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Abstract: Light is the key factor affecting the synthesis of anthocyanins in pepper. In this study,
pepper fruit under different light days was used as experimental material to explore the syn-
thesis of anthocyanins in purple pepper. A total of 38 flavonoid metabolites were identified in
the purple pepper germplasm HNUCA21 by liquid chromatography–tandem mass spectrometry
(LC-MS/MS), of which 30 belong to anthocyanins. The detected anthocyanin with the highest con-
tent was Delphinidin-3-O-glucoside (17.13 µg/g), which reached the maximum after 168 h of light
treatment. Through weighted gene co-expression network analysis (WGCNA), the brown module
was identified to be related to the early synthesis of anthocyanins. This module contains many struc-
tural genes related to flavonoid synthesis, including chalcone synthase (CHS 107871256, 107864266),
chalcone isomerase (CHI 107871144, 107852750), dihydroflavonol 4-reductase (DFR 107860031),
flavonoid 3′ 5′-hydroxylase (F3’5’H 107848667), flavonoid 3′-monooxygenase (F3M 107862334),
leucoanthocyanidin dioxygenase (LDOX 107866341), and trans-cinnamate 4-monooxygenase (TCM 107875406,
107875407). The module also contained some genes related to anthocyanin transport function, such
as glutathione S-transferase (GST 107861273), anthocyanidin 3-O-glucosyltransferase (UDPGT 107861697,
107843659), and MATE (107863234, 107844661), as well as some transcription factors, such as EGL1
(107865400), basic helix-loop-helix 104 (bHLH104 107864591), and WRKY44 (107843538, 107843524). The
co-expression regulatory network indicated the involvement of CHS, DFR, CHI, and EGL1, as well
as two MATE and two WRKY44 genes in anthocyanin synthesis. The identified genes involved in
early, middle, and late light response provided a reference for the further analysis of the regulatory
mechanism of anthocyanin biosynthesis in pepper.

Keywords: purple pepper; anthocyanin; light days; WGCNA

1. Introduction

Light is an important factor affecting the formation of anthocyanins. Different light
qualities and light intensities affect plant anthocyanin synthesis and metabolism [1]. The
anthocyanin synthesis of purple pepper is induced by light. Different light days induce
the differential expression of several structural genes and transcription factors involved in
anthocyanin synthesis, resulting in changes in anthocyanin accumulation [2].

Previous studies have found key roles of transcription factors in the synthesis of
anthocyanins. WRKY44 plays a role in regulating the promoters of F3’H and F3’5’H
genes during kiwifruit coloring, and F3’H and F3’5’H are the key branches of different
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anthocyanin synthesis types [3]. Catechin synthesis depends on the flavonoid pathway, and
WRKY44 plays a key role in the regulation of catechin synthesis in the callus of purple-black
kiwifruit [3].

Similarly, bHLH transcription factors, which can independently regulate CHS, DFR,
and UFGT, are the key transcriptional regulators of anthocyanin biosynthesis [4].

The transport and accumulation of anthocyanins in vacuoles are mainly mediated by
glutathione S-transferases (GSTs) and MATE transporters [5,6]. GSTs are a superfamily of
multifunctional enzymes that catalyze the binding of glutathione (GSH, glutamylcysteine)
to electrophilic sites [7,8]. At present, three hypotheses of glutathione S-transferase (GST),
membrane transporter, and vesicle transport have been identified as related to anthocyanin
transport [9]. The first mechanism involves GST sequestering anthocyanins from the cyto-
plasm into vacuoles, the second relies on transporters located in the vacuolar membrane,
including ATP binding cassette (ABC) proteins and transporters, and the last mechanism
is based on the fusion of the smaller vesicular structures containing cytoplasmic antho-
cyanin bodies with central vacuoles [10–13]. An indirect function of GSTs is to remove
reactive oxygen species (ROS), including superoxide radicals, hydroxyl radicals, alkoxy
groups, hydroperoxides, and singlet oxygen, which are constantly produced in the mito-
chondria [14–17]. Once anthocyanins are synthesized, GST and transporters accumulate in
vacuoles to prevent anthocyanins from being oxidized [18–20].

