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Abstract

Cancer cells have acquired mutations that alter their growth. Aneuploidy that typify cancer cells are often assumed to
contribute to the abnormal growth characteristics. Here we test the idea of a link between aneuploidy and mutations
allowing improved growth, using Saccharomyces cerevisiae containing a mcm4 helicase allele that was shown to cause
cancer in mice. Yeast bearing this mcm4 allele are prone to undergoing a ‘‘hypermutable phase’’ characterized by a
changing karyotype, ultimately yielding progeny with improved growth properties. When such progeny are returned to a
normal karyotype by mating, their improved growth remains. Genetic analysis shows their improved growth is due to
mutations in just a few loci. In sum, the effects of the mcm4 allele in mice are recapitulated in yeast, and the aneuploidy is
not required to maintain improved growth.
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Introduction

With the sequencing of cancer genome, it has been shown that

the tumors of human cancer patients contain numerous genetic

alterations [1]. Not all of the alterations promote cancer initiation

or progression, the so-called driver events. Recent data indicate

that most clonal mutations in tumors lack apparent tumorigenic

functions [2]. Among all kinds of alterations, aneuploidy,

characterized by changes in chromosomal structure and number,

is a remarkably common feature of cancers [3]. It has been

proposed that such chromosomal aberrations contribute to

characteristics of tumors or precancerous cells through a

mechanism by which oncogenes are gained, tumor suppressor

genes are lost, or oncogenic fusions are created at breakpoints

[4,5]. However, this proposal had remained untested because of

the difficulty of selectively removing the acquired aneuploidy in

cells that already have altered growth.

The cancer susceptible allele Mcm4Chaos3 was first identified in a

forward genetic mutagenesis screen for mice exhibiting genetic

instability (GIN) [6]. MCM4 is a subunit of the evolutionarily

conserved heterohexameric MCM2-7 helicase, essential for replica-

tion initiation and elongation [7–10]. Mcm4Chaos3 (F341I) is located in

a conserved region at the interface of neighboring subunits (Figure

S1). Female mice homozygous for Mcm4Chaos3 in the C3H strain

background are highly prone to aggressive mammary tumors with a

mean latency of 12 mo [6]. Most studies on genetic causes of GIN

and cancer susceptibility have focused on DNA damage response and

cell cycle checkpoint genes rather than the DNA replication

machinery. However, there is increasing appreciation that acquired

replication stress can be a source of DNA damage that leads to GIN

[11,12]. The Mcm4Chaos3 model is a unique breast carcinogenesis

model in that it is not genetically engineered with oncogenes, and it

provides an excellent opportunity to investigate the role of DNA

replication perturbations on GIN and tumorigenesis.

To understand the effect of Mcm4Chaos3 on genome integrity and

its consequences, we introduced the equivalent mutation into

diploid yeast. Here, we show that the effect of Mcm4Chaos3 in mice

can be recapitulated in yeast. The mcm4Chaos3/Chaos3 diploid yeast

shows G2/M delay and severe GIN. We found mutant yeast

generate a hypermutable subpopulation that acquires new traits

including aneuploidy and improved growth. We took advantage of

yeast genetic tools to investigate the link between aneuploidy and

mutations that allowed improved growth. We show that neither

aneuploidy nor the mcm4Chaos3 mutation contributes to the

maintenance of the acquired improved growth phenotype (Igp).

Instead, we found that heritable changes unrelated to aneuploidy

are responsible for Igp.

Results

mcm4Chaos3/Chaos3 Diploid Yeast Exhibit a G2/M Delay
We introduced the mouse Mcm4Chaos3 mutation into the

orthologous position of MCM4 (F391I) in diploid yeast [6]. We

found that mcm4Chaos3/Chaos3 yeast had a G2/M delay on the basis

of FACS analysis of log phase cells (Figures 1A and S2A). At 30uC,

the doubling time (DT) of mcm4Chaos3/Chaos3 (3.0260.16 h) was

longer than that of wild-type (2.0560.06 h) or mcm4Chaos3/+

(2.1460.06 h) strains. We observed that the proliferating mutant

cultures had an increased proportion of large budded cells with

one nucleus at the bud neck (Figure 1B–1D), indicating a delay
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prior to anaphase. This G2/M delay seems to be a checkpoint

response triggered by DNA damage. Knocking out the DNA

damage checkpoint protein Rad9 [13] abolished the G2/M delay,

whereas knocking out the spindle assembly checkpoint protein

Mad2 [14] had no effect (Figure 1A). The mcm4Chaos3 allele was

slightly temperature-sensitive (ts) for growth (Figure 1E), compared

to the reported lethality of other mcm mutants at restricted

temperature [9]. As in mice [6], these defects are more severe in

the yeast mcm4Chaos3/D mutant (Figures 1B, 1E, and S2A), which

has a DT of 3.7260.15 h. The growth defects in mcm4Chaos3/Chaos3

is partially rescued by one copy of the wild-type MCM4 (Figure

S2B) with a DT of 2.2860.13 h, while no further increase of DT

was observed in wild-type strain with an additional copy of wild-

type MCM4 (2.0060.02 h).

