set-valued map-
ping T : H — 2% the resolvent operator JAT associated with T'and 4> 0
is

JT)=U +iT)"'(x), xeH. (35)

The resolvent operator JAT is single-valued and firmly nonexpansive.
Moreover, 0 € T(x) if and only if x is a fixed point of JI for all 4> 0;
see [20].

Let H, and H, be real Hilbert spaces, A, : H, — H, is a nonzero
bounded linear operator for each k € {1,..., R}, T, : H; — 21 and U;:
H, — 2"2 be maximal monotone mappings for all i € {1,...,N}, j €
{1,...,M}. The split system of inclusion problem is to find x € H, such
that

0€T(x), Vie{l,..,N}, (36)
0€U;(AZ), Vj€(l,....M}, Vke{l,...R)}.

Let X be the solution set of (36).
Now replacing U; and T; of Algorithm 1 by the resolvent operators

Jf" and J;J’ , we obtain the following algorithm, Algorithm 3, for solving
(36).

Algorithm 3 Choose u, x,,x, € H,. Let {«,}, {6,} and {p,} be nonnega-
tive real sequences.

STEP 1. Evaluate z, = x, + 6, (x, — x,_,).
STEP 2. Compute 7, =(I — JA.T’)z,, and y,=(I — JAT’)A,(” z, where

i, €argmax{||( = J})z,l 1 i € {1.....N}}

and (j, k,) € argmax{|(F = J; VA2, : G,K) € (1,.c, M} X {1,..., R} ).
STEP 3. Evaluate

llull? + N2, 117

) (47, 0 +1)).

Syt =aut(1=a,)(z, -,

where u(z,) = A} (v,) +1,11* if [|A} () +1,1 #0, u(z,) =1 otherwise.
STEP 4. Set n :=n+1 and go to STEP 1.

Corollary 3. If the real parameters {a,}, {6,} and {p,} in Algorithm 3
satisfy the following conditions:

(s
(C1) 0<a, <1, lima,=0and Y, a,=co;
n—oo n=1
(C2) 0<6,<0<1and lim 2|x, - x,_,|;
n—oo n

(C3) 0<p, <2 and liminf p,(2 - p,) > 0;
n—0oo

then the sequence {x,} generated by Algorithm 3 converges strongly to the
solution point x the problem (36) where x = Py (u).

Let H be a real Hilbert space. Note that for a proper, lower semicon-
tinuous convex function f : H - RU {+oco} the subdifferential of f (de-
noted by df) is a maximal monotone operator; f at x € H, we denote
by of(x),isgivenby of(x)={y€e H : f(z) > f(x)+(y,z—x), Vze H}.
Notice that a point x € H minimizes f if and only if 0 € df(x). On top
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of that, prox,, = (I + A0f)71, i.e., the point ¥ minimizes f if and only if
prox, ;(X) = %, see [36].

If f;  H > RU{+co} and g; : H, » RU {+oco} are proper, lower
semicontinuous convex functions fori € {1,...,N}, j€ {l,..., M}, then
taking T; = prox,;, and U; = prox 2z in (5), Algorithm 3 yields strong
convergence result solving

N M
% € (")(argmin £,) such that A, (%) € (|(argming)), Vk€ (1,...,R}.
i=1 j=1
37

The multiple-set split feasibility problem (MSSFP) is the problem of
finding

N M
x e[ C, such that A, () € ﬂQ,, vke{l,...,R}, (38)
i=1 j=1

where C; (i €{1,...,N}) and o; (j €{l,...,M}) nonempty closed con-
vex subsets of H, and H,, respectively. The MSSFP (38) is a special case
of (37), i.e., take f; = 5Ci and g = 6Qi (the indicator functions) in (37).

Remark 3. The results mentioned as an application extend and improve
the results in literature, for example [5, 8, 16, 17, 18, 19, 20, 21, 37]
and the reference therein.

