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Objective: To investigate the impact of corneal photograph quality on convolutional neural network (CNN)
predictions.

Design: A CNN trained to classify bacterial and fungal keratitis was evaluated using photographs of ulcers
labeled according to 5 corneal image quality parameters: eccentric gaze direction, abnormal eyelid position, over/
under-exposure, inadequate focus, and malpositioned light reflection.

Participants: All eligible subjects with culture and stain-proven bacterial and/or fungal ulcers presenting to
Aravind Eye Hospital in Madurai, India, between January 1, 2021 and December 31, 2021.

Methods: Convolutional neural network classification performance was compared for each quality param-
eter, and gradient class activation heatmaps were generated to visualize regions of highest influence on CNN
predictions.

Main Outcome Measures: Area under the receiver operating characteristic and precision recall curves were
calculated to quantify model performance. Bootstrapped confidence intervals were used for statistical compar-
isons. Logistic loss was calculated to measure individual prediction accuracy.

Results: Individual presence of either light reflection or eyelids obscuring the corneal surface was associated
with significantly higher CNN performance. No other quality parameter significantly influenced CNN performance.
Qualitative review of gradient class activation heatmaps generally revealed the infiltrate as having the highest diag-
nostic relevance.

Conclusions: The CNN demonstrated expert-level performance regardless of image quality. Future studies
may investigate use of smartphone cameras and image sets with greater variance in image quality to further
explore the influence of these parameters on model performance.
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references. Ophthalmology Science 2023;3:100331 ª 2023 by the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Corneal opacification is responsible for approximately 3.5%
of blindness and is the fifth leading cause of blindness in the
world.1,2 Infectious keratitis (or “corneal ulceration”) is the
most common cause of corneal opacification, with low- and
middle-income countries demonstrating a particularly high
burden of disease.1,3,4 Prompt diagnosis of an ulcer’s
microbial etiology can facilitate more rapid initiation of
treatment and improve outcomes. Cultures of corneal
scrapings are currently considered the diagnostic gold
standard for infectious keratitis. However, there are
significant limitations to this approach as cultures take
multiple days to grow, require infrastructure and expertise
to interpret, and frequently result in false negatives.

The advent of deep learning (DL) for image classification
in ophthalmology has introduced convolutional neural
networks (CNNs) capable of expert-level diagnostic per-
formance in use cases including diabetic retinopathy, age-
related macular degeneration, and glaucoma.5e7 In the
context of corneal disease, DL has increasingly been
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investigated as a solution for automated diagnosis of bac-
terial and fungal ulcers. However, preliminary investigations
of this method utilized images obtained from slit lamp-
mounted cameras which may difficult to operate, less
plentiful, and more expensive than handheld digital cameras
in resource-poor settings that lack ophthalmic pro-
fessionals.8e13 Recently, we demonstrated superior-to-
human performance of a CNN trained to classify bacterial
and fungal corneal ulcers from images obtained with a
handheld camera, an imaging method with greater potential
for a portable telemedicine implementation.14 These
findings are promising, though little has been studied
regarding the impact of external photograph quality on
CNN predictions. In developing regions where such
models are likely to have the greatest public health
impact, images might conceivably be captured with
handheld devices by untrained photographers. The
resultant variability in photographic quality may influence
CNN performance and thus should be quantified before
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such technology could be implemented. While the impact of
image quality on diagnostic DL models has been
increasingly investigated in the context of ophthalmology,
relatively little is known regarding the specific features of
external clinical photographs determining quality and their
relative influence on model accuracy.15e17 In this study,
we explored the impact of image quality parameters
including gaze direction, eyelid position, exposure, focus,
and light reflections on a deep CNN’s performance in
classifying bacterial and fungal corneal ulcers.
Methods