The mcm4Chaos3/Chaos3 Diploid Shows a 100-Fold Increase
in Loss of Heterozygosity Because of
Hyperrecombination

Loss of heterozygosity (LOH) is a major contributing event in

cancer development and a product of GIN. To investigate whether

the mcm4Chaos3 allele causes GIN in yeast, we measured the LOH

frequency of CAN1 with respect to HOM3 on the left arm of

chromosome V [15]. Almost all detected LOH events were due to

mitotic recombination. There was little difference in the frequency

between MCM4+/+ (2.1260.1161025) and mcm4Chaos3/+

(3.0460.7361025) yeast, but the frequency in mcm4Chaos3/Chaos3

(2.6061.6061023) was about 100-fold elevated over that of the

wild type. This frequency is much higher than any DNA damage

checkpoint, recombination, or repair mutants reported to date

[16,17].

A Subpopulation of mcm4Chaos3 Cells Form Colonies
Slowly

mcm4Chaos3/Chaos3 yeast cultures showed 40% decreased viability

(Figure S2C) compared to wild type and gave rise to a

subpopulation that formed minute colonies (Figure 2A, ii).

Whereas colonies of wild-type yeast are uniform in size, we found

that mutant yeast formed variably sized colonies with a bimodal

distribution (Figure 2B). This bimodal distribution of large and

minute colonies was reproduced upon replating of the large

colonies (Figure 2A, ii, L1 and 2A, iv, L1P). Replating of the

minute colonies gave rise to a dramatically heterogeneous

distribution (Figure 2A, iii), including minute, serrated (white

arrow), and giant colonies (G1-1 and G1-2). The minute S1P

retained the ability to produce heterogeneous offspring including

giant colonies (Figure 1B, v, G1P) upon restreaking. The serrated

Author Summary

Aneuploidy, an abnormality in chromosome number and
structure, occurs commonly in cancers and has been
suggested to be required to maintain accelerated cell
proliferation. However, this hypothesis remains untested
as it is not possible to selectively remove the acquired
aneuploidy in cells that already have altered growth. Using
a yeast model bearing mcm4Chaos3, an allele that causes
mammary tumors in mice, these technical hurdles in
animal cells can be overcome. We show that aneuploidy is
not responsible for accelerated proliferation in yeast but
mutations in just a few loci are. This study provides an
excellent example of how a complex disease can be
dissected in a simple model organism, and that the
information extracted from yeast may be used to guide
mammalian studies.

Figure 1. The mcm4Chaos3/Chaos3 mutant has a G2/M delay. (A) The mutant shows a G2/M delay that is Rad9-dependent and Mad2-independent.
(B) Homozygous mcm4Chaos3 mutants have a higher mitotic index. Log phase cells were analyzed by microscopy. Cells with no bud (G1), small bud (S),
and large bud (G2/M) were counted. (C) Microscopy of log phase mcm4Chaos/Chaos3 and wild-type cells. (D) Fluorescence microscopy of DAPI-stained
mutant cells. 77% of mutant large budded cells have one nucleus at the bud neck (pointed with white arrow), whereas 90% of large budded wild-
type cells have two nuclei. (E) Serial dilutions of mcm4Chaos3 homozgyotes and hemizygotes grown on YPD at 30uC and 37uC.
doi:10.1371/journal.pbio.1000161.g001
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morphology is typical of yeast cells that are continuously giving rise

to offspring with different viabilities and growth rates [18]. A key

observation is that giant colonies readily emerge from a single

restreaking of minute colonies, but rarely from the direct

restreaking of large colonies as if an intermediate step (which we

hypothesize to involve hypermutagenesis) is required for this

transition.

Progeny of Minute Colonies Acquire New Traits
The giant colonies were interesting to us because of their size

and smooth morphology, traits indicative of cells having a

relatively shorter DT and more stable genome than their

progenitors that form the minute colonies (minute progenitors).

