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A B S T R A C T   

Background and purpose: Computed tomography (CT) is one of the most common medical imaging modalities in 
radiation oncology and radiomics research, the computational voxel-level analysis of medical images. Radiomics 
is vulnerable to the effects of dental artifacts (DA) caused by metal implants or fillings and can hamper future 
reproducibility on new datasets. In this study we seek to better understand the robustness of quantitative 
radiomic features to DAs. Furthermore, we propose a novel method of detecting DAs in order to safeguard 
radiomic studies and improve reproducibility. 
Materials and methods: We analyzed the correlations between radiomic features and the location of dental arti-
facts in a new dataset containing 3D CT scans from 3211 patients. We then combined conventional image 
processing techniques with a pre-trained convolutional neural network to create a three-class patient-level DA 
classifier and slice-level DA locator. Finally, we demonstrated its utility in reducing the correlations between the 
location of DAs and certain radiomic features. 
Results: We found that when strong DAs were present, the proximity of the tumour to the mouth was highly 
correlated with 36 radiomic features. We predicted the correct DA magnitude yielding a Matthews correlation 
coefficient of 0.73 and location of DAs achieving the same level of agreement as human labellers. 
Conclusions: Removing radiomic features or CT slices containing DAs could reduce the unwanted correlations 
between the location of DAs and radiomic features. Automated DA detection can be used to improve the 
reproducibility of radiomic studies; an important step towards creating effective radiomic models for use in 
clinical radiation oncology.   

1. Introduction 

Computed tomography (CT) images are a commonly-used medical 
imaging modality in radiation oncology. Recent advances in machine 
learning and deep learning have led to the development of advanced 
image processing techniques for medical imaging applications, 
including CT scans [1]. CT-derived quantitative features (also referred to 
as radiomic features) have shown promising results in personalized 
medicine [2], and when combined with machine learning, have poten-
tial utility in diagnostic and prognostic applications. For these features 

to be predictive of radiotherapy response, they must be highly repro-
ducible and safeguards for data corruption must be put in place [3]. 
Unfortunately, radiomic features may be highly sensitive to high-density 
materials such as metal prosthesis or dental fillings [4]; the latter 
commonly causes dental artifacts, which pose a problem for imaging of 
head and neck patients. The metal in dental fillings has a much larger 
atomic number than soft tissues, resulting in a significantly higher 
attenuation for x-ray beams passing through the metal. As a result, these 
dental artifacts (DA) present as bright and dark streaks on the recon-
struction images. These artifacts not only obscure large portions of the 
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image’s reconstructed pixels, but studies have also shown that dental 
artifacts alter features computed by radiomics computational platforms 
in CT images [4,5]. They also affect target volume delineation [6], and 
radiation therapy dose calculation accuracy [7]. There is a need to ac-
count for artifacts during image data processing. 

Several studies have tried to address this data processing challenge 
by removing slices affected by DAs [4] or by using metal artifact 
reduction (MAR) algorithms [8]. Recently, a convolutional neural 
network (CNN) [9] and hand-crafted radiomic feature-based model [10] 
have been developed to detect the presence of DAs in CT volumes. 
However, to the best of our knowledge, no studies differentiated be-
tween DAs of different magnitudes or quantified how the location of 
these artifacts could affect quantitative imaging features used to train 
radiomic models. Furthermore, previous DA detection studies have 
classified hand-drawn regions of interest (ROI) as DA positive or DA 
negative [10] but have not examined the correlation between radiomic 
features in a given ROI and its distance from the DA source. These 
methods, even if effective at screening datasets for artifacts, could cause 
vast amounts of data to be unnecessarily marked as unclean, even if the 
artifacts do not homogeneously affect radiomic features in the patient’s 
image volume. 