Participant Recruitment and Image Collection

Corneal photographs were prospectively obtained from all con-
senting patients with a clinical diagnosis of infectious keratitis
presenting to Aravind Eye Hospital in Madurai, India from January
1, 2021 to December 31, 2021. Upon initial presentation, each
patient underwent corneal photography with a handheld Nikon D-
series digital single-lens reflex camera according to a standardized
lighting and photography protocol. Image collection was repeated
until � 1 high-quality photograph was obtained for each ulcer, as
determined by the trained photographer. A single trained photog-
rapher performed all image acquisition and was masked to the type
of corneal infection. The photographer was instructed to ensure that
the image was in focus on the corneal infiltrate (the area of active
infection within the cornea) and to displace the light reflection from
the camera flash when needed to avoid obscuring the infiltrate. In
cases of large infiltrates where overlap of the light reflection and
infiltrate was unavoidable, the photographer was instructed to place
the flash in the center of the infiltrate rather than the border, based
on prior research suggesting the morphology of the border of
corneal infiltrates may be a particularly high-yield feature in dis-
tinguishing bacterial and fungal keratitis.18

In all cases, scrapings were obtained from the ulcer to perform
smears (Gram stain and potassium hydroxide prep) and cultures
(bacterial cultures on blood agar and fungal cultures on potato
dextrose agar). Because of the known limitations in the individual
sensitivity and specificity of corneal cultures and smears, we elected to
use a composite of these results to establish the gold standard label of
the microbiologic etiology of infection in each case.19 Specifically, an
ulcer was classified as “bacterial” if both the smear (Gram stain) and
culture results indicated the presence of bacteria, and “fungal” if both
the smear (potassium hydroxide prep) and culture results indicated the
presence of filamentous fungus. Only cases with a clear identification
of fungal and/or bacterial etiology according to these criteria were
included in the study. In some cases, polymicrobial infections were
observed, as indicated by presence of bacteria and filamentous
fungus confirmed by the criteria mentioned above. A deep CNN
(MobileNetV2) was trained to perform multilabel classification of
bacterial and fungal keratitis using the collected corneal photographs
using a similar approach to our previously published model.14 A
detailed description of model development and evaluation is
provided elsewhere (manuscript in preparation), and all relevant
code is publicly accessible (github.com/tkredd2/MobileNet_
corneal_ulcers).

Image Quality Grading

After excluding participants with images in the training and vali-
dation sets used to develop the MobileNet model, images were
randomly selected to undergo image quality grading according to 5
prespecified parameters: gaze direction (primary or eccentric), eyelid
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position (open or obscuring either � 1 limbal clock hour or � 10%
of the infiltrate), degree of light exposure (normal exposure [where
details are adequately visible], underexposed [where images looked
too dark and details are somewhat lost], or overexposed [where
images look too bright and details are somewhat blurry]), whether or
not the image was in focus on the corneal infiltrate, and the presence
or absence of light reflections causing significant obscuration of the
corneal infiltrate (Figure 1). These parameters were identified as the
most likely features that may influence the ability to perform image-
based identification of bacterial and fungal keratitis based on the
clinical expertise of several cornea specialists and based on sub-
jective evaluation of heatmaps generated from a previously-
published DL model trained to differentiate bacterial and fungal
keratitis from corneal photographs.14 Based on these evaluations, we
expected eccentric gaze, eyelid obscuration of the cornea, over- or
underexposure, out-of-focus images, and/or light reflection obscu-
ration of the corneal infiltrate to negatively impact the computer
vision model’s performance. Two professional image graders at the
Casey Reading Center (M.P. and P.S.) recorded their interpretation
of each of the 5 parameters for each image. Each grader underwent 2
separate hour-long training sessions with a cornea specialist (T.K.R.)
to practice identifying the quality parameters of interest. Grading
was performed independently by each expert, and images were
presented in random order. Graders were masked to each other’s
interpretations of the images, as well as the microbiologic status of
the ulcer represented by the image. In cases where the two graders
demonstrated disagreement on any image quality parameter, the
image in question was submitted to a third grader (T.R.) for adju-
dication, resulting in a final consensus image quality assessment.

Considering the fact that other quality parameters not included
in the above analysis may be influential, we separately evaluated
the model’s performance on another test set composed of all im-
ages obtained from each participant (excluding those included in
the training set for the MobileNet model). This was compared to
model performance on the test set comprised of the “best quality
image” for each participant, subjectively determined by a single
image grader (T.R.) without specification of particular image
quality parameters, but instead determining which image this
cornea specialist felt represented the highest quality depiction of
the corneal ulcer.

