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Abstract

The metastatic activity of breast carcinomas results from complex genetic changes in epi-

thelial tumor cells and accounts for 90% of deaths in affected patients. Although the invasion

of the local lymphatic vessels and veins by malignant breast tumor cells and their subse-

quent metastasis to the lung, has been recognized, the mechanisms behind the metastatic

activity of breast tumor cells to other distal organs and the pathogenesis of metastatic can-

cer are not well understood. In this study, we utilized derivatives of the well-established and

highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231 (MDA-231) to

study breast tumor metastasis in a mouse model. These MDA-231 derivatives had depleted

expression of Kaiso, a POZ-ZF transcription factor that is highly expressed in malignant, tri-

ple negative breast cancers. We previously reported that Kaiso depletion attenuates the

metastasis of xenografted MDA-231 cells. Herein, we describe the pathological features of

the metastatic activity of parental (Kaisopositive) versus Kaisodepleted MDA-231 cells. Both

Kaisopositive and Kaisodepleted MDA-231 cells metastasized from the original tumor in the

mammary fat pad to the lung. However, while Kaisopositive cells formed large masses in the

lung parenchyma, invaded large pulmonary blood vessels and formed secondary metasta-

ses and large tumors in the distal organs, Kaisodepleted cells metastasized only to the lung

where they formed small metastatic lesions. Importantly, intravascular invasion and second-

ary metastases in distal organs were not observed in mice xenografted with Kaisodepleted

cells. It thus appears that the lung may constitute a barrier for less invasive breast tumors

such as the Kaisodepleted TNBC cells; this barrier may limit tumor growth and prevents

Kaisodepleted TNBC cells from invading the pulmonary blood vessels and forming secondary

metastases in distal organs.
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Introduction

An estimated 90% of medical fatalities in cancer patients are due to metastases [1]. Carcinomas

of the mammary gland [2,3], prostate gland [4], liver [5–9], pancreas [10], endometrium [11],

thyroid gland [12,13] and Merkel cell [14] have been shown to invade lymphoid vessels and

blood vessels [2,6,8,9,11–14] resulting in metastases to distant organs, particularly the lung

[7,9]. According to the systemic and pulmonary circulatory patterns, cancer cells that escape

the primary tumor site and enter the bloodstream would first disseminate to the lung via the

right ventricle before dispersing from the lung through the left heart to distal organs. Charac-

terization of the mechanisms of malignant mammary carcinoma indicates that in the primary

tumor, a small population of cells travel towards the blood vessels, and invade them in a com-

plex process involving enhanced activity of genes regulating the dynamics of the actin cytoskel-

eton, e.g. Mena [2,15–17] and LIM kinase1 [18]. In a series of in vivo experiments in mouse

and rat models utilising multiphoton microscopy, migrating tumor cells were seen to be assis-

ted by perivascular macrophages in the process of vascular invasion and metastases to distant

organs, which involved chemotaxis regulated by EGF and CSF-1 [1,15–17,19–23].

The progression of breast tumors towards an invasive behaviour and metastasis are postu-

lated to involve several molecular factors associated with the complex epithelial-to-mesenchy-

mal transformation (EMT) process that endows tumor cells with the ability to modulate their

cell-cell adhesion and the extracellular matrix [24–26,47,48,50–52], apparently involved in the

first line of defense against metastatic tumors. EMT is frequently accompanied by loss of the

epithelial marker E-cadherin, concurrent with elevated expression of vimentin [41–45], an

intermediate filament that participates in cell motility [46], as well as increased expression of

matrix metalloproteases-2 and -9 (MMP-2, MMP-9) [27–32] that are often assessed in the

determination of poor prognosis in breast cancer patients [33–36]. Tissue plasminogen activa-

tor (tPA) and urokinase plasminogen activator (uPA) are known to activate pro-enzyme forms

of MMP-2 and MMP-9 to active forms [37,38] and tPA and uPA have been proposed as mark-

ers for breast cancer progression [39,40].