Pepper fruit grows to its maximum size about 21 days after pollination and the purple
color is prominent throughout the growth stage [21,22]. Anthocyanins are continuously
synthesized throughout the development period of immature fruit of pepper, but which time
point is the key period of anthocyanin synthesis and which gene plays a key role in this
process still need to be elucidated [23,24]. By constructing a weighted correlation network
analysis, we sought to identify the genes involved in early, middle, and late light response,
and further analyzed the differential regulation of structural genes involved in anthocyanin
biosynthesis [25–28]. Our work identified the sequentially expressed light response genes,
which will help us further clarify the mechanism of light-induced capsicum pericarp coloring
and enrich our understanding of the regulation of anthocyanin biosynthesis [29–31].

2. Results
2.1. Total Anthocyanin, Chlorophyll, and Carotenoid Concentrations

The rich color of pepper is mainly based on anthocyanins, carotenoids, chlorophyll,
and other pigment substances. In the young fruit stage, purple pepper is rich in antho-
cyanins and chlorophyll, whereas when the fruit is mature, it contains an abundance of
carotenoids. After bagging the pepper for two weeks, half of the fruit was treated with
light (Figure 1). After removing the bag for 48 h, the peel color of the pepper changed
from light purple (Figure 1a) to a purple-red color (Figure 1b) and finally to a purple-
black color (Figure 1c). The fruit color on the shaded surface remained yellow and white
(Figure 1d–f). The total anthocyanin content of pepper increased rapidly from 6 µg/g in
48 h to 46.3 µg/g in 168 h after removing the bag. The anthocyanin content of the shaded
surface did not change significantly at the three-time points and remained between 0.9 and
1.8 µg/g (Figure 2a). The chlorophyll content of light treatment also increased gradually
with the extension of light time, from 5 µg/g in 48 h to 43 µg/g in 168 h, and the chlorophyll
content of the shaded surface remained at a low level (Figure 2b). The total amount of
carotenoids did not change significantly before and after illumination (Figure 2c).

2.2. Analysis of Flavonoids in Pepper Peel Samples by Liquid Chromatography–Tandem Mass
Spectrometry (LC-MS/MS)

The peel samples at 48 h, 72 h, and 168 h after bagging and their corresponding
shaded surface peel samples were analyzed by liquid chromatography–tandem mass
spectrometry. According to the type and content histogram of flavonoids in each sample
(Figure 3), 38 kinds of flavonoid metabolites were detected in purple pepper, including
30 kinds of anthocyanins. The seven flavonoids with the highest content in the sample were
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Quercetin-3-O-glucoside, Rutin, Naringenin-7-O-glucoside, Kaempferol-3-O-rutinoside,
Delphinium-3-O-glucoside, Delphinium-3-O-rutin, and Petunia-3-O-(coumarin)-glu. The
specific contents of all metabolites in the peel samples with different treatments are pre-
sented in Table S1.
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Figure 1. Changes in appearance color of purple pepper fruit under different light treatments. The 
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and 168 h. 

Figure 1. Changes in appearance color of purple pepper fruit under different light treatments. The
coloring of pepper fruit color after light treatment (a–c) and shaded treatment (d–f) for 48 h, 72 h,
and 168 h.
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Figure 2. The content of anthocyanins, carotenoids, and chlorophyll in the peel of capsicum. The x-
axes are the times of different treatments, and the y-axes represent the content of various substances, 
anthocyanins (a), carotenoids (b), and chlorophyll (c). Unit µg/g freeze-dried). The pictures show 
the average value of three biological repetitions. The error bars indicate the standard deviation. 

Figure 2. The content of anthocyanins, carotenoids, and chlorophyll in the peel of capsicum. The
x-axes are the times of different treatments, and the y-axes represent the content of various substances,
anthocyanins (a), carotenoids (b), and chlorophyll (c). Unit µg/g freeze-dried). The pictures show
the average value of three biological repetitions. The error bars indicate the standard deviation.
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2.3. Analysis of Transcriptome Data Quality of Pepper Peel Samples

Transcriptomic changes in the pepper peel samples treated with light for 48 h, 72 h, and
168 h and their corresponding shaded surface samples were analyzed by RNA sequencing
technology (RNA-seq). The statistical results of transcriptome sequencing of samples
treated with different treatments are shown in Table 1. In total, 125.96 G clean bases were
obtained from 18 fruit samples of purple pepper, the clean bases of each sample were more
than 6.45 G, the percentage of Q30 bases was more than 94.01%, and the GC values were
between 41.74% and 42.97%.