Model Performance Evaluation

Because of the class imbalance (i.e., the larger proportion of fungal
compared to bacterial corneal ulcers) in this dataset, we selected 2
primary metrics to quantify model performance: the area under the
receiver operating characteristic curve (AUROC) and area under
the precision recall curve (AUPRC) (Figure 2). The ROC is
somewhat easier to interpret but is more susceptible to class
imbalance, whereas the PRC curve is less intuitive but more
robust to imbalanced classes. Because this CNN performed
multilabel classification of bacterial and fungal ulcers (i.e., class
predictions were not mutually exclusive, making it possible for
the model to predict that an ulcer would be both bacterial and
fungal), we calculated microaveraged metrics across the bacterial
and fungal predictions to obtain single overall values for the
AUROC and AUPRC.20 Bivariate comparisons of the model’s
performance were then performed for each of the 5 quality
parameters, using bootstrapping at the subject level with 10 000
replications to generate 95% confidence intervals (CIs).
Multivariate comparisons were also performed based on these
bivariate results. For each output prediction of either fungal (P
[fungal]) or bacterial (P[bacterial]) etiology, the logistic (i.e.,
cross entropy) loss was calculated to provide a subject-level
measure of model performance.21 Gradient class activation maps
were used to qualitatively assess which image regions exerted



Figure 1. Representative images demonstrating photographs without (A) and with (BeF) the designated image quality parameters, including eccentric gaze (B),
corneal lid obscuration (C), under- (D, left) and overexposure (D, right), infiltrate features out of focus (E), and reflection obscuring infiltrate features (F).
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the greatest influence on CNN predictions.22 Statistical analyses
were performed in Python 3 using the Scikit-learn library and in
R software version 4.0.5 (R Foundation for Statistical Computing).

This study adhered to the tenets of the Declaration of Helsinki
and was approved by the institutional review board at Oregon
Health & Science University and the Institutional Ethics Com-
mittee and Aravind Eye Hospital in Madurai, India. Informed
consent was obtained from all participants.

Results

Eight hundred ninety-seven images from 332 participants
underwent assessment and labeling by the expert graders.
Approximately half these participants demonstrated culture-
and smear-confirmed bacterial or fungal keratitis, resulting
Figure 2. Receiver operating characteristic curve (ROC) (A) and precision rec
set, as well as images with varied combinations of image quality parameters. Conv
microaveraged area under the ROC of 0.83 (95% confidence interval [CI], 0.80e
bacterial classification.
in a final image set of 438 images from 164 participants
included in this study. Three hundred seventy-four images
were from fungal corneal ulcers (85%), and the remaining
64 images were from bacterial corneal ulcers. Table 1
exhibits the distribution of quality parameters within the
dataset. For cases in which the independent graders
disagreed (gaze ¼ 108, eyelid obscuration ¼ 26,
exposure ¼ 107, focus ¼ 103, reflection ¼ 38),
adjudication by a third grader was performed to give a
final classification. Convolutional neural network
performance, as measured by AUROC, was found to be
0.85 for fungal cases and 0.79 for bacterial cases. No
significant difference in performance on each ulcer class
was found by this metric. For images in which the corneal
reflection was labeled as significantly obscuring ulcer
all curve (PRC) (B) curves of model performance on all images in the test
olutional neural network performance on the entire test set demonstrated a
0.87) and area under the PRC of 0.83 (95% CI, 0.78e0.87) for fungal and
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Table 1. CNN Multiclass Predictions on Image Subsets with Either Presence or Absence of Each Quality Parameter

Bacterial Fungal AUPRC (95% CI) AUROC (95% CI)

Reflection Present 11 145 0.91 (0.86e0.94) 0.90 (0.85e0.93)
Absent 53 229 0.79 (0.73e0.84) 0.80 (0.74e0.85)
Overexposed 4 16 0.77 (0.59e0.93) 0.77 (0.44e0.94)

Exposure Normal 52 276 0.83 (0.78e0.87) 0.83 (0.78e0.87)
Underexposed 8 82 0.83 (0.71e0.91) 0.86 (0.76e0.92)