Robustness and reproducibility of radiomic studies requires an un-
derstanding of imaging artifacts, and their influence on extracted fea-
tures. This study explores the relationships between a tumour’s radiomic 
features and its proximity to dental artifacts present in the images. 
Furthermore, we introduce Artifact Labelling Tool for Artifact Reduction 
(ALTAR), a novel methodology to identify patient images that are at risk 
of impact from dental artifacts. This methodology will assist in safe-
guarding radiomic studies and has been made openly available for usage 
by the radiomic community. 

2. Materials and methods 

The design of our study is represented in Fig. 1. To train our new DA 
detection model, we manually labelled a new CT dataset containing 3D 
axial scans of 3211 cancer patients for the presence of metal dental ar-
tifacts. We then developed a novel sinogram-based detection algorithm 
to classify images with the strongest artifacts present, and we combined 
this with a pretrained binary DA detection CNN. We then evaluated the 
models and compared their classification performance to human 

annotators. Finally, we performed a statistical analysis of radiomic 
features in order to determine the impact of DAs on features in the gross 
tumour volume (GTV) (Fig. 2). 

2.1. Dataset retrieval and labelling 

The dataset used for this study consists of 3211 head and neck cancer 
axial CT image volumes collected from 2005-07-26 to 2017-08-17 at the 
University Health Network (UHN) in Toronto, Canada (REB approval 
#17-5871). This dataset is referred to as RADCURE. We developed 
Artifact Labelling Tool for Artifact Reduction (ALTAR), an open-source 
algorithm and web-application enabling the review of large sets of im-
ages and the annotation of the magnitude and location of the dental 
artifacts. Using this tool, each 3D image in RADCURE was labelled by 
human annotators as either containing a “strong,” “weak,” or no dental 
artifact. The location of the slice with the strongest artifact was also 
labelled, or for images with no DA present, the location of the most 
central axial slice in the mouth was labelled. Full details of this labelling 
process are described in the Supplementary methods. 

2.2. Radiomic feature analysis 

The relationship between quantitative imaging features and the ex-
istence and location of dental artifacts was studied. 1547 radiomic 
features were extracted from each 3D image in RADCURE which con-
tained a gross tumour volume (2490 images) using the default settings of 
the open-source Python package, Pyradiomics (version 2.1.2) [11,12]. A 
Wilcoxon rank-sum test between image features from volumes with 
strong DAs and image volumes with no DAs was performed, applying the 
Bonferroni correction to the p-values to adjust for multiple tests, and 
considering p < 0.05 significant. Next, the partial Spearman correlation 
(adjusted for tumour volume) between the feature values and DA-GTV 
distances was computed independently for each DA magnitude (1039 
strong, 751 weak, 877 none). Finally, we removed 3D images where the 
GTV overlapped with the strongest DA slice and we performed the same 
Wilcoxon rank sum test between radiomic features from strong-DA and 
no-DA images from this smaller group of 1006 patients (529 strong, 477 
no DA). 

Fig. 1. The study design includes five main steps: (1) retrieval of head and neck CT imaging volume dataset and labelling of DA; (2) initial classification of DA using a 
sinogram-based detection (SBD) method; (3) secondary classification of SBD-classified dental artifacts using a previously trained CNN; (4) model evaluation; and (5) 
exploration of the effect of DA magnitude and its distance from the GTV on radiomic features. 
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2.3. Automated classification 

We created an automated three-class DA classification and location 
pipeline using a sequential combination of three algorithms. We devel-
oped a thresholding and sinogram-based detection (SBD) algorithm to 
create the first classifier in the pipeline which predicts a binary DA class 

for each patient’s 3D CT image volume. This was done by applying the 
Otsu threshold [13] to each axial slice and in order to segment the pa-
tient’s head. The head was then removed from the image and the 
remaining background pixels are transformed to the sinogram domain. 
We then apply a peak detection (Python Scipy version 1.4.1) algorithm 
on the mean sinogram intensities in the vertical stack of 2D images for a 