Int. J. Mol. Sci. 2022, 23, 8357 6 of 17

Table 1. Quality evaluation of sample sequencing output data for strand-specific RNA libraries.

Sample Clean_Reads Clean_Bases Q30 GC_pct

L48N1 46,636,752 7.0 G 94.36 42.57
L48N2 46,049,962 6.91 G 94.52 42.46
L48N3 46,999,312 7.05 G 94.41 42.43
D48N1 54,821,486 8.22 G 94.01 42.33
D48N2 42,996,712 6.45 G 94.39 42.5
D48N3 44,649,882 6.7 G 94.28 42.39
L72N1 48,664,980 7.3 G 94.08 42.44
L72N2 45,198,608 6.78 G 94.37 42.39
L72N3 46,525,636 6.98 G 94.27 42.97
D72N1 52,924,474 7.94 G 94.28 42.19
D72N2 44,877,252 6.73 G 94.18 42.42
D72N3 46,212,326 6.93 G 94.36 42.43
L168N1 46,145,536 6.92 G 94.11 42.06
L168N2 44,256,704 6.64 G 94.43 41.88
L168N3 45,263,740 6.79 G 94.19 41.98
D168N1 46,224,450 6.93 G 94.48 42.15
D168N2 46,802,178 7.02 G 94.56 42.1
D168N3 44,491,876 6.67 G 94.11 41.74

Note: clean reads: total number of pair-end reads in clean data. Clean bases: total base of clean data; GC_pct: GC
content of clean data, that is, the percentage of G and C bases in total bases in clean data; Q30: percentage of bases
with a clean data quality value greater than or equal to 30.

2.4. Comparative Statistical Analysis of Transcriptome Data of Pepper Peel Samples

Table 2 shows that the number and percentage of reads on the reference genome
compared to this transcriptome sequencing are between 33,933,296 (75.08%) and 44,704,508
(96.09%), which directly reflects the high utilization rate of transcriptome data. The clean
reads of the sequencing data after quality control ranged from 43,615,300 to 55,692,524.

Table 2. Reads of strand-specific RNA libraries and reference genome comparison list.

Sample Total_Reads Total_Map(%) Unique_Map(%) Multi_Map(%) Positive_Map(%) Negative_Map(%)

L48N1 46,636,752 95.58% 92.33% 3.25% 46.13% 46.20%
L48N2 46,049,962 83.78% 80.94% 2.84% 40.45% 40.50%
L48N3 46,999,312 95.64% 92.23% 3.40% 46.08% 46.15%
D48N1 54,821,486 89.29% 86.47% 2.82% 43.21% 43.26%
D48N2 42,996,712 84.37% 81.66% 2.71% 40.80% 40.86%
D48N3 44,649,882 95.31% 92.10% 3.20% 46.02% 46.08%
L72N1 48,664,980 94.67% 91.60% 3.07% 45.77% 45.83%
L72N2 45,198,608 75.08% 72.65% 2.43% 36.31% 36.34%
L72N3 46,525,636 96.09% 92.97% 3.11% 46.44% 46.53%
D72N1 52,924,474 95.01% 92.08% 2.93% 46.01% 46.06%
D72N2 44,877,252 95.53% 92.64% 2.89% 46.29% 46.35%
D72N3 46,212,326 95.59% 92.61% 2.98% 46.28% 46.33%
L168N1 46,145,536 87.66% 84.78% 2.88% 42.36% 42.41%
L168N2 44,256,704 80.60% 77.95% 2.65% 38.96% 38.99%
L168N3 45,263,740 95.02% 92.00% 3.02% 45.99% 46.01%
D168N1 46,224,450 85.77% 83.19% 2.57% 41.58% 41.62%
D168N2 46,802,178 77.71% 75.31% 2.40% 37.64% 37.67%
D168N3 44,491,876 78.57% 76.26% 2.31% 38.12% 38.15%

Note: total_ reads: the number of clean reads of sequencing data after quality control; total_ map (%): percentage
of reads compared to the genome; unique_ map (%): percentage of reads compared to the unique location of the
reference genome; multi_ map (%): percentage of reads compared to multiple locations of the reference genome;
positive_ map (%): percentage of reads compared to the positive chain of the reference genome; negative_ map
(%): percentage of reads compared to the negative chain of the reference genome.