Focus In focus 50 320 0.83 (0.78e0.87) 0.83 (0.79e0.87)
Out of focus 14 54 0.83 (0.71e0.90) 0.83 (0.72e0.91)

Gaze Eccentric 5 50 0.89 (0.73e0.95) 0.87 (0.77e0.93)
Primary 59 324 0.82 (0.78e0.86) 0.83 (0.79e0.87)

Lid obscuration Yes 5 28 0.94 (0.86e0.98) 0.93 (0.84e0.98)
No 59 346 0.83 (0.78e0.86) 0.83 (0.78e0.86)

AUPRC ¼ area under the precision recall curve; AUROC ¼ area under the receiver operating characteristic curve; CI ¼ confidence interval; CNN ¼
convolutional neural network.
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features, the CNN performed significantly better than on
those without significant reflection interference (significant
reflection: AUROC ¼ 0.90 [95% CI, 0.85e0.93],
AUPRC ¼ 0.91 [95% CI, 0.86e0.94]; insignificant
reflection: AUROC ¼ 0.80 [95% CI, 0.74e0.85],
AUPRC ¼ 0.79 [95% CI, 0.73e0.84]). For images in
which the eyelid significantly obscured the view of the
cornea, the CNN performed significantly better than on
those without significant lid obscuration (significant lid
obscuration: AUPRC ¼ 0.94 [95% CI, 0.86e0.98],
insignificant lid obscuration: AUPRC ¼ 0.83 [95% CI,
0.78e0.86]). There were no significant differences in the
model’s performance with respect to gaze, focus, or image
exposure (Table 1). These associations persisted on
multivariate analysis (Figure 3). For all 17 images in
which lid obscuration was noted as present, but were
otherwise not over/under-exposed, in focus, and in pri-
mary gaze, the model correctly identified the microbial eti-
ology of infection. Model performance was also excellent
on images identified as having significant light reflections
obscuring the infiltrate, but with no eccentric gaze, defocus,
or over/underexposure (AUROC ¼ 0.86 [95% CI,
0.77e0.92]; AUPRC ¼ 0.87 [95% CI, 0.78e0.93]).

When evaluating quality subjectively by evaluating the
CNN on the “best quality” image from each participant
(n ¼ 278) versus all images for each participant (n ¼ 733),
we found no difference in the model’s performance. Spe-
cifically, the CNN achieved an AUROC of 0.88 (95% CI,
0.84e0.92) and AUPRC of 0.89 (95% CI, 0.85e0.92) on
the “best quality” image set, compared to an AUROC of
0.89 (95% CI, 0.86e0.91) and an AUPRC of 0.89 (95% CI,
0.86e0.91) on the multiple-image-per-participant set.

Gradient Class Activation Heatmaps

Gradient class activation heatmaps were generated for 2 sets
of images. The first set of heatmaps were generated for the
10 images with the highest model performance (determined
by lowest logistic loss) which were labeled as having sig-
nificant light reflections obscuring the infiltrate (Figure 4).
The model appeared to consistently identify the corneal
infiltrate as the primary region of interest in these 10
4

cases. A second set of heatmaps was generated for all 17
images of corneal ulcers labeled as having significant
obscuration of the cornea by the eyelid, but with no other
image quality concerns (i.e., primary gaze, in focus, and
with good image exposure) (Figure 5). Eleven of the 17
heatmaps demonstrated a similar region of activation
focused on the corneal infiltrate, but the remaining 6
(35%) demonstrated more diffuse activation which
focused more on the ocular surface and eyelids, with 3
(17.6%) such cases appearing to exclude the cornea entirely.
Discussion

To our knowledge, this represents the first study evaluating
the influence of variable quality in corneal photographs on
CNN classification of bacterial and fungal ulcers. Overall,
the CNN achieved similar performance in this task
compared to prior studies, with accuracy at least as good as
expert clinicians.14,23 In this set of images, neither eccentric
gaze, out-of-focus images, eyelid obscuration of the cornea,
over/underexposure, or obscuration of the corneal infiltrate
by light reflections significantly decreased the model’s
performance in identifying the underlying microbial cause
of infection. However, eyelid obscuration of the cornea and
light reflection causing significant obscuration of infiltrate
features were actually noted to significantly improve
AUROC and AUPRC values. Even in cases of suboptimal
image quality, the CNN achieved high performance on this
task, which has promising implications for its translation to
more portable imaging devices, including smartphones.