Fig. 2. An illustration of the two binary DA classifiers used in this study. (A) Two steps in the sinogram-based detection (SBD). First, one slice from a CT volume is 
thresholded and blurred, before being thresholded again to remove pixels in the body of the patient. The remaining pixels are thresholded again, revealing the streaks 
outside the patient’s body. The image is then transformed to the sinogram domain and the mean sinogram pixel intensity is computed. (B) An example of the ‘mean 
sinogram intensity’ for each slice in six CT volumes (each image represented with a different colour). A peak detection algorithm is applied to this plot for a given 
patient to detect slices likely to contain DAs. We annotate the detected slices with Xs to show that the algorithm detected one peak from each of the green and blue 
curves (both images labelled as ‘strong DA’). The dashed lines represent the peak detection threshold for each patient. (C) The CNN architecture used in the study. 
The network consisted of 5 convolutional layers (conv_1 to conv_5) creating a total of 64 filters. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 3. Flowchart of the SBD-CNN hybrid algorithm for dental artifact detection. Images were annotated manually and then first binned using SBD (Sinogram based 
detection) based on the average intensity of the corresponding sinogram. Subsequently, the original images were classified using the CNN model. Images that were 
labelled as artifact positive by both the SBD and CNN were categorized as having strong dental artifacts. Images labelled as artifact negative by both methods were 
labelled as having no artifacts. This way our hybrid model is capable of labelling images based on the strength of artifact presence. 
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patient. If a peak was detected, the entire 3D volume was classified “DA 
positive”. 

The original images were then passed to a pre-trained convolutional 
neural network (CNN) for binary classification. This network was 
developed and trained by Welch et al. [9] and a detailed description of 
how it was implemented in our study is provided in the Supplementary 
methods. We combined the binary predictions from the SBD algorithm 
and the CNN for each 3D patient scan to create a 3-class classifier using 
the decision tree architecture shown in Fig. 3. 

Finally, we passed any images that were classified as “strong” or 
“weak” to the DA location detection algorithm. For this, we developed a 
thresholding-based algorithm to detect the axial slice containing a DA in 
a given patient CT image volume. The thresholding-based algorithm 
works by first clipping the HU values between the maximum intensity in 
one patient’s CT image volume and 200 HU above that maximum. The 
standard deviation of each axial slice is then computed and peak 
detection is performed on the standard deviations of each axial slice 
using the scipy find_peaks function in a similar manner to the SBD peak 
detection step. The specific parameters chosen for the peak detection 
function are described in detail in the Supplementary. If any peaks are 
detected, the algorithm simply returns the indices of those peaks for that 
patient. Otherwise, the lower bound of the clipping range is decreased 
by 50 HU and the process is repeated for the patient until at least one 
peak is found. 

2.4. Performance assessment 

A subset containing 2319 patient image volumes was set aside for 
model evaluation. The remaining 892 images were used to develop the 
three-class hybrid algorithm and the DA location detection algorithm. 
The test set was chosen by removing any images that were used by 
Welch et al. in the training and evaluation of the CNN. Since this study 
used a cohort of patients from the same institution as RADCURE, we 
ensured that no images used for model evaluation in our study were used 
by Welch et al. Furthermore, since the thresholding location detection 
algorithm is intended to be used on DA-positive images, we tested this 
method on the 1551 patients who had a DA from the 2319 patient test 
set. 

We primarily used the Matthews correlation coefficient (MCC) to 
assess the accuracy of our prediction models. The MCC is equivalent to 
the Chi-square coefficient for binary labels and accounts for the poten-
tial class imbalance. We found the MCC to be a useful metric for DA 
detection, as an effective dataset cleaning tool should have a high ac-
curacy and a low false-negative rate (the rate at which a classifier fails to 
detect DAs when they are present). The MCC can also be generalized to 
multiclass cases, allowing us to compare the performance of our binary 
and three-class classifiers. In the Supplementary we also provide the 
performance of the CNN on its own as a binary classifier using the Area 
Under the Receiver Operating Characteristic Curve (AUC). For all AUC 
and MCC values we also estimated a p-value from 5000 iterations of a 
randomized permutation test. 