2.5. Differentially Expressed Genes (DEGs) in Pepper Peel Samples

The total clean readings were assembled into transcripts and compared with the reference
gene model (including 41,727 genes). A total of 30,565 known genes and 2216 unknown genes
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were identified. There were 12,278 differential genes in the comparative expression of all
treatments in 18 samples (deseq2 padj ≤ 0.05 |log2foldchange| ≥ 0.0) (Figure 4).
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2.6. Weighted Gene Co-Expression Network Analysis (WGCNA) Module Hierarchical Clustering
Tree of DEGs in Pepper Peel Samples

To explore the key genes and co-expression networks that play important roles in
the synthesis of anthocyanins in purple pepper pericarp, we analyzed 21,972 genes from
18 samples through WGCNA and constructed a cluster tree according to the correlation
of expression between genes. Through the selection of the weighting coefficient, the
power value corresponding to R2 is 0.8 was selected as the soft threshold. Figure 5 shows
the hierarchical cluster tree of 25 modules of co-expressed genes analyzed by WGCNA,
grouping genes with similar expression patterns into the same module. Genes in the same
color block have similar expression trends and may be related by function.
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diagram of modules with a dissimilarity coefficient of less than 0.25, in which different colors
represent the combined module tree view. The longitudinal distance represents the distance between
two nodes (between genes), and the transverse distance is meaningless.
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2.7. Correlation Heatmap of Pepper Peel Samples and Modules and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Analysis of Sample-Specific Modules in Different Development Stages

To have a deeper understanding of the metabolic pathways that play an important role
in the synthesis of anthocyanins in pepper pericarp, we performed a KEGG analysis on the
genes on the above specific modules (q < 0.05) (Figure 6). The results showed that the “plant
hormone signal transduction” pathway was significantly overexpressed in sample L168N2
(r = 0.89, p = 8× 10−7); “Ribosome”, “N-Glycan biosynthesis”, “protein export”, “protein
processing in endoplasmic reticulum”, “toxic phosphorylation”, and “phagosome” path-
ways were significantly overexpressed in sample L72N3 (r = 0.74, p = 5 × 10−4); “Flavonoid
biosynthesis”, “porphyrin and chlorophyll metabolism”, “photosynthesis antenna pro-
teins”, “carbon metabolism”, “ubiquinone and other terpenoid-quinone biosynthesis”,
“aminoacyl-tRNA biosynthesis”, “carbon fixation in photosynthetic organisms”, “pho-
tosynthesis”, “vitamin B6 metabolism”, “circadian rhythm–plant”, “pentose phosphate
pathway”, and “fatty acid degradation” pathways were significantly overexpressed in sam-
ple L48N3 (r = 0.63, p = 0.005) (Table 3). It can be seen that the genes related to anthocyanin
synthesis are mostly expressed in the early stage of light treatment (48 h).
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2.8. Expression of Structural Genes in the Flavonoid Synthesis Pathway in Different Periods

The flavonoid pathway leads to the production of anthocyanins on the surface of
pepper fruit, which is a key step affecting purple coloring. In the flavonoid metabolic
pathway, we analyzed the transcriptome data of related enzymes. According to the changes
in FPKM values of different genes in different treatments, C4H (107875406, 107875407),
CHI (107871144, 107852750), and CHS (107864266, 107871256) genes had higher expres-
sion in pepper peel samples treated with light for 48 h, while the expression decreased
gradually at 72 and 168 h. DFR (107860031), F3’5’H (107848667), F3H (107859880), and
LDOX (107866341) genes were highly expressed in pepper peel samples treated with light
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for 48 h, 72 h, and 168 h, indicating that the expression of these late synthesis genes was
relatively stable during the formation of flavonoids (Figure 7).

Table 3. KEGG analysis of sample-specific modules for different light treatments.