Despite remarkable advancements in our understanding of cellular and molecular mecha-

nisms involved in tumor growth and intravascular invasion at primary tumor sites, relatively

little is known about how malignant tumors travel to distant organs. Since all lymph and

venous blood from the body flows via the right heart ventricle to the lung, it is expected that

most if not all primary metastases of carcinomatous tumors are trapped in small pulmonary

blood vessels. However, the relevant questions regarding the pathogenesis of metastatic cancer

remain; how do secondary metastases travel to other distant organs, and what are the mecha-

nisms involved in the generation of these secondary metastases?

To gain insight into the mechanisms involved in breast tumor metastases to distant organs,

we studied the pathogenesis of secondary metastases of parental, Kaisopositive and experimental

Kaisodepleted MDA-231 TNBC cells in immunocompromised mice [53]. Kaiso is a dual-

specificity transcription factor that is highly expressed in, and linked with the aggressive fea-

tures of breast, prostate, colon and pancreatic carcinomas [54–57]. We previously reported

that Kaiso depletion strongly inhibited the metastasis of TNBC cells to distal organs [53].

Herein, we describe histological analyses of the metastases generated by parental Kaisopositive

and Kaisodepleted MDA-231 cells.

We found that Kaisopositive MDA-231 breast cancer cells implanted into the mammary fad

pad of immunocompromised mice [53] formed large tumor masses in the lung parenchyma,

invaded large blood vessels and metastasised to other distant organs where it also formed large

masses. In contrast, Kaisodepleted tumor cells formed small clusters only in the lung paren-

chyma and did not invade blood vessels and did not metastasize to distant organs. While the

Kaiso expressing breast cancer cells form secondary metastases
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role of high Kaiso expression in the metastatic activity of human breast cancer cells was

reported in our previous paper [53], we describe here the critical importance of high Kaiso

expression in the propagation of breast tumors to distal organs beyond the lung, which we call

“secondary metastases”. We propose that the lung serves as the second line of defense against

carcinomas with metastatic potential; tumors with less malignant characteristics such as

Kaisodepleted MDA-231 cells are trapped, do not progress and perhaps are eliminated. In con-

trast, malignant tumors such as Kaisopositive MDA-231 cells thrive in the lung to form large

masses that then, invade the large pulmonary blood vessels, travel via the left heart ventricle

and lodge in small blood vessels of a variety of peripheral organs where they form secondary

metastases.

Materials and methods

Generation of stable Kaiso-depleted MDA-231 cells

The MDA-231 TNBC cell line was purchased from the American Type Culture Collection

(ATCC) (Manassas, VA, USA), and cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM; Lonza BioWhittaker1, Walkersville, MD, USA) supplemented with 10% Fetal

Bovine Serum (FBS; Hyclone, Logan, Utah, USA), 0.1 mg/mL penicillin/streptomycin and

0.25 g/mL Fungizone (Invitrogen, Grand Island, NY, USA). Cells were passaged every 2 or 3

days and grown in a 5% CO2 humidified incubator at 37˚C. Stable Kaiso-depletion was

achieved by using multiple Kaiso-specific short hairpin RNAs (shRNA) that target the Kaiso

mRNA specifically as previously described [49]. A scrambled shRNA that does not target the

Kaiso mRNA was used as a control. Stable control (Kaisopositive) and Kaisodepleted (sh-K)

MDA-231 cells were maintained in DMEM-supplemented media treated with Puromycin

(Invitrogen) at 0.8 μg/mL.

Western blot analysis

Stable control Kaisopositive and Kaisodepleted (sh-K1 and sh-K2) MDA-231 cells were cultured

until ~80–90% confluent, washed twice with cold PBS, and then harvested by cell scraping into

cold microfuge tubes. Control, sh-K1 and sh-K2 MDA-231 cells were then pelleted by centrifu-

gation, lysed, and protein isolated as previously described [59]. Rabbit anti-Kaiso polyclonal

(1:5,000 dilution; a generous gift from Dr. A. Reynolds), and mouse anti-β-actin monoclonal

(1:50,000 dilution, Sigma Aldrich, Oakville, ON, Canada) primary antibody incubations were

performed overnight at 4˚C. Secondary antibody incubations were performed with goat anti-

rabbit- or donkey anti-mouse-horseradish peroxidase-conjugated secondary antibodies.