2.5. Research reproducibility 

The application we created to manually annotate images, Artifact 
Labelling Tool for Artifact Reduction (ALTAR) can be downloaded from 
our GitHub repository (https://github.com/bhklab/ALTAR). The code 
for the SBD, CNN, and thresholding location detection is open source 
(Creative Commons Non-Commercial) and freely available from on our 
GitHub repository (https://github.com/bhklab/DA-Detection). To 
ensure full reproducibility of our study we created a Code Ocean capsule 
to allow users to easily run and reuse our analysis pipeline (https://co 
deocean.com/capsule/2097894/tree). 

3. Results 

3.1. Dataset labelling 

After reviewing 3211 image sets using our ALTAR web-application, 
we identified 2180 volumes containing artifacts (1289 strong and 891 
weak) and 1031 volumes with no dental artifacts. The manual labelling 
was consistent in the set of 482 images that were labelled by two re-
searchers, yielding three-class Matthews correlation coefficient (MCC) 
of 0.73 (p << 0.01, 95% CI [0.66, 0.81]), and 0.91 (p << 0.01, 95% CI 
[0.83, 0.96]) for binary classes (strong/weak vs none; Supplementary 
Table 2). The annotators labelled the same slice as containing the 
“strongest DA,” or the patient’s mouth in DA negative cases, in 46% of 
patients (Fig. 5A). The two annotators labelled the strongest DA slice to 
within 5 slices of each other 82% of the time. 

3.2. Analysis of radiomic features and dental artifacts 

To test for differences between features from DA positive and DA 
negative image volumes, we performed a Wilcoxon rank sum test be-
tween features from each group. We found that 442 features were 
significantly different between the DA and no DA groups (Wilcoxon rank 
sum test corrected p-value <0.05), while 55 features varied significantly 
between strong DA and no DA patients when the artifact was 40 mm–80 
mm from the GTV. No features were significantly different between 
strong DA and no DA for patients with a DA more than 80 mm from the 
GTV. 

To assess the correlation between the radiomic features and distance 
of the GTV from the DA slice, we computed the partial Spearman cor-
relation between DA-GTV distance and radiomic feature value, con-
trolling for tumour volume (Fig. 4). 36 features were correlated with 
distance only in images with strong DAs (e.g. those same features were 
not correlated with distance when computed from weak and no-DA 
images). All but two of these 36 features were found to use the “lbp- 
3D-k” filter. Nine of these 36 features were also found to be significantly 
different between strong-DA and no-DA images in the Wilcoxon rank 
sum test. 

In order to validate the effect of removing “bad” images on radiomic 
features, we removed all images where the centre slice of the DA over-
lapped with any pixel in the GTV. We found that only 123 features were 
significantly different between the groups (p < 0.05). Repeating the test 
with randomly selected samples of the same size, this number of 123 
features was in the bottom 4.1% of repeated test results. 

3.3. Classifier performance 

The combined SBD and CNN DA three-class classifier yielded an MCC 
of 0.73 (p-value = 0.0002, 95% CI [0.65, 0.81]) on 2319 images (945 
strong, 606 weak, and 768 without artifacts). This was identical to the 
three-class agreement between human annotators (MCC = 0.73, p <<

0.01, 95% CI [0.65, 0.81] Fig. 5B). This hybrid algorithm was able to 
make use of two different binary DA detection algorithms which inde-
pendently performed worse than human labelling. Together, the two 
methods complement each other and are able to stratify images into 
three distinct DA magnitude classes. 

The thresholding-based DA location detection algorithm was tested 
on 1551 images with artifacts (1231 strong, 856 weak). The algorithm 
identified the exact slice which was labelled in 36% of cases. In 92% of 
cases, the algorithm identified a slice within 5 slices above or below the 
label (Fig. 5A). 