Module Sample KEGGID Description GeneRatio padj

pink L168N2 sly04075 Plant hormone signal transduction 16/88 2.64 × 10−4

blue L72N3

sly03010 Ribosome 72/526 5.36 × 10−12

sly03050 Proteasome 18/526 1.39 × 10−4

sly00510 N-Glycan biosynthesis 14/526 1.23 × 10−2

sly03060 Protein export 13/526 2.02 × 10−2

sly04141 Protein processing in endoplasmic reticulum 37/526 3.93 × 10−2

sly00190 Oxidative phosphorylation 25/526 4.02 × 10−2

sly04145 Phagosome 18/526 4.02 × 10−2

brown L48N3

sly00860 Porphyrin and chlorophyll metabolism 19/487 1.63 × 10−5

sly00196 Photosynthesis antenna proteins 11/487 4.48 × 10−5

sly01200 Carbon metabolism 52/487 1.10 × 10−4

sly00130 Ubiquinone and other
terpenoid-quinone biosynthesis 14/487 1.28 × 10−3

sly00970 Aminoacyl-tRNA biosynthesis 15/487 1.87 × 10−3

sly00710 Carbon fixation in photosynthetic organisms 19/487 3.31 × 10−3

sly00195 Photosynthesis 18/487 1.03 × 10−2

sly00941 Flavonoid biosynthesis 12/487 1.44 × 10−2

sly00750 Vitamin B6 metabolism 6/487 1.80 × 10−2

sly04712 Circadian rhythm—plant 11/487 2.57 × 10−2

sly00030 Pentose phosphate pathway 13/487 2.63 × 10−2

sly00071 Fatty acid degradation 13/487 2.90 × 10−2
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samples. The heatmap shows the expression patterns of differentially expressed structural genes
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fragments of exon per million reads). The closer to blue, the lower the expression, and the closer to
red, the higher the expression.
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2.9. Mining of Anthocyanin-Related Light Response Genes

By analyzing the gene expression significance of the brown module, we obtained
305 genes with significant differential expression. These include genes related to antho-
cyanin biosynthesis, such as structural genes CHS (107871256107864266), CHI (107871144,
107852750), DFR (107860031), F3’5’H (107848667), F3M (107862334), LDOX (107866341),
and TCM (107875406, 107875407). Some transporter genes, such as GST (107861273),
UDPGT (107861697, 107843659), and MATE (10786323410784661), as well as transcription
factors EGL1 (107865400), bHLH104 (107864591), and WRKY44 (107843538, 107843524), were
also overexpressed in this module. Refer to Table S2 for details of genes with significant
differences in the brown module.

Among all the genes identified in this transcriptome, 19 related genes were overex-
pressed in the flavonoid biosynthesis pathway (sly00941). Refer to Table 4 for specific
information on these genes. Most structural genes related to the flavonoid pathway were
present in the brown module. This also confirmed that genes in the brown module may
have the same function and expression pattern as anthocyanin synthesis.

Table 4. Flavonoid biosynthesis pathway gene annotation.

Gene_ID Module Gene_Description

107875625 Blue agmatine coumaroyltransferase-2-like%2C transcript variant X2
107850816 Blue omega-hydroxypalmitate O-feruloyl transferase
107851884 Brown acetyl-CoA-benzylalcohol acetyltransferase-like
107848097 Brown agmatine coumaroyltransferase-2-like
107843659 Brown anthocyanidin 3-O-glucosyltransferase-like
107864266 Brown chalcone synthase 1B
107871256 Brown chalcone synthase 2
107852750 brown chalcone–flavonone isomerase%2C transcript variant X1
107844023 brown cytochrome P450 98A2-like
107860031 brown dihydroflavonol-4-reductase
107862334 brown flavonoid 3′-monooxygenase
107866341 brown leucoanthocyanidin dioxygenase
107871144 brown probable chalcone–flavonone isomerase 3%2C transcript variant X2
107840863 brown shikimate O-hydroxycinnamoyltransferase-like
107860278 green caffeoyl-CoA O-methyltransferase%2C transcript variant X2
107853336 green probable caffeoyl-CoA O-methyltransferase At4g26220%2C transcript variant X1
107840262 magenta caffeoyl-CoA O-methyltransferase 6
107840069 turquoise acetyl-CoA-benzylalcohol acetyltransferase-like
107839366 turquoise cytochrome P450 98A2-like

KEGG analysis of each module’s genes showed that the genes related to anthocyanin
synthesis in pepper were mainly concentrated in the brown module. We used Cytoscape
37.1 to construct the co-expression network of the hub gene (107839364) in the brown
module. As shown in Figure 8, we screened all genes with q < 0.05 and edge weight
value ≥ 0.25 in the brown module, 91 associated genes were found closest to the hub gene
107839364 (Table S3). Among them, CHS, DFR, CHI, and transcription factor EGL1 have
been identified as important genes involved in anthocyanin synthesis. The important roles
of MATE transporters and WRKY44 in anthocyanin synthesis and transport have also been
reported. These genes have the same expression trend and may have similar functions.
Therefore, it is speculated that these genes may be involved in anthocyanin biosynthesis in
pepper peels.