An obvious explanation for their emergence is that secondary

genetic events must have overcome the growth defects of the

minute progenitors. To investigate these secondary genetic events,

seven giant colonies with lineages traced to a single founder cell

were characterized (Figure 2C). All growth measurements are

referenced against that of the ancestral mcm4Chaos3/Chaos3 progenitor

that generates both large and minute colonies because the minute

progenitors are severely unstable. Consistent with their colony size,

cells forming giant colonies had shorter DTs than their ancestral

progenitor (Figure 2C) and proliferated much faster than their

minute progenitors.

Other than the common Igp, each strain exhibited additional

distinct new traits. Some have viability that surpasses that of the

ancestral progenitor, while some have decreased viability

(Figure 3A). FACS analysis indicated that these strains still

maintained a near-diploid DNA content, and some of them had

a less pronounced G2/M delay than their ancestral progenitor

(Figure 3B). The distribution of colony size also varied among

these strains (Figures 3D and S2D). Some of them became

sensitive to genotoxic drugs such as hydroxyurea (Figure S2E).

The distinct new traits of the giant colony-forming cells suggest

that these traits are acquired independently and that the Igp of

independent giant colonies may result from different underlying

mechanisms.

To investigate whether maintenance of the improved growth

state requires mcm4Chaos3, we complemented the mcm4Chaos3

mutation by transforming a wild-type MCM4 allele into these

Figure 2. The mcm4Chaos3/Chaos3 mutant generates a subpopulation of genetically unstable cells. (A) The mutant produces heterogeneous
offspring. (i) Wild-type cells produce uniform sized colonies. (ii) The mutant produces heterogeneous sized colonies. The arrowheads point at
representative minute colonies, S1, S2, and S3. Long black arrows indicate the lineage of colonies that were analyzed. L1 and S1 are a large and a
minute colony derived from a streak of a large colony of the mutant. (iii) and (iv) are colonies derived from S1 and L1, respectively. (iii) Heterogeneous
colony morphologies include giant (G1-1, G1-2), serrated (white arrow), and minute (S1P) colonies. The inset is a magnification of the heterogeneous
colonies. (v) S1P gives rise to heterogeneous colonies including giant colonies such as G1P. (vi) Large colonies (L1P) consistently give rise to both
large and minute colonies. Scale bar of 1 cm is shown. (B) Histograms of colony size of wild type (normal distribution) and mcm4Chaos3/Chaos3 (bimodal
distribution). (C) The lineage of strains presented in Figures 2 and 3. Ancestral progenitor is represented by a black circle. Different minute colonies
are color coded. Giant colonies derived from the same ancestral minute colony are coded with the same color. The number under each strain is the
DT (h). S, minute; L, large; G, giant; P, progeny.
doi:10.1371/journal.pbio.1000161.g002
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fast-proliferating strains. We have shown earlier in Results

(Figures 1 and S2A) that phenotypes such as reduced viability,

hyperrecombination, and G2/M delay caused by mcm4Chaos3 are

recessive. If, in addition to the secondary mutations, mcm4Chaos3 is

required for improved growth, the presence of a wild-type MCM4

allele would slow down the growth. However, proliferation rates of

the fast-proliferating strains (Figure 3C) were further accelerated

by MCM4, suggesting that some other genetic events are

responsible for the Igp independent of the mcm4Chaos3 background.

This result also suggests that the newly acquired mutations are not

merely mcm4Chaos3 specific suppressors. Thus, unlike oncogene-

induced proliferation [19], the mcm4Chaos3 mutation that initiates

GIN is not required to maintain the improved growth state.

Fast-Proliferating mcm4Chaos3/Chaos3 Strains Are
Associated with Various Types of Genetic Alterations

To investigate the effects of mcm4Chaos3 on genome integrity and

the genetic events associated with Igp, we analyzed the karyotypes

of these seven fast-proliferating strains by array-CGH and, when

translocations were apparent, by PCR and pulse field gel

electrophoresis. Each strain had a unique spectrum of aneuploidy

or chromosomal aberrations, including translocations, segmental

duplications and deletions, whole chromosome gains or losses, and

gene amplifications (Figure 3E). The perfect correlation between

Igp and aneuploidy in these seven randomly selected large colonies

was striking. However, we did not observe a common chromo-

somal aberration that could be identified as a defining primary

genetic change responsible for the Igp. We found that the

breakpoints of all of the chromosomal rearrangements were

associated either with Ty or solo long terminal repeat (LTR)

elements (Figures 3E, arrowheads, and S3). Tys and LTRs have

been shown to be hotspots for translocation [20–22].