(1;10,000 dilution, Jackson ImmunoResearch Laboratories, West Grove, PA, USA). Signals

were then amplified with Clarity Western Enhanced Chemiluminescence substrate as previ-

ously described [53]. The sh-K2 MDA-231 cells, hereafter referred as sh-K or Kaisodepleted

MDA-231 cells, where chosen for all subsequent studies as these cells displayed the most effi-

cient Kaiso knockdown.

Animal studies

All animal studies were approved and performed at McMaster University, Ontario, Canada

according to the guidelines by the Canadian Council for Animal Care. Extensive description of

animal studies has been outlined previously [53]. Briefly, 4.5 x 106 Kaisopositive or Kaisodepleted

MDA-231 cells were injected subcutaneously into the mammary fat pad of 6–8 week old

female NOD SCID Gamma (NSG, Jackson Laboratories) mice (n = 5 each per condition), and

allowed to form prominent subcutaneous masses up to 3,300 mm3 in volume. Non-invasive

Kaiso expressing breast cancer cells form secondary metastases
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monitoring of mice was performed once a week, and increased to 2–3 times per week upon

tumor appearance. Tumor growth was monitored externally with vernier calipers and tumor

volume (in mm3) measured using the following formula; length/2 × width2, 2–3 times per

week [53]. This tumor mass volume was achieved before the onset of serious clinical signs

such as body weight loss, dehydration and lethargy that would require the application of the

endpoint and euthanasia. The endpoint tumor volume of 3,300 mm3 was determined in pilot

experiments prior to the study. At endpoint, the mice were euthanized by overdosing with

intraperitoneal injection of sodium pentobarbital (100 mg/kg body weight), perfused when

deeply anaesthetized, and fixed in 10% formalin and all routine tissues collected for histologi-

cal examination.

Histology and Immunohistochemistry

Harvested and formalin-fixed tissues were processed, embedded in paraffin wax, and 5 μm

thick tissue sections were then mounted on glass slides and stained with either hematoxylin &

eosin (H&E) or Masson’s trichrome. Immunohistochemical (IHC) analyses of tissue sections

were performed as described previously [53]. Briefly, tissues were rehydrated in decreasing

concentrations of alcohol, and deparaffinized in xylene before antigen retrieval by heating tis-

sues in a sodium citrate solution (pH 6.0) in a microwave. Primary antibody incubations were

performed overnight at 4˚C with the following antibodies: anti-Kaiso 6F mouse monoclonal

(1:500), anti-Kaiso 12H mouse monoclonal (1:800) [58], anti-Vimentin rabbit monoclonal

antibody (1:500; Cell Signaling Technology (CST), Danvers, MA, USA #5741), anti-E-cad-

herin mouse monoclonal antibody (1:50; BD Biosciences, Mississauga, ON, Canada 610182),

anti-MMP-2 rabbit polyclonal antibody (1:1000; CST #4022BC), and anti-MMP-9 rabbit poly-

clonal antibody (1:1000; CST # 3852BC). Secondary antibody incubations were performed for

2 hours at room temperature with either biotinylated goat anti-mouse or donkey anti-rabbit

antibody at a dilution of 1:1000. Negative controls were obtained by excluding primary anti-

body. Histological analysis of H&E, Masson’s trichome and IHC-stained tissue sections were

performed using a Nikon Eclipse 50 light microscope and representative phenotypes

photographed.

Results and discussion

Protein expression

Expression of Kaiso in MDA-231 cells was abundant but remarkably reduced in sh-K1 (to

28%) and sh-K2 (to 6%) (see Fig 1) as the result of the stable transfection of the Kaiso-specific

shRNA in these cells. Sh-K2 cells were utilized as Kaisodepleted in the xenograft studies.

Clinical observations and histological analyses

The subcutaneous masses in the mammary gland fat pad reached the endpoint volume of

3,300 mm3 within 8 weeks in Kaisopositive tumors and 12 weeks in Kaisodepleted tumors [60].

Further characterization of the Kaisopositive and Kaisodepleted MDA-231 phenotypes revealed

that the difference in tumor growth was due to Kaiso-depletion effects on cell proliferation,

anchorage-independence and apoptosis [60].