2.10. Validation of Genes Related to Anthocyanin Synthesis

We selected important genes that may be related to anthocyanin synthesis for Quanti-
tative Real-Time Polymerase Chain Reaction (qRT-PCR) verification, and the results are
shown in Figure 9. It shows that the relative expression of each gene was related to FPKM,
which confirmed that the gene expression measured by RNA-seq was reliable.
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Figure 9. qPCR validation of genes involved in anthocyanin synthesis. The expression profiles of
9 genes were measured by RNA-seq and qRT PCR. These nine genes include structural genes and
transcription factors related to the flavonoid pathway. The histogram data represent qRT PCR data
(left y-axis) and the broken line represents RNA-seq data (right y-axis). Blue dots in the histogram
represent light treatment and orange dots represent dark treatment. The x-axis in each chart represents
three-light treatment stages (48 h, 72 h, and 168 h). The qRT PCR assay had three biological replicates,
each with three technical replicates (n = 9). The FPKM value of RNA-seq has three biological
repetitions (n = 3). The error bars indicate the standard deviation.
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3. Discussion
3.1. WGCNA Revealed Key Genes Related to Anthocyanin Synthesis

Anthocyanin biosynthesis has a complex regulatory network. The synthetic pathway
and metabolites of flavonoids have been the focus of anthocyanin biosynthesis in recent
years. WGCNA was constructed using high-throughput sequencing to effectively classify
these genes with the same expression pattern and function. WGCNA quickly screened the
anthocyanin biosynthesis pathway related to light reaction and possible key regulators in
other related pathways.

In this study, to explore the potential regulatory factors of anthocyanin biosynthesis
in purple pepper peel, we studied the transcriptome data of 18 pepper peel samples and
identified 305 genes with significant differences in the brown module, through WGCNA,
including most structural genes of the anthocyanin synthesis. In the KEGG analysis of the
brown module genes, 12 pathways including the flavonoid pathway were significantly
enriched [32,33]. In the interaction network centered on 107839364 with the highest con-
nectivity in the brown module, we also found the aggregation of genes of CHS, DFR, CHI,
EGL1, MATE, WRKY44, and other genes, which provided further information for exploring
the potential regulatory factors of anthocyanin biosynthesis in the peel of purple pepper. In
our previous article, we also discussed the response of anthocyanin biosynthesis in pepper
to light through strand-specific transcriptome and miRNA analysis [34]. The study showed
that a large number of non-coding RNA in pepper peel may regulate the expression of
anthocyanin synthesis structural genes after 48 h of light treatment.

3.2. Structural Genes Related to Anthocyanin Synthesis

The anthocyanin structural genes differentially expressed in the brown module mainly
include CHS (107871256, 107864266), CHI (107871144, 107852750), DFR (107860031), F3’5’H
(107848667), F3M (107862334), LDOX (107866341), and TCM (107875406, 107875407). In-
terestingly, all of these genes are significantly up-regulated (Table 2). It is worth noting
that we found two significantly up-regulated MATE genes (107863234, 107844661). Studies
have shown that MATE proteins have typical 12 transmembrane domains [35,36]. It is a
transport molecule of cation reverse transport, including hormones, organic acids, and
other secondary metabolites. Na+ or H+ ions exchanged across the membrane are the
driving force of substrate transport [37]. The MATE transporter of Arabidopsis is involved in
the transport of proanthocyanidin biosynthetic precursors in the seed coat, which may con-
trol the vacuolar isolation of flavonoids in the seed coat endothelium of Arabidopsis [8,38].
Therefore, MATE (107863234, 107844661) genes may play an important role in the transport
of anthocyanins in the peel of purple pepper.

3.3. Regulatory Genes Related to Anthocyanin Synthesis

MYB1R1 (107840959) is the only MYB gene differentially expressed in the brown
module. The MYB family is the most important transcription factor family regulating
anthocyanin synthesis, and MYB1R1 is also R2R3 MYB, indicating that it may play an
important role in the synthesis of anthocyanins in purple pepper [39,40].