Aneuploidy Is Not Responsible for Improved Growth
The perfect correlation between aneuploidy and Igp suggests

a causal relationship. To investigate the causative effect of

aneuploidy on improved growth, we removed chromosomal

aberrations from the fast-proliferating strains by sporulating

Figure 3. New traits acquired by cells of giant colonies. Viability (A), FACS profiles (B), fold increase in growth rates, with or without wild-type
MCM4 on a CEN plasmid (C), colony size distribution (D), and aneuploidy (E). Only affected chromosomes are shown in (E): yellow indicates
approximately equal amounts of hybridization between mutant and wild-type DNA; green indicates approximately 2-fold reduction; and red
approximately 1.5–2-fold increase in mutant. Arrowheads (black, Ty; blue, solo LTR) represent the breakpoints of translocations, amplifications, or
deletions. Detailed characterization of colony size distributions and genetic aberrations are shown in Figures S2D and S3, respectively.
doi:10.1371/journal.pbio.1000161.g003
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G1-1, G2-1, G2-2, and mated sister spores (Figure 4A). We

then performed CGH on the derivative diploids to verify the

presence or absence of chromosomal aberrations. G1-1D, G2-

1D-1, G2-1D-2, and G2-2D showed no aneuploidy (Figure S4)

but all exhibited even shorter DTs than their giant parent

strains (Figure 4A). This result suggests that CGH-detectable

aneuploidy is not required for Igp. Rather, other secondary

mutations or epigenetic alterations contribute to Igp. The tight

correlation between aneuploidy and Igp without a demonstra-

ble causal relationship suggests that these traits co-emerge

from the same process, presumably involving a hypermutable

slow phase driven by mcm4Chaos3 that allows for the acute

accumulation of a large number of genetic alterations within a

short period of time.

Another approach to investigate whether and which specific

chromosome aberration may be responsible for Igp is to correlate

specific aneuploidy and proliferation based on lineage. If

aneuploidy were associated with Igp, slow-growing siblings of fast

growers would not be aneuploid or would have distinct genetic

aberrations. The giant colony G3’s minute sibling (S3P) was

streaked further to generate G3P because S3P was too unstable for

karyotype analysis (Figure 2C). Remarkably, we found that G3

and G3P share multiple identical genetic aberrations (Figure 3E).

These aberrations unlikely arose independently and more likely

arose in S3, the slowly proliferating minute progenitor cells of G3

and S3P. Therefore the progenitor cell of S3P must have already

acquired the aneuploidy that is associated with improved growth

in G3 and G3P, suggesting that aneuploidy is unrelated to Igp.

Despite their identical aneuploidy, G3 and G3P have distinctly

different viability, cell cycle profiles, and colony sizes (Figure 3,

Figure S2B). Such traits presumably are caused by genetic changes

distinct from the shared chromosome alterations and were

acquired independently during clonal expansion of their respective

minute progenitors.

Mutations Responsible for the Igp Segregate in a
Mendelian Fashion

We have shown that aneuploidy is not the cause of the Igp.

So what events cause Igp? Is it possible to genetically map the

loci in these cells? The parents of the fast-proliferating strain

(G1-1D) were backcrossed with the ancestral progenitor

mcm4Chaos3 strain (Figure 4C) that does not have secondary

mutations. The resulting diploids (G1-1-F1 and G1-1-F19) in a

heterozygous background for the secondary mutations also

show improved growth (Figure 4C), indicating that the Igp in

G1-1D is dominant. Mating the G1-1D spore with wild-type

haploid results in further improved growth (DT = 1.860.1 h

compared to wild-type DT = 2.160.1 h) (Figure 4B). To test

whether the Igp is due to epigenetic modifications such as

histone H3 and H4 lysine deacetylation, we treated wild-type

G1-1-F1 and G1-1-N1 with histone deacetylase inhibitors: the

histone deacetylase inhibitors nicotinamide (NAM) and Tri-

chostatin A (TSA), repressing nicotinamide adenine dinucle-

otide (NAD)-dependent and class I or II histone deacetylases,

respectively [23,24]. Our results showed that in vivo treatment

with NAM and TSA had no effect on Igp (Figure S4G),

suggesting that the Igp in G1-1 is due to genetic mutations

rather than epigenetic modifications. If the Igp is dominant

and if it is determined by no more than one or two alleles, one

should be able to observe Mendelian segregation of the

mutation(s) linked to Igp by tetrad analysis. G1-1-F1 and

G1-1-F19 were sporulated. Three tetrads of G1-1-F1 and G1-

1-F19 were mated to the progenitor mcm4Chaos3 strain to further

analyze the proliferation proficiency. Instead of measuring

growth rates at 30uC, the segregation pattern of the Igp was

best demonstrated by plating the resulting diploids on yeast

peptone dextrose (YPD) plates at 37uC. The Igp segregated

1:2:1 in all three tetrads examined (Figures 4C, S4F, and S4G)