While no individual quality parameter negatively
impacted model performance, reflection and lid obscuration,
when present, counterintuitively improved performance.
Though the specific cause of these observations remains
unclear, it is possible that the enhanced CNN performance
reflects model detection of microbe-level differences in
presentation and infiltrate phenotype that are associated with
these quality parameters. We considered the possibility that
because some strains of fungal ulcers are more indolent at
onset, they may ultimately present in the clinic with greater
severity and discomfort, posing a greater challenge to



Figure 3. Receiver operating characteristic curve (ROC) (A) and precision recall curve (PRC) (B) curves of model performance test sets representing all
images subjectively determined to be the highest quality for each participant (“Single Image per Participant”, area under the ROC [AUROC] ¼ 0.88 [95%
confidence interval {CI}, 0.84e0.92], area under the PRC [AUPRC] ¼ 0.89 [95% CI, 0.85e0.92]), and separately all images associated with all participants
(“Multiple Images per Participant”, AUROC ¼ 0.89 [95% CI, 0.86e0.91], AUPRC ¼ 0.89 [95% CI, 0.86e0.91]). No significant differences were found
between performances on these test sets by either performance measurement.
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sustained lid opening during corneal photography.24

Similarly, a more severe ulcer with a larger infiltrate is
more likely to be partially obscured by the light reflection
of the camera flash, thus, this quality metric may have
simply served as a surrogate measure of ulcer severity
rather than providing a useful feature in itself.
Alternatively, it is possible that microbe-specific variations
in the surface texture of a corneal infiltrate are demonstrated
by the specular information provided by the reflection of the
camera flash. Specifically, filamentous fungal corneal in-
filtrates often have a dry, rough texture, whereas bacterial
ulcers often cause more stromal necrosis with a more
“soupy” appearance.25

We additionally considered explanations for why other
quality parameters demonstrated no influence on model
performance. Regarding exposure, it is possible that
although varying levels of lighting may alter human
perception and interpretation of these images, sufficient
detail was retained in this image set to be detected and
informative to the model. With regard to focus, we
considered the possibility that the loss of fine, “high-fre-
quency” image detail in out-of-focus cases may be irrelevant
to the algorithm, which might instead rely on “low-fre-
quency” spatial and general intensity features to make
predictions.

Of note, heatmaps of these images labeled as having
significant obscuration from light reflections appeared to
demonstrate consistently high activation within the region of
the corneal infiltrate. A similar pattern of greatest activation
in the area of the infiltrate was evident in 11 of 17 images
labeled as having significant lid obscuration but with good
focus, exposure, and gaze. However, the remaining 6 im-
ages revealed a more diffuse pattern of activation, entirely
missing the corneal surface in 3 such cases. Nonetheless, in
all 17 images the CNN correctly predicted the underlying
etiology of infection. It remains unclear how features of the
ocular surface and lids involved in these diffuse patterns of
activation may contribute to the prediction as meaningfully
as the infiltrate. It is possible that in these cases the CNN
takes features external to the cornea into account like
conjunctival injection, which may be less prominent in
fungal keratitis which may have a “quieter” presentation.
The CNN may also be detecting features yet unrecognizable
by humans, as has been increasingly reported of DL systems
capable of identifying nonophthalmic clinical traits from
retinal images including cardiovascular disease risk, Alz-
heimer’s disease, and gender.26e28 Alternatively, it is also
possible that in these instances the process by which the
heatmap is generated is flawed, despite an accurate classi-
fication. As with all interpretability methods, heatmap ex-
planations should be interpreted in the context of their
clinical application and with an appropriate degree of
scrutiny. Additional studies with more examples of obscu-
ration from the eyelids and light reflections, as well as
measurement of ulcer severity as a covariate, will be
required to differentiate these possibilities, but regardless,
neither appeared to negatively affect model performance in
this study.