The injection of the Kaisopositive and Kaisodepleted MDA-231 cells into the mammary fat

pad of immunocompromised mice resulted in the formation of large subcutaneous masses

(Fig 2Ai and 2Aiii) formed by large, pleomorphic cells with high mitotic index (Fig 2Aii and

2Aiv). Primary tumor masses formed by both types of mammary carcinoma cells were mor-

phologically indistinguishable from each other (Fig 2A). Veins and lymphatic vessels in

Kaiso expressing breast cancer cells form secondary metastases
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vicinity to some subcutaneous masses were distended with clusters or single tumor cells scat-

tered throughout the lumen (Fig 2B).

In the lung, Kaisopositive cells formed large, often coalescing, non-circumscribed tumor mas-

ses with obliteration of the alveolar architecture (Fig 3A) formed by large, pleomorphic cells

with a high mitotic index. Scattered neutrophils infiltrated the periphery of the tumor masses

and the surrounding alveolar tissue. A proportion of large blood vessels encompassed by or

Fig 1. Kaisodepleted MDA- 231 cells express negligible Kaiso compared to parental Kaisopositive cells.

Kaiso expression levels were determined using western blot. Both Kaisodepleted clones (sh-K1 & sh-K2)

expressed little Kaiso compared to the Kaisopositive MDA-231 cells.

https://doi.org/10.1371/journal.pone.0183883.g001

Fig 2. Primary subcutaneous tumors formed by Kaisopositive and kaisodepleted cells with invasion of the

lumen of surrounding veins. Subcutaneous tumor mass of Kaisopositive MDA-231 human mammary

carcinoma cells (Ai, ii) and Kaisodepleted tumor cells (Aiii, iv)) implanted into the fat pad of the mammary gland of

female NRG mice. Tumor cells abut against the epidermis (arrow in Ai, iii) but do not invade it. Tumor cells are

large, markedly pleomorphic, there is high mitotic index. (Bi) A vein (Bv, delineated by arrowheads) is adjacent

to the subcutaneous tumor mass (Tm). It is distended by clumps and individual large pleomorphic cells (Bii) and

also has scattered red blood cells. H&E. Size bars Ai, ii, Bi– 500 microns; Aii, iv, Bii– 50 microns.

https://doi.org/10.1371/journal.pone.0183883.g002
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adjacent to tumors (Fig 3A) had masses of tumor cells protruding into the lumen, with the seg-

mental concurrent obliteration of the vascular wall by tumor cells forming a continuity of peri-

vascular and intravascular tumors (Fig 3B–3D). The apparent vascular invasion of Kaisopositive

tumors was often associated by formation of thrombi infiltrated by tumor cells (Fig 3D). In

contrast, Kaisodepleted tumor cells formed small aggregations scattered in the alveolar paren-

chyma (Fig 3E and 3G), sometimes adjacent to large blood vessels but with no invasion of the

vascular wall or the lumen (Fig 3F). Kaisodepleted tumor aggregations were often infiltrated by

scattered neutrophils (Fig 3G).

Although Kaisopositive and Kaisodepleted cancer cells both formed subcutaneous masses and

invaded nearby veins and lymphatics resulting in pulmonary metastases, Kaiso-depletion

markedly supressed the ability of cancer masses to grow expansively in the lung, and elimi-

nated their ability to invade blood vessels thereby restricting their spread to other organs.

Indeed, tumors were not observed in any other organ except in the lung of mice injected with

Kaisodepleted cells. In contrast, in mice injected with Kaisopositive cells, large tumors were

observed in the liver (Fig 4A and 4B), kidney (Fig 4C and 4D), myocardium (Fig 4E and 4F),

and infrequently in the adrenal gland and leptomeninges of the brain (not shown). Thus,

Kaiso appear to play a regulatory role to in the; (i) expansive growth of metastatic tumors in

the lung and (ii) invasion of the pulmonary blood vessels to spread to other organs supports

the notion of Kaiso as a crucial factor in highly aggressive subtypes of breast cancer [53,54,60].