suggesting that two alleles in G1-1-F1 and G1-1-F19 consti-

tuted the Igp. We do not know if these alleles are identical for

G1-1-F1 and G1-1-F19. If so, the parents of G1-1D are

parental ditypes caused by independent assortment of two

mutations or LOH may have played a role in the homozygosity

of these alleles in G1-1. This genetic approach may be applied

to individual fast-proliferating strains to estimate the number

of alleles that contribute to the Igp.

The Subpopulation Forming Minute Colonies Is
Hypermutable

The ancestral progenitor does not harbor any aneuploidy (Figure

S4A), so the aneuploidy in the fast-proliferating strains must be

acquired during formation of minute colonies. To investigate when

aneuploidy was acquired, we compared the karyotypes of pairs of

fast-proliferating strains each derived from a common minute

progenitor. Giant colonies G1-1 and G1-2, both derived from

minute colony S1 (Figure 2C), shared a common translocation of a

segment of the right arm of Chromosome VII to the left arm of

Chromosome XVI (Figures 3E and S3A), suggesting that this

particular translocation event may have occurred very early during

the clonal expansion of S1. However, G1-1 also had a loss of

Chromosome IX, an event not shared by G1-2, suggesting that

Chromosome IX was lost later during the clonal expansion. This

result suggests that the subpopulation of mcm4Chaos3/Chaos3 cells that

form minute colonies are genetically unstable, a property that is

consistent with the heterogeneous morphologies of colonies

generated by these cells upon restreaking.

The comparison of G2-1 and G2-2 also indicates that

aneuploidy is acquired during the clonal expansion of S2. G2-1

and G2-2 shared no common gross chromosomal aberration

(Figures 3E and S3B), suggesting that the gain of Chromosome V

in G2-1 and the segmental duplication of Chromosome VII must

have been generated late after the emergence of the S2 progenitor

cell. We estimate that ,20 cell divisions are required to form a

visible colony of 106 cells in a minute colony. In both of these

examples, independent gross chromosome rearrangements took

place late during the clonal expansion of S1 and S2 within a short

period of fewer than 20 cell divisions from the birth of the founder

cell.

The Hypermutable Slow Phase Is Critical for the Rapid
Emergence of Improved Growth Traits

All of the fast-proliferating strains so far were derived from

cells that form minute colonies. We did not observe giant

colonies from the direct streaking of large colonies presumably

because hypermutable cells have a severe growth disadvantage

in the main population and the emergence of Igp requires the

gradual accumulation of mutations through successive hyper-

mutagenic cell divisions. To investigate whether the main

population will allow the emergence of Igp, a swipe of cells

from eight independent large colonies was patched on YPD

plate and then repatched on a fresh plate daily for 30 d in a

‘‘chemostat on plate’’ experiment (Figure 5A). After 30 d and

approximately 300 cell divisions, we assayed each of the eight

independent cell lines for Igp. We found two of the eight or

25% of the cell lines have acquired an Igp (Figure 5B, P4 and

P6) in contrast to the emergence of Igp in 100% of the minute

colonies analyzed. This result suggests that the subpopulation

Modeling Mouse Cancer in Yeast
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Figure 4. Mutations unrelated to aneuploidy contribute to improved growth. (A) Cells from giant colonies were sporulated and sister
spores were mated. Those with Igp were devoid of aneuploidy (confirmed by CGH, see Figure S4) and show even more enhanced proliferation rates.
DTs of the resulting diploids are shown. Spores with the same color are from the same tetrad. (B) A parent of G1-1-D was crossed with wild-type
haploid to generate G1-1-W. (C) The Igp of G1-1-D is dominant and segregates 1:2:1 in tetrads. The parents of G1-1-D were crossed with progenitor
mcm4Chaos3 strain to form G1-1-F1 and G1-1-F19, which were sporulated for tetrad analysis. Tetrads were backcrossed to the progenitor mcm4Chaos3

strain (colored black) for Igp. The growth rates of the resulting diploids, G1-1-N1 and G1-1-N19 were compared by plating on YPD plate at 30uC and
37uC. An additional tetrad generated from G1-1-F1 is shown in Figure S4F. F, fast; I, intermediate; S, slow.
doi:10.1371/journal.pbio.1000161.g004
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that forms minute colonies is hypermutable compared to the

main population, and that propagation of hypermutable cells

free from the main population is critical for the rapid

generation of Igp in the mcm4Chaos3 mutant.