5.2. Real world application

Several problems in the fields of applications that can be cast into a
MSSFP (38) and as we illustrated above MSSFP (38) is particular case
of GSCFP (5). The following are exhibits of the potential application of
our proposed method presented as particular case of GSCFP (5).

i. Sparse Binary Tomography: Digital image processing plays an im-
portant role in medical and astronomical imaging, file restoration,
image and video coding, and other applications. Some approaches
have been suggested for the image reconstruction processing anal-
ysis (see, Gibali and Petra [38]) are presented, for example /-
superiorization [38] and /, — I, minimization, see [39] and refer-
ence therein. Consider /, constraint approach of the image recon-
struction by Gibali and Petra [38]:

min%||Ax—b||§ subject to, x€[0,117 and |Ix||; <1, (39)

where b € RY, A in g X p matrix, [0,1]? is the [0, 1] cube in R”. The
problem (39) takes MSSFP (38) given by

find x € C; N C, such that X € 0, (40)

where b € R?, A in ¢ x p matrix, C; is cube in RY (C| =[0,1]?),
C,={x€eR?: ||x||, <t} and Q = {b}.

ii. Radiotherapy treatment is very important in the field of medicine,
specially in the dose calculation process in Radiation therapy treat-
ment planning (RTTP) [40] and intensity-modulated radiation ther-
apy (IMRT) [41, 42]. The RTTP considered in [40] and IMRT
considered in [41, 42] are examples that can be translated into
MSSFP (38).

6. Numerical result

In this section, we will present two preliminary numerical exper-
iments to show the performance of our proposed iterative algorithm,
Algorithm 1, and to show our algorithm converges faster than the algo-
rithm in [1, 19]. All the code is written in MATLAB and is performed on
HP laptop with Intel(R) Core(TM) i5-7200U CPU @ 250 GHz 2.70 GHz
and RAM 4.00 GB.
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Table 1. For p, =1, 6, = (10n + 10)"2, p =20, R=5 and for

randomly generated starting points x, = (1,v/d,Vd*, Vd3,...

1
a, = ——
n 100n+100

(1,y/e, Ve, \/e3,... ) where d,e [0, 1).
N M

2 3 Iter(n) 15

cput 0.008303
6 7 Iter(n) 13

cput 0.009847
9 8 Iter(n) 16

cput 0.008590
30 30 Iter(n) 21

cput 0.011459
35 35 Iter(n) 39

cput 0.235961

), x =
— 1 —_ — 1
% = Tons10 = (/)
15 13 11
0.008199 0.008152  0.008118
13 14 13
0.008701 0.008940  0.007977
17 13 12
0.008743 0.007932  0.008051
21 19 17
0.080036 0.010311 0.010291
41 36 33
0.015459 0.016082  0.017052

Table 2. For a, = #, 0,=(m+ 172 p=8, R=3 and for randomly generated

starting points x, = (1\/3 Vaz, \/d_‘), X, = (l\ﬁ Vez, \/(—) where d,e €

[0, 1).

N M p,=0.1 p,=0.5 p,=1 p, =15 p,=18
2 2 Ite(n) 10 10 11 9 9

cput 0.007978 0.007465 0.007998 0.008004 0.007228
4 6 Iter(n) 13 10 9 11 10

cput 0.007896 0.007852 0.008262 0.006437 0.005454
9 9 Iter(n) 11 13 10 11 12

cput 0.007790 0.006858 0.006925 0.007476 0.006107
21 16 Iter(n) 18 14 15 13 13

cput 0.010914 0.007995 0.010343 0.008111 0.009817
29 30 Iter(n) 32 36 29 27 27

cput 0.012258 0.017639 0.016162 0.010873 0.010642

Problem 1. Consider GSCFP (5) for H, = H, = I, with usual norm,
where

. 2 .3 1 2

U, : x=(xD x® x® ) (a(,-,l)x( ),a(i,z)x( ),...,a(,-,p)x(p),0,0,0, ),
. 2 2 3

Ty y=00 2y, e (by 0.0, yP,5,)9, )

and

Agix= (x(1)7x(2)’x(3)’ L) (Z(l), z(z),z(3>, )7

where ag,y < -1 for all (i,rH) e {1,...,N}x{1,...,p}, and b;<-1 for all
jel, ..., M}, z¥ (s=1,2,3,...) is given by