Our findings suggest that Kaiso could be a target for therapeutic strategies in the treatment of

aggressive breast cancers. Some large blood vessels within a tumor mass or adjacent to it, such

as in the liver (Fig 4A), or in kidney (Fig 4C) had intraluminal invasion of tumor cells with for-

mation of thrombus and obliteration of the adjacent segment of the wall of the blood vessel

(Fig 4B and 4D). In the myocardium, protrusions of the tumor cells into the lumen of ventri-

cles (Fig 4E) resulted in the formation of fibrinous thrombus (Fig 4F) infiltrated by tumor

Fig 3. Metastasis of Kaisopositive and Kaisodepleted cells to the lung results in dramatically different tumor

behavior. (A-D) Kaisopositive tumors are numerous, large, obliterate the architecture of the pulmonary tissue and invade

the lumen of large blood vessels (arrow in A). A segment of the vascular wall indicated by yellow arrows (B, D) is

obliterated by tumor cells (double-headed interrupted arrow in B) that provide continuity between a perivascular mass

and intravascular tumors (ivT) in the lumen (asterix in B, C). Apparent vascular invasion is associated with formation of

intravascular thrombus (C, D). Intravascular surface of tumors or tumor thrombi is typically lined by endothelial cells (B).

Tumor cells in intravascular masses or thrombi are large and pleomorphic (B, D). Kaisodepleted cells form small

interstitial aggregations (arrow in E) of large pleomorphic cells (F, G) that do not invade the wall or the lumen (F) of

adjacent blood vessels. H&E–A, B, E, F; Masson’s trichrome (C, D, G). Size bars; A, E– 500 microns, B-D, F, G– 50

microns.

https://doi.org/10.1371/journal.pone.0183883.g003
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cells. Large, sometimes coalescing tumor masses obliterated the organ architecture and were

composed of large pleomorphic cells similar morphologically and immunohistochemically to

those described in the subcutaneous mass and in the lung of mice injected with Kaisopositive

cells.

Intravascular (Fig 5A) or cardiac intraventricular (Fig 5B) invasion by the Kaisopositive

tumor cells often resulted in formation of a thrombus whose surface in some cases was appar-

ently covered by endothelium (Fig 5Aii and 5Bii), delineating the remaining lumen of the

blood vessel or the ventricle. Other thrombi however, where not delineated by endothelium

but often by a layer of neutrophils (Fig 5Aiii and 5Biv). In some blood vessels adjacent areas of

thrombi were or were not endothelialized while in others apparently endothelium-free small

clusters or individual cancer cells were present in the lumen (Fig 5Aiii).

Fig 4. Intravascular invasion of secondary metastatic Kaisopositive tumors. Low magnification images

(A, C, E) and high magnification images (B, D, F) of tissue regions outlined by white dotted lines in A, C and E.

Kaisopositive cells metastatic to the liver (A, B) and kidney (C, D) formed large tumors and invaded adjacent

blood vessels with formation of thrombi (Th in B, D) delineated from the surrounding tissue by yellow arrows.

Tumor masses in the myocardium (white box and arrowhead in E) often resulted in invasion of the ventricle

(asterix) with formation of a mass (white box in E) and thrombus (Th in F). Thrombus is delineated from

myocardium (my) by yellow arrows in F. There is continuity between the masses of tumor cells in the

myocardium and in the intraventricular thrombus (F). H&E. Size bars; A, C, E– 1,000 microns, B, D, F– 50

microns.

https://doi.org/10.1371/journal.pone.0183883.g004
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The above data indicate that the subcutaneously implanted Kaisopositive MDA-231 cells effi-

ciently penetrated the vascular wall and invaded the lumen of large blood vessels in the lung

and other organs (Figs 4 and 5). This is in line with other studies that have also demonstrated

vascular taxis and intravascular invasion of breast tumors implanted subcutaneously into mice

[1,15–17,19–23]. The active penetration of the vascular wall by Kaisopositive cells lead to their

accessing of the lumen with frequent formation of thrombus. This pathogenesis implies two

potential mechanisms; (1) tumor cells breached the endothelium of the tumor–invaded blood

vessel, which may have led to thrombosis; (2) the tumor cells then invaded the thrombus as the

convenient substrate, which lead to the increase of the intravascular load of cancer cells des-

tined to metastasize to other organs. We also observed endothelium lining of the intravascular

tumor masses with or without thrombosis. We consider that neo-endothelialization of the

intravascular tumor masses and tumor thrombi may serve as a defense mechanism preserving

the patency of the blood flow. We thus postulate that this putative defense mechanism may

actually be subverted by the invading tumor cells allowing for the increase of their intravascu-

lar load and presumably leading to a greater chance of success of secondary metastases.