4. Discussion 

The main goal of this study consists of investigating potential 
spurious correlations in radiomic features due to metal artifacts and 
creating an automated pipeline for DA classification in large imaging 
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datasets to safeguard against these risks and improve reproducibility. 
Using a subset of 2490 patients, we extracted 1547 radiomic features 
and investigated statistical differences in these features based on their 
DA locations and magnitude. Then we used a large dataset of 3211 head 
and neck cancer CT image volumes to build a DA location and magni-
tude classifier. 

Analysis of radiomic features between strong DA and no DA patients 

revealed that approximately a third of features varied significantly with 
dental artifact status when the DA was less than 40 mm from the GTV. 
We found that the number of features associated with dental artifact 
status decreased significantly as the distance between the GTV and DA 
increased. This suggests that the location plays an important role in the 
effect of DAs on radiomic features. To further investigate this distance 
dependence, we examined the correlation between DA-GTV distance 

Fig. 4. Correlation between GTV-DA distance and feature values, based on the partial correlation using Spearman correlation. (A) Venn diagram showing the number 
of features with |r| > 0.55 calculated from patients from each DA class. This diagram only includes significant correlations (p < 0.05). For instance, 36 features had | 
r| > 0.55 and were found in patients with strong DAs (pink region), but those features had |r| < 0.55 when calculated from weak or no-DA images). Nine features had 
|r| > 0.55 when calculated for all three DA groups (grey region). (B) The number of features with DA-GTV distance correlation above a given cutoff, grouped by 
feature type. (C) These correlations grouped by filter type. (B) and (C) only include significant features (p < 0.05). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Performance of DA classification. (A) Distributions of how close the predicted slice index is to the labelled index for the threshold-based and sinogram based- 
detection methods (e.g. 

⃒
⃒
⃒
⃒ipredicted − ilabelled

⃒
⃒
⃒
⃒). The difference in slice label between two human annotators for a set of 482 CT volumes is also shown. (B) Performance 

(MCC) of the DA magnitude classification techniques used in this study. The p-value of the MCC for all classifiers was <0.001). The sinogram-based detection (SBD) 
and convolutional neural network (CNN) are both binary classifiers. The SBD was tested on 3211 CT image volumes and the CNN binary classifier was tested on a 
subset of 2319 image volumes. The SBD-CNN hybrid algorithm is a three-class classifier and the three-class MCC is therefore displayed here. 
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and the radiomic feature values. We found that, among the correlated 
features (Spearman correlation >0.55), only 0.5% of features (9 out of 
1547 radiomic features) were found in DA negative volumes only. 
However, a larger set of 36 correlated features were specifically found in 
the strong DA volumes. Interestingly, 34 features in this set are exclu-
sively composed of radiomic features which used the “Local-
BinaryPattern3D-kurtosis” (‘lbp-3D-k’) filter, suggesting that their lack 
of robustness in the presence of DA makes them unsuitable for radiomics 
modeling. lbp-3D-k filter computes the kurtosis (a measure of the 
tailedness of a distribution) [14] from the local binary pattern, a rota-
tionally invariant measure of texture in three dimensions [15]. We hy-
pothesize that DAs are altering the width of the distribution of specific 
texture metrics in three dimensions. These strong correlations between 
DA-GTV distance and specific radiomic features highlights the need for 
robust data curation pipelines for DAs in radiomic studies. 

We were then able to further motivate the use of DA location 
detection in dataset cleaning. By removing images with their GTV in the 
same slice as the DA, the number of features significantly different be-
tween strong-DA and no-DA images was significantly reduced (123 DA- 
affected feature vs an average of 188 features by randomly selecting 
1006 patients; p-value = 0.041). This highlights the need for a DA 
location detector in dataset cleaning. By removing only the images with 
a GTV overlapping with a DA, we were able to significantly improve the 
robustness of the features extracted from the dataset. 