0,
2 =
x(m)

for k € {1,...,R}. It is not hard to show that U, is #;-strict pseudo-
contraction mapping (»;,-demimetric mapping) where 0 <¢; <#; <1 for

& = max{

if s <k,

if s=k+m,

a -1
i) . is B.-stri i
Gy 7 tef{l,....p} }, and T; is p;-strict pseudocontraction

p2-1
mapping (f;-demimetric mapping) where 0<¢; <f; < 1 for ¢; = U;{T)Z'

J
This implies, I —U; and I —T; are demiclosed.

We study the numerical results of our algorithm for different step-
sizes, u =0 and for different starting points x, and x,;, and different
N, M and p. The step size 0, is set 0, = 0, where 0, is defined as in
Remark 2, i.e., by taking # = 0.8 and ¢, with €, = o(a,) and (34). The
numerical results are shown in Table 1, 2 and 3. The tables illustrate
the numerical behavior of our algorithm in terms of number of itera-

H.O  »
tions (Iter(n)) and CPU time in seconds (cput), where W =
17X2
—1 _ max |x£f)| < 0.001 as the stopping criterion. Based on the nu-
llx1=x21l te{1,....p}
merical results in Table 1 and 2 we see that the CPU time and a number

Table 3. For p=100 and R=2.

Xy, X, respectively N=3=M N=9,M=6 N=20=M
V22 8

(1, =5 27,4..) Iter(n) 18 22 25

(1220 5o om0 ) cput 0.010708  0.012163 0.014925
11 1

(L3 %) Iter(n) 19 24 30

(1,2.3,4,500,..)  cput 0012252  0.016246 0.023767
1 1 1

(L3 ) Iter(n) 24 23 23

(1,332,242, ) cput 0.012206  0.009742 0.019825

(-20,19,21,0,0,...)  Iter(n) 13 13 15

(6,20,-5,32,0,0,...)  cput 0.008294  0.014257 0.026192

of iterations of the algorithm to decrease linearly for the choice of the
term a, close to 1 or p, close to 1. In addition, from Table 1, 2 and 3,
we observe that the number of iterations and CPU time of Algorithm 1
depends on initial points and N and M, and our iteration method can
successively find high accuracy approximations to the solution GSCFP

(5).

We next consider an example of GSCFP (5) in a finite-dimensional
Hilbert space to compare our method, with the results in [1, 19].

Problem 2. Consider GSCFP (5) for H; = R? and H, = R?, with A, =

U x= 0, x@,x L x®) s (ag,)x?, a0x@, .., 0y x?)

Ty y=0"02,)0, @),

1 2
YD) e (b(j,])y( ),bg,z)y( ), ... by
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——Alg. 1
——CS-Alg. 17
——TL-Alg. 1

i
10° 10’ 102
Number iterations

Fig. 1. Comparison of Alg. 1, CS-Alg. 17 and TL-Alg. 1 for p=¢ =100, u=0,
and for randomly generated starting points x,, x, € [-1000, 1000].

Table 4. Comparison of Alg. 1, CS-Alg. 17 and TL-Alg. 1 for different di-
mensions where u =0 and x,,x, are randomly generated starting points
with xo, x; € [~1000, 1000].

Method p=2=gq p=5,q=4 p=8,q=5 p=20=¢q
Alg. 1 Iter(n) 15 15 17 19

cput 0.042293  0.048064 0.054138 0.083525
CS-Alg. 17 Iter(n) 17 18 18 21

cput 0.063185  0.067504 0.068096 0.093564
TL-Alg. 1 Iter(n) 15 16 17 22

cput 0.043785  0.047113 0.070805 0.084524

where 0<a;, <1foral (i,f) € (L,....,N}x{L,....p}, 0< b, <1 forall
(G,nefl,...,M}x({l,...,q}) and G® s g X p matrix for k € {1,..., R}.

axp

Obviously, for this case U; is n;-demimetric mapping where & <#; < -1
a -1

for & = max{ ﬁ ite {l,...,p}}, and T; is §;-demimetric where
=

b =1
¢ < B <~ for ¢ :max{m
U; and T, are directed mapping. The mappings / — U; and I —T; are
demiclosed from the fact that U; and T; are also nonexpansive map-
pings.