Both cell lines, P4 and P6, are homozygous for the same

gene deletion D(VID28-SNL1-BAR1) on Chromosome IX

(Figure S5), and P6 contains an additional segmental deletion

on Chromosome V (Figure 5C), identical to that found in G3,

G3P, and G4. Mating viable spores removed the segmental

deletion in P6 (DT = 2.360.1 h) to generate P6-D (1.960.1 h),

confirming again that this segmental deletion is unlinked to the

Igp. Introducing a wild-type copy of MCM4 into P4 and P6 did

not impede the proliferation rate indicating that mcm4Chaos3

mutation is not required to maintain the Igp (Figure 5C). This

result suggests that independent of the pathway of achieving

improved growth, whether through a hypermutable subpopu-

lation within a short period of time or through gradual

adaptations in the main population, the simultaneously

acquired aneuploidy and the mcm4Chaos3 mutation are not

responsible for the Igp.

Discussion

The Effects of Mcm4Chaos3 in Mice Are Recapitulated in
Yeast

In this study, we have shown that a mutation in MCM4 that

predisposes mice to mammary adenocarcinomas also predisposes

yeast to improved growth. There are other striking similarities

between the mouse and yeast mutant such as elevated GIN, G2/

M delay, and chromosomal abnormalities (Table 1). A subtle

defect in the MCM helicase that had little deleterious effect on the

whole animal in mice or the main cell population in yeast

somehow acts as a driving force to create aneuploidy in a

subpopulation of cells. The locations of the breakpoints of the

chromosomal rearrangements at Ty and solo LTR elements

suggest that replication fork defects either occur or are repaired at

Figure 5. The evolution of mcm4Chaos3 in the main population. (A) The scheme of independent serial passages of mcm4Chaos3 progenitor on YPD.
A swipe of cells was streaked out on YPD plates every day for 30 d. (B) Serial dilutions of mcm4Chaos3 strains after 30 passages grown on YPD at 30uC and
37uC. P4 and P6 showing obvious Igp are labeled with asterisks. (C) The DT, FACS profile, fold increase in growth rates, with or without wild-type MCM4,
on a CEN plasmid and karyotype of P4 and P6. Arrowheads (black, Ty) represent the breakpoints of deletions, and regions of gene loss (Figure S5).
doi:10.1371/journal.pbio.1000161.g005

Table 1. Phenotypic similarities between mcm4Chaos3 yeast and Mcm4Chaos3 mice.

Yeast Micea

G2/M delay G2/M delay in Mcm4C/C MEFs and developmental lethality in Mcm4C/D mice

Translocation and segmental deletion or amplification at LTR sites. Embryonic fibroblasts highly susceptible to chromosome breaks under replication stress

100-fold increase in mitotic recombination 20-fold increase in frequency of micronuclei in erythrocytes, likely representative of elevated
DSBs

Predisposition to improved growth 80% of females acquire aggressive mammary tumors

Particular chromosome abnormalities in individual improved growth strains Different segmental aneuploidies in independent tumor cell lines (detected by array CGH;
unpublished results)

aSee [6,41].
doi:10.1371/journal.pbio.1000161.t001
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these sites. Further investigation should provide insight into the

molecular events at the replication fork that induce the

hypermutable phase that is so vividly manifested in the minute

colonies in this study. This study provides an excellent example of

the utility of yeast as a simple model organism for dissecting the

molecular basis of complex diseases. Information extracted from

yeast about altered pathways or genes that enhance cell

proliferation may be used to guide mammalian studies.

Aneuploidy and Improved Growth That Co-Emerge as
New Traits Are Unlinked

Concerted efforts to sequence breast cancer genomes to identify

the genomic changes that cause breast cancers have been launched

both in the US and in the UK [3,25,26]. Preliminary analysis of 24

breast cancers reveals that as many as 2,000 rearrangements

associated with these representative subclasses of breast cancer;

deep sequencing of a couple of other cancers indicates thousands

of point mutations in each cancer (M. Stratton, personal

correspondence). Identification of the driver mutations responsible

for breast cancer among this vast number of passenger mutations

is daunting indeed. Relevant simple models, such as the mcm4Chaos3

yeast mutant, are needed to provide insight for sorting out driver

from passenger mutations in the human cancer genome studies.