Immunohistochemical analyses

Kaisopositive primary tumor tissues, as expected, stained positive for Kaiso (Fig 6A), which

localized to both the nucleus and cytoplasm. Further analysis of the Kaisopositive tumor tissues

for other molecular markers implicated in tumor metastasis revealed that similar to our previ-

ous observations in vitro [53], Kaisopositive MDA-231 primary tumor tissues stained moderately

for Vimentin (Fig 6B) and negative for E-cadherin (Fig 6C). We also examined the Kaisodepleted

Fig 5. Thrombosis caused by Kaisopositive tumors invading the blood vessels and heart ventricles. In the lung (A), a number of

large blood vessels (two indicated by arrows) have intravascular thrombi delineated from the vascular wall by yellow arrows and protruding

in the vascular lumen (Th in Aii, iii). The thrombi are infiltrated by neoplastic cells and are lined by endothelium (solid arrowheads in Aii) or

not (open arrowhead in Aiii). In the myocardium (my, B) thrombi protruding into the ventricular lumen (Bi, iii) are also infiltrated by

neoplastic cells (Th in Bii, iv) and either lined by endothelium (solid arrowheads in Bii) or not (open arrowheads in Biv). H&E. Size bars;

Biii– 1,000 microns, Ai, Bi– 500 microns, Aii, iii, Bii, iv B– 50 microns.

https://doi.org/10.1371/journal.pone.0183883.g005
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primary tumor tissues for Kaiso, Vimentin and E-cadherin expression. While we expected lit-

tle to no Kaiso staining in the Kaisodepleted MDA-231 tumors as per our western blot results

(Fig 1), we were surprised to observe weak Kaiso staining in the primary tumors which was

predominantly cytoplasmic (Fig 6D). The weak Kaiso staining could be due to deselection of

the Kaisodepleted MDA-231 cells as the mice were not subjected to constant treatment with

Puromycin that would ensure selection and maintenance of shRNA plasmid in the stable cells

in vitro. Nonetheless, the Kaiso staining observed in Kaisodepleted tumor tissues was still

remarkably reduced compared to the staining observed in the Kaisopositive tumor tissues

(Fig 6A and 6D). Kaisodepleted MDA-231 tumor tissues also stained weakly for Vimentin

(Fig 6E) as expected from in vitro findings in our previous report [53]. In contrast, while we

had observed increased E-cadherin expression in the Kaisodepleted MDA-231 cells in vitro [53],

the Kaisodepleted MDA-231 tumor tissues stained negative for E-cadherin (Fig 6F). This lack

of E-cadherin staining could be due to the weak levels of Kaiso expression observed in the

Kaisodepleted MDA-231 primary tumors (Fig 6D) or due to other in vivo factors in the tumor

microenvironment that are independent of Kaiso’s expression or Kaiso’s effect on E-cadherin

expression.

Analysis of the tumor masses observed in the lung (Fig 7A) of mice injected with the

Kaisopositive and Kaisodepleted MDA-231 cells also revealed that the Kaisopositive tumor cells that

metastasized to the lung exhibited strong Kaiso (Fig 7Ai) and Vimentin (Fig 7Aii) staining but

no E-cadherin staining (Fig 7Aiii), while Kaisodepleted tumor metastases in the lung displayed

weak Kaiso (Fig 7Aiv) and Vimentin (Fig 7Av) staining, but no E-cadherin staining (Fig 7vi).

These findings suggest a persistence of the molecular phenotype of both Kaisopositive and Kai-

sodepleted MDA-231 cells as they metastasized to the lung. We further analyzed the Kaisopositive

and Kaisonegative MDA-231 lung metastases for the expression of MMP-2 and MMP-9.