Interestingly, the fact that only nine of those 36 distance-correlated 
features were significantly different between strong-DA and no-DA im-
ages (based on the Wilcoxon rank sum test) suggests that these two 
analyses are detecting different types of dependency. In particular, using 
the Spearman correlation with GTV-DA distance may be a more strict 
criterion by which to select features to exclude from a radiomics study. 
We suggest using both analyses in order to select features robust to DAs 
in future radiomics studies. 

To automate DA classification, we propose a DA magnitude and 
location classifier to help reduce confounding correlations relating to 
DAs. Rather than using whole-CT volume DA classifiers to remove 
samples or patients from training sets, we suggest using a DA location 
detection algorithm to only remove images where the DA is close to the 
CT region of interest. The binary DA CNN classifier from Welch et al. was 
found to perform just as well on this larger dataset (AUC = 0.97, p <<

0.01, 95% CI [0.94, 0.99]) as it had in the original study (AUC = 0.91 ±
STD 0.01) and outperformed our sinogram-based detection method. 
However, we were able to leverage the SBD’s ability to discriminate 
between strong and weak artifacts (90% true positive rate (95% CI [for 
strong, 25% for weak DAs) to create a three-class DA classifier. The 
three-class classifier also performed as well as two human annotators, 
with both the three-class MCC of the annotators and the algorithm being 
0.73 (p << 0.01, 95% CI [0.65, 0.80]). 

In addition to developing a novel multi-class dental artifact detection 
method, we developed an algorithm to detect the slice containing the 
artifact. We found that both the sinogram-based and the thresholding- 
based location detection methods agreed with a human-annotator as 
well as two humans would agree with one another. This was determined 
by comparing 482 images in our dataset that were annotated twice by 
different human observers (see Supplementary). The algorithms pre-
dicted the DA to be within 5 slices of the human label in 80–90% of 
cases, while two humans agreed on the label to within 5 slices in 82% of 
cases. Due to the simplicity of the thresholding-based algorithm, it could 
be used as an efficient add-on to any DA detection algorithm, or used to 
annotate the locations of DAs in datasets where the DA status of images 
is known, but not their location. This could be useful for removing data 
corrupted by DAs from a dataset without having to exclude the entire CT 
volume of DA positive patients. 

In general, our results show that it is crucial to quantify the image 
quality of datasets used in radiomic studies. We have shown that this can 
either be done using this DA detection tool to find images containing 
strong DAs, or manually labelling the data in order to understand the 

severity of DAs in the dataset. 
Although there are currently no widely-accepted tools for reducing 

the effects of DAs in radiomic studies, this work paves the way for future 
investigation of metal artifact reduction models, specifically targeted at 
improving reproducibility in radiomics. While multiple DA reduction 
approaches have been explored in clinical settings [16,17], these 
methods have not been investigated for their applications to reducing 
the impact of DAs on radiomic features (hand-engineered as with PyR-
adiomics or otherwise). This is an important area of research as our work 
highlights the strong links between DAs and radiomic features. 

Our study has several potential limitations. The analysis in this study 
has largely focused on the vertical location of DAs and their vertical 
distance from the GTV. This ignores any potential relationship between 
DA distance and radiomic features in the x, y plane (within a slice). We 
also acknowledge the inherent subjectivity of our manual labelling 
process, as individual researchers and clinicians may have widely 
varying definitions of strong, weak and no artifacts. Although our 
analysis of annotator agreement shows that this was not a major prob-
lem in our study, it does mean that our work could be difficult to 
reproduce with different data and researchers. 

In conclusion, we have developed a novel dental artifact detection 
algorithm which when combined with a convolutional neural network, 
created a three-class classifier for CT images with strong, weak, and no 
DAs. We then created a simple thresholding-based algorithm to detect 
the location of DAs in DA positive CT volumes. These new tools have 
been made open-source to be used in future studies to assess and account 
for the effects of DAs on radiomic models. We stress that our findings 
suggest that radiomic features are affected not only by the presence of 
DAs, but also by their location in the images. 
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