The 100% coincidence of aneuploidy and improved growth (see

correlation calculation in Materials and Methods) in seven

randomly selected fast-proliferating strains in this study provides

a perfect test for the hypothesis that aneuploidy and Igp are linked

in cancer cells. Using two different approaches, we demonstrated

that aneuploidy is unlinked to Igp. First, we removed aneuploidy

from fast-proliferating cells by genetic crosses and showed that

cells stripped of aneuploidy have further improved growth.

Second, we delineated the phylogeny of subclones derived during

clonal expansion from an ancestral mcm4Chaos3 cell and showed that

siblings harboring identical aneuploidy have dramatically different

growth rates. Both of these approaches are unique to the yeast

model because in animal studies for cancer development, it is not

possible to trace the ancestral cell with the initiating oncogenic

mutation in a tumor [27] or to remove aneuploidy from cancer

cells without introducing additional genetic alterations. Our results

complement two recent yeast and mouse studies that show that

artificially constructed strains or primary cells bearing an extra

copy of a chromosome does not lead to improved growth [28,29].

Our study addressed the role of aneuploidy in the later stage when

the cells already acquired altered growth and chromosome

aberrations, demonstrating that naturally acquired aneuploidy is

not required to maintain the improved growth traits. Importantly,

our study was not limited to chromosome gains, but other

spontaneous chromosomal aberrations associated with improved

growth such as chromosome loss, translocations, segmental

duplications, and deletions.

Mutations That Improve Cell Proliferation
If aneuploidy is not responsible for the Igp of any of the fast-

proliferating cells that we randomly selected, what are the

mutations responsible? We sporulated the fast growing diploids

and backcrossed to the progenitor strain and then carried out

tetrad analysis. We showed that the G1-1 strain is dominant for

the Igp and the mutant alleles segregated 1:2:1. This segregation

pattern is unchanged by treatment with NAM or TSA (Figure

S4G), suggesting that two unlinked mutations act independently to

improve growth (Figure 4C). G2-2 on the other hand is recessive

for the Igp (unpublished data). The important point here is that we

believe that many mutations that cause Igp can be identified. We

speculate that fast growers with recessive mutations might include

mutants compromised in checkpoint defects that shorten the cell

division cycle, whereas dominant mutations might include

metabolic mutations that increase energy production or gain of

function mutations such as those found in p53 in mammals [30].

The identification of these mutations might provide insight into

the many causes of uncontrolled cell proliferation that is

characteristic of cancer cells.

A Hypermutable Slow Phase Is an Intermediary State for
the Rapid Emergence of New Traits

The bimodal colony size distribution is a unique feature of the

mcm4Chaos3 diploid mutant. Although the main population of

mcm4Chaos3 diploid displays a G2/M delay, a 100-fold increase of

LOH, and a subtle growth defect, the subpopulation that forms

minute colonies has acute phenotypes. The hypermutable

property of this subpopulation most likely contributed to the

reduced viability of the population as a whole.

The classical view for the relationship between GIN and cancer is

that only cells with subtle GIN undergo tumorigenesis by

incremental adaptations [31] because cells with severe GIN are

eliminated by apoptosis or survival pressure. In this study, we find

that the hypermutable cells with severely compromised growth are

the ones that ultimately generate fast growers when given the

opportune environment to propagate without survival pressure.

This observation suggests that GIN alone in the absence of survival

pressure is sufficient to generate fast growers. In contrast, within the

main cell population where survival pressure weeds out the

hypermutable cells that have a growth disadvantage, the process

of acquiring new traits such as Igp is less effective (Figure 5). As a

result, the main population of mcm4Chaos3 progenitor undergoes

apparent self-renewal for generations without dramatic changes of

its characteristics. Another view for the relationship between GIN

and cancer is that a loss of checkpoint control allows the survival of

hypermutable cells [11,12], which might be important during the

formation of the minute colonies.

The existence of a hypermutable slow phase with severe growth

defects during the development of fast-proliferating cells reconciles

with many of the concepts that emerge from the debate about the

cause and effect of GIN. Although GIN alone is deleterious [32],

given a situation when survival pressure is alleviated, cells with

GIN are able to quickly accumulate a large number of mutations,

and beneficial mutations among them eventually overcome the

deleterious effects of GIN. Such a hypermutable slow stage that

escapes survival pressure has been hypothesized to exist in early

tumorigenesis [33,34]. Our study provides direct evidence for the

existence and importance of such a hypermutable slow stage for

the adaptation of cells that ultimately achieve a high proliferative

capacity.

Materials and Methods

Yeast Strains and Media
Isogenic diploid W303 yeast strains mcm4+/+, mcm4+/Chaos3,

mcm4+/D, mcm4Chaos3/Chaos3, and mcm4Chaos3/D were constructed as

described [6]. Strains used in this study are listed in Table S1.