Fig 6. IHC of primary subcutaneous Kaisopositive and Kaisodepleted MDA-231 tumors. Tumor cells (Tm) of

Kaisopositive (A-C) and Kaisodepleted (D-F) masses do not invade the epidermis (double-headed arrow in A, D,

F, arrow in B). Kaisopositive tumor cells are labeled strongly positive for Kaiso (A) and vimentin (B) while the

Kaisodepleted cells are labelled considerably less (D, E). The labeling with anti-E-cadherin antibody is negative

for both types of tumor cells in contrast to the positive labelling of the mouse epithelium in sebaceous glands

(Sb in C, F) and in epidermis (F). Size bars A-F– 50 microns.

https://doi.org/10.1371/journal.pone.0183883.g006
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Fig 7. The molecular phenotype of the Kaisopositive MDA-231 cells persist as they metastasize to other distal organs (liver and myocardium). (A)

Neoplastic Kaisopositive cells in lung metastases or thrombi are large, pleomorphic, and stain positive for Kaiso (i) and vimentin (ii), but negative for E-

cadherin (iii). In contrast, Kaisodepleted tumor cells are weakly stained for Kaiso (iv) and Vimentin (v) and negative for E-cadherin (vi). (B) Kaisopositive tumor

cells in lung metastases also stain strongly for MMP-2 (i), and MMP-9 (ii), while the Kaisodepleted tumor cells stain weakly for MMP-2 (iii), but positive for

MMP-9 (iv). The asterisk indicates the lumen of the blood vessel with the thrombus (Th) and the yellow arrows indicate the vascular wall and its obliteration

by tumor cells in (A, B). (C) The thrombus (Th) formed in the large blood vessel of the liver (i-v) and in the ventricle of the heart (vi-viii) in mice injected with

Kaisopositive cells partially obliterated the vascular wall or endocardium indicated by the yellow arrows (i-viii). Neoplastic cells are stained positive for Kaiso

(i, vi), vimentin (ii, vii), MMP-2 (iv, ix), and MMP-9 (v, x), and negative for E-cadherin (iii, viii). Scale bars; A-C– 50 microns.

https://doi.org/10.1371/journal.pone.0183883.g007
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Although, MMP-2 and MMP-9 had not previously been examined in the Kaisopositive and

Kaisonegative MDA-231 cells in vitro, they have been implicated in EMT and breast cancer

progression [61–63]. Consistent with the EMT phenotype in the Kaisopositive tumor cells,

Kaisopositive lung metastases displayed strong MMP-2 and MMP-9 expression (Fig 7Bi and

7Bii). In contrast, Kaisodepleted lung metastases displayed reduced MMP-2 (Fig 7Biii) but not

MMP-9 (Fig 7Biv) expression.

Examination of the Kaisopositive tumor cells in secondary metastases (Fig 7C) also revealed

strong Kaiso (Fig 7Ci) and Vimentin (Fig 7Cii) staining but no E-cadherin staining (Fig 7Ciii)

in liver metastases. Similar to the lung metastases, the Kaisopositive liver metastases also dis-

played strong MMP-2 (Fig 7Civ) and MMP-9 (Fig 7Cv) staining. Likewise, the Kaisopositive

tumor masses in the myocardium displayed strong Kaiso (Fig 7Cvi) and Vimentin (Fig 7Cvii)

staining but no E-cadherin staining (Fig 7Cviii), as well as strong MMP-2 (Fig 7Cix) and

MMP-9 (Fig 7Cx) staining. These findings also imply a persistence of the molecular phenotype

of the Kaisopositive MDA-231 cells as they metastasized to other distal organs.

In this study we analyzed the metastatic progression of Kaisopositive and Kaisonegative malig-

nant mammary carcinomas using in vivo transplantation experiments in a mouse model. We

found that Kaisopositive and Kaisonegative MDA-231 cancer cells both formed subcutaneous

masses and invaded nearby veins and lymphatics apparently leading to pulmonary metastases.

However, Kaiso-depletion was associated with remarkable suppression of the growth of cancer

cells in the lung. In contrast, high Kaiso-expressing tumor cells thrived in the lung, invaded

large pulmonary blood vessels and metastasized to other organs. These findings suggest that

Kaiso plays a key role in metastatic activity of MDA-231 cancer cells. The penetration of the

vascular wall and invasion of the lumen of large blood vessels abundant in the lung and other

organs appears to be the fundamental factor of malignancy of the Kaisopositive tumor cells. This

is in line with other studies that have also demonstrated vascular taxis and intravascular inva-

sion of breast tumors implanted subcutaneously into mice [1,15–17,19–23]. Immunohisto-

chemical characterization of Kaisopositive and Kaisodepleted tumors in this study revealed that