Images were captured using handheld cameras, which
may be the preferred option in resource-poor settings
where the alternative slit-lamp-mounted cameras may be
expensive, harder to use by nonophthalmic professionals,
and less portable, despite producing photographs of similar
quality.11e13 While the use of handheld cameras inevitably
introduces greater variation in angle, distance, and lighting,
we found model performance remained high despite vari-
ations in gaze, lid position, exposure, focus, and light
obscuration. This reinforces the notion that these portable
5



Figure 4. Ten corneal photographs and their corresponding gradient class activation heatmaps that were labeled as having significant reflection obscuring
the corneal infiltrate and the lowest log loss amongst other images with the same label. Heatmaps indicate regions of greatest contribution to the model’s
predictions or “interest” according to colors on the continuous visible spectrum (red ¼ highest relevance to model prediction). By the authors’ qualitative
review, the cornea and associated infiltrate were identified as having the greatest relevance to the model prediction.
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imaging modalities may provide adequate information for
DL models to make accurate predictions regarding the
underlying cause of infection. In this way, DL could offer a
viable solution for improving diagnosis of infectious
keratitis where human assessment has been shown to be
less accurate, and the gold-standard of cultures from
corneal scrapings often involves a several-day lag time,
shows high false-negative rates, and requires lab infra-
structure which may be unavailable in developing
countries.19,29

These findings should be interpreted in the context of
several limitations. While the image set in this study is
comparable or larger than related studies using computer
vision for infectious keratitis, higher volume may still be
required to capture enough photographs of varying combi-
nations of quality parameter labels to identify a conclusive
impact on model performance.9,10,30 In addition to volume,
6

greater variation in photograph quality may additionally
provide a more robust analysis of the influence of our
chosen quality parameters on model performance. In this
study all images were captured by trained ophthalmic
photographers instructed to obtain � 1 high-quality photo-
graph per ulcer, according to their judgment. These pho-
tographers are excellent, hence the relatively low number of
poor-quality photos despite the large sample size. We will
perform similar analyses in future studies with a dataset of
images captured on smartphone cameras by amateur pho-
tographers. An additional limitation of the study involves
the use of photographs with labels for microbial etiology
derived from confirmation by both smear and culture results.
While useful in ensuring validity of labels, the confirmation
of microbial etiology is not always obtainable from all ul-
cers. Because the training sets did not include cases that
were “ambiguous” in this regard, the results are somewhat



Figure 5. Ten corneal photographs and their corresponding gradient class activation heatmaps that were labeled as having significant eyelid obscuration of
the cornea, but otherwise in focus, not overexposed, and in primary gaze. Heatmaps indicate regions of greatest contribution to the model’s predictions or
“interest” according to colors on the continuous visible spectrum (red ¼ highest relevance to model prediction). The left column of pairs demonstrates a
diffuse pattern of “interest” which appears to focus on the ocular surface and eyelid tissue, excluding the cornea in some cases. The right column of pairs
demonstrates a distribution around the central cornea and associated infiltrate. The model correctly identified the microbial etiology in all cases.
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less generalizable. Lastly, the quality parameters included
for labeling in this study were chosen according to a sub-
jective consensus by the authors on the image features
thought to be most impactful on adequate interpretation of a
corneal infiltrate. We acknowledge that other image features
not labeled and evaluated in this study may influence CNN
interpretation of microbial etiology in infectious keratitis.
These may include effect of distance on relative size of
cornea to the image frame, lack of flash during image cap-
ture, and presence of other artifacts like finger holding upper
lid and patient nose.
From these observations, we conclude that a CNN
trained to identify bacterial and fungal corneal ulcers in a
multilabel classification task exhibits high predictive accu-
racy, even in the presence of variable image quality. Pres-
ence of features like eyelid obscuration of the cornea or
obscuration of the infiltrate by corneal light reflection may
be informative to model predictions. Future investigation of
image quality with datasets of greater volume and quality
variability may further establish these trends and elucidate
features of relevance to computer vision models for the
diagnostic evaluation of infectious keratitis.
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