Histone deacetylase inhibitors were added to YPD media at 5 mM

for NAM (Sigma) or 10 mM for TSA (Sigma).

Flow Cytometric Analysis
Approximately 16107 cells were collected from log-phase

cultures and processed as described [35]. DNA was stained with

Sytox Green (Molecular Probes) and profiles were analyzed using

a Becton Dickinson LSR II with a 530/30BP channel filter and

BDFACSDiVa software Becton Dickinson.

Modeling Mouse Cancer in Yeast

PLoS Biology | www.plosbiology.org 8 July 2009 | Volume 7 | Issue 7 | e1000161



Growth Curve and DT
Saturated cell cultures were diluted 256 in complete medium

and then grown at 30uC for 4 h to mid-log phase. The absorbance

at 600 nm was measured every half hour for 5 h. The growth rates

and DTs were calculated during exponential growth. For each

experiment where DTs of different strains are compared, all

strains were processed simultaneously in at least two independent

trials to yield variations in DTs of less than 0.1 hr. Relative

differences in DT were confirmed using microplate reader Tecan

Infinite M200.

Cell Viability and Colony Size Distribution
Cell viabilities were measured by first counting log phase cells in

a hemacytometer before plating in triplicate on YEPD and

counting visible colonies after 3 d of growth at permissive

temperatures. Colony sizes were quantified by ImageJ, and

histograms were plotted by Excel.

Mitotic Recombination Assay
A standard assay for measuring mitotic recombination and

chromosome loss was used [15]. The test strain was heterozygous

for mutations in CAN1 and HOM3, two markers located on opposite

arms of Chromosome V. The haploid strain with the can1 mutation

was resistant to canavanine (Canr) and the hom3 strain was

auxotrophic for threonine (Thr2). Heterozygous diploid strains

were Cans and Thr+. Mitotic recombination was scored by the Canr

Thr+ phenotype. Over 90% of the Canr strains scored were Thr+.

Comparative Genomic Hybridization Microarray
Genomic DNA was prepared, sonicated, and labeled on the basis

of the protocol from the Dunham lab [28]. DNA from the

experimental strain was labeled with Cy3 nucleotide, and DNA

from wild-type strain was labeled with a Cy5 nucleotide. The two

DNA samples were mixed and hybridized to Yeast Whole Genome

ChIP-on-chip Microarray from Agilent (290 nt resolution, 4644 K-

slide format, which contains ,85% of the nonrepetitive portion of

the yeast genome catalog number G4493A). Arrays were then

washed according to the Agilent SSPE wash protocol, and scanned

on an Agilent scanner or Axon 4000B microarray scanner. The

image was processed using the default settings with Agilent Feature

Extraction software or GenePix Pro 6.0. All data analysis was

performed using the resulting log2 ratio data, and filtered for signals

that are 2.5-fold above background in at least one channel.

Chromosome translocations are confirmed by PCR analysis and

pulsed field electrophoresis.

Correlation between Improved Growth and Aneuploidy
The confidence level of the correlation between improved

growth and aneuploidy based on seven randomly selected giant

colonies is 12n7 where n is the probability of chromosome

rearrangement occurring in a single cell. Chromosome rearrange-

ment is a rare event generated by mitotic recombination, which

occurs at a frequency of ,161023 in the mcm4Chaos3 diploid. Thus,

if n is ,161023, then the confidence level is close to 1 and the

correlation is 100%.

Supporting Information

Figure S1 The mouse Chaos3 mutation F345I is located
in a conserved region of MCM4 at the interface between
subunits [36,37].
Found at: doi:10.1371/journal.pbio.1000161.s001 (2.17 MB PDF)

Figure S2 The traits of the progenitors and fast-
proliferation strains [37].
Found at: doi:10.1371/journal.pbio.1000161.s002 (2.84 MB PDF)

Figure S3 Chromosomal features around the break-
points of genetic aberrations shown in Figure 2E [38–40].
Found at: doi:10.1371/journal.pbio.1000161.s003 (4.33 MB PDF)

Figure S4 Improved growth strains derived by out-
crossing the chromosome aberrations.
Found at: doi:10.1371/journal.pbio.1000161.s004 (3.31 MB PDF)

Figure S5 Chromosomal Features around the gene loss
sites of P4 and P6 shown in Figure 5C.
Found at: doi:10.1371/journal.pbio.1000161.s005 (0.55 MB PDF)

Table S1 Strain list.
Found at: doi:10.1371/journal.pbio.1000161.s006 (0.07 MB

DOC)
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