Kaisopositive tumor cells exhibit more features associated with malignancy (increased Kaiso,

Vimentin, MMP-2 and MMP-9 expression) than the Kaisodepleted tumor cells, which only dis-

played increased MMP-9 expression. Moreover, Kaiso expression seem to correlate positively

with Vimentin and MMP-2 but not MMP-9 expression. Indeed Kaiso-depletion resulted in

decreased Vimentin and MMP-2 but not MMP-9 expression. The similar staining of MMP-9

and lack of E-cadherin staining in both Kaisopositive and Kaisodepleted tumor cells, which is a

marker of EMT, may explain the ability of both cell types to metastasize to the lungs. However,

considering that only the Kaisopositive tumor cells were capable of surviving in the lungs, invad-

ing blood vessels and forming macrometastases in other distal organs, the higher Kaiso expres-

sion in concert with the increased Vimentin and MMP-2 expression could be considered as

the critical determinants that allowed the Kaisopositive tumors to thrive after metastasis to the

lung, and other distant organs.

We thus propose that the lung serves as the second line of defense against carcinomas with

metastatic potential where tumors with less malignant characteristics, e.g. with reduced

expression of Kaiso, are trapped, do not progress and perhaps are eliminated. Consequently,

secondary metastases to the distant organs are prevented. We further postulate, that malignant

tumors such as human breast tumors with high Kaiso expression can overcome this defensive

mechanism, thrive in the lung and form large masses whose cells invade the blood vessels,

travel via the left heart ventricle to lodge in small blood vessels of a variety of peripheral organs,

and initiate multiple secondary metastatic tumors leading to accelerated demise (Fig 8). If this

hypothesis is proven to be correct, potential cancer-suppressive tissue mechanisms in the lung

should be considered in the pathogenesis of cancer metastasis. Also, models used to evaluate
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Fig 8. Conceptual pathogenesis of cancer metastasis. Primary metastasis: Invasion of Kaisopositive and Kaisodepleted

mammary carcinoma cells of the local veins and lymphatics allows the cells to migrate via the right heart ventricle to the lung

where they are trapped in the capillary blood vessels (b.v.) and form pulmonary metastases. While in the lung, Kaisopositive

cells proliferate successfully and form large, coalescing masses that send the cells to actively cross the wall of adjacent blood

vessels and invade their lumen. Kaisodepleted tumor cells form small aggregations that do not invade blood vessels therefore

Kaiso expressing breast cancer cells form secondary metastases

PLOS ONE | https://doi.org/10.1371/journal.pone.0183883 September 7, 2017 12 / 17

https://doi.org/10.1371/journal.pone.0183883


the effectiveness of anti-cancer therapies should specifically include the analysis of the primary

metastases in the lung and secondary metastases from the lung to other organs. The possibility

of the lung as the second line of defence, with potential anti-cancer mechanisms sufficient to

stall Kaisodepleted but not Kaisopositive breast cancer cells should be addressed in further studies.

Conclusions

In this report, we analyzed the metastatic progression of Kaisopositive and Kaisonegative malig-

nant mammary carcinomas using in vivo transplantation experiments in a mouse model.

Although this study utilizes the end point metastasis analysis of disseminated breast tumor

cells, it highlights potential novel mechanisms involved in secondary metastases and provides

detailed histological evidence of different behaviour of MDA-231 malignant breast cancer

cells depending on the expression level of Kaiso. Both Kaisopositive and Kaisodepleted tumor

types; (1) formed subcutaneous masses of cells with morphological features of malignancy;

(2) invaded adjacent veins and lymphatic vessels; and (3) metastasized to the lung. However,

while Kaisopositive cells; (i) formed large pulmonary tumors; (ii) actively invaded pulmonary

blood vessels apparently leading to (iii) secondary metastases and tumors in a variety of distal

organs, Kaisodepleted tumors formed only small aggregates in the lungs, did not invade pulmo-

nary blood vessels and did not form secondary metastases. Thus, Kaiso may be a potent factor

enabling breast cancer cells to overcome apparent inhibitory mechanisms in the lung and to

send secondary metastases throughout distant organs.
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