We take ag =77 ((.0) € {1,....N} x {1,....p}) and b, = -L-
(.1 €{1.....M} x {1,....q}). By setting A, =G = A=G,,, for all
k€ {l,...,R}, we compare our iterative algorithm, Algorithm 1 (Alg.
1), with Algorithm 17 of Censor and Segal [1] (CS-Alg. 17) and Al-
gorithm 1 of Tang and Liua [19] (TL-Alg. 1) to solve Problem 2 for
randomly generated ¢ x p matrix G, ,. We take the following step sizes:

‘re {l,...,q}}. This implies, each

1 X . .
Alg. 1: @, = —, p, =1, 0, defined as in Remark 2 taking e,
.
(12’
P — i _ J
CS-Alg. 17: v = 100 %= 205N by = 2(1+...+4M)
{1,..., M}), see [1];
. _ 1 _ i _ Jj
TL-Alg. 1: v, = w YTy T oM
{1,..., M}), see [19];

(iefl,...N}, je

(ef{l,..,N}, j€

In Table 3 and 4, and Fig. 1 present the corresponding numerical results,
where Fig. 1 demonstrates error (err(n) = ||x, — X||) versus the number
of iterations, and Table 3 shows the CPU time exclusion (cput) and a
number of iterations (Iter(n)) of Alg. 1, CS-Alg. 17 and TL-Alg. 1 for the

. PO P 1 ()
stopping criteria —4=- = max <0.001.
ppPing xi=xall - lxi=x2ll rgf1,....p) |

From Fig. 1, and Table 4 and 5, we see that our proposed iterative
method outperform Algorithm 17 of Censor and Segal [1] and Algo-
rithm 1 of Tang and Liua [19]. Our method requires most likely fewer
iterations and CPU time than that of the two compared algorithms as
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Table 5. Comparison of Alg. 1, CS-Alg. 17 and TL-Alg. 1 for u =0 and for
different starting points x,, x, where p=6, g = 100.

Initial points x,, x; Alg. 1 CS-Alg. 17  TL-Alg. 1
xo =(30,-22,50,6,70,100) Iter(n) 29 33 36
x; =(37,100,9,-60, 80, 25) cput 0.010412  0.022883 0.010546
xo =(13,9,16,60,-7,—10) Iter(n) 17 26 17
x; =(-29,76,-29, 80,970, 10) cput 0.009903 0.011066 0.037172
Xo=(-9,8,-6,5,-4,3) Iter(n) 14 16 15
x; =(45,-5,7,9,-4,1) cput 0.007256  0.009011 0.008949
x9=(1,2,3,4,5,6) Iter(n) 10 15 14
x, =(=5,-4,-3,-2,-1,0) cput 0.006734  0.006819 0.007673
Xy =(-11,2,0,0,-5,0.5) Iter(n) 10 16 14
x;=(0.5,1,3.5,-2,-1,10) cput 0.006039  0.006199 0.007031

seen from Table 4 and 5. Furthermore, the numerical results further
confirm the effectiveness of our proposed method.

7. Conclusions

In this paper, we introduced a novel algorithm involving an inertial
term and a step size independent of the operator norm for approximat-
ing a solution of a generalized split common fixed point problem (5) for
demimetric mappings in a real Hilbert space. Under mild assumptions,
we proved the convergence of the proposed iterative methods. We ap-
plied our result to solve problems that can be studied as fixed points
of demimetric mapping. The numerical experiments reported show the
efficiency of the proposed iterative method.
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