F3’H and F3’5’H are important branching points in the flavonoid synthesis pathway.
WRKY44 can bind to the promoters of these two genes to regulate the accumulation
of specified anthocyanin types [41,42]. WRKY44 regulates catechin branching pathway
synthesis in the flavonoid pathway [3,43]. WRKY44 is also considered to regulate the
synthesis of anthocyanins in pitaya fruit pulp and is identified as the central gene in the
interaction gene network constructed by light response anthocyanin synthesis to regulate
the expression of anthocyanin structural genes [44,45]. Two WRKY44 (107843538, 107843524)
genes found in the hub gene interaction network also showed significant up-regulation.
This provides a new idea for us to study the key regulatory genes of anthocyanin synthesis.

We also found three bHLH genes that were significantly up-regulated in the genes with
significant differences in the brown module, namely EGL1 (107865400), bHLH104 (107864591),
and HLH (107842687). MdbHLH3 can combine with the promoters of anthocyanin biosyn-
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thesis genes DFR and UFGT and the promoters of regulatory gene MdMYB1 to activate
their expression [46]. Under UV-AB treatment, the structural genes F3’5’H, DFR, ANS, and
UFGT, as well as the regulatory genes EGL1 and TT2 of purple tea showed up-regulated
expression [47]. Therefore, EGL1 may play an important role in anthocyanin synthesis.

The combined transport of glutathione S-transferase (GST) and flavonoids can improve
the ability to protect plant cells from salt stress [9,48]. GST is very important for the coloring
of red flesh peach. Virus-induced PpGST1 gene silencing in red meat peach not only reduced
anthocyanin accumulation but also decreased the expression of anthocyanin biosynthesis
and regulatory genes [7]. Cyclamen-containing anthocyanins in petals turn white after
the deletion of the GST1 allele, indicating that GST1 is a gene for anthocyanin transport in
Cyclamen [49]. The up-regulated expression of GST (107861273), a significantly different
gene in the brown module, also shows that it plays an important role in the anthocyanin
synthesis of purple pepper fruit.

4. Materials and Methods
4.1. Material Preparation

The purple pepper germplasm HNUCA21 (Capsicum annuum) obtained from the
germplasm bank of Hainan University was uniformly placed under controlled drip irri-
gation equipment for management, and Stanley 20-19-19 fourth element water-soluble
fertilizer was applied for the fertilizer. When the pepper entered the full flowering period,
all the flowers that opened on the same day were marked. On the third day after marking,
all fruits that had just begun to expand were bagged and protected from light. After two
weeks of bagging and the development of pepper fruits, 20 well-developed fruits on the
best single plant were selected on a sunny morning. After removing the covering on one
side of the fruit, they were cultured under natural light for 48 h, 72 h, and 168 h. Six fruits
were randomly collected from the upper, middle, and lower parts of the plant each time.
After removing the bag, fruits were cut in two along the covering line and the position of
the fruit pedicle and fruit top by 1 cm, respectively. Additionally, 0.5 cm along the edge of
the covering line was also cut off. The processed samples were marked and wrapped with
tin foil, then put into liquid nitrogen for thorough freezing and stored in a refrigerator at
−80 ◦C. The samples were used for subsequent metabolite extraction, RNA extraction, and
RNA-seq. The samples of light and dark in the three periods were named L48, D48, L72,
D72, L168, and D168, respectively.

4.2. Measurement of Total Anthocyanin, Chlorophyll, and Carotenoid Concentrations

After grinding, the 0.2 g sample was immersed in 1% acetic acid methanol solution
and kept in the dark at 4 ◦C overnight. Centrifugation was carried out at 15,000× g rpm for
3 min, after adding the same amount of supernatant to the buffer solution with a pH of 1.0
and 4.5, respectively. The spectrophotometer (DU800) was used to measure the absorbance
value at 510 and 700 nm. A 1% acetic acid methanol solution was used as a control and 1 g
of peel was thoroughly ground and soaked in 6 mL of 80% cold acetone, then centrifuged
at 4 ◦C and 15,000× g rpm for 10 min. The absorbance values were determined at 440, 645,
and 663 nm using a spectrophotometer. Overall, 80% acetone was used as a control. Refer
to Bai et al. [2] for details.

4.3. Determination of Flavonoids by LC-ESI-MS/MS

Ultra-performance liquid chromatography (UPLC) (ExionLC™AD, https://sciex.com.cn/,
accessed on 24 July 2022) with tandem mass spectrometry (MS/MS) (QTRAP®6500+,
http://sciex.com.cn/, accessed on 24 July 2022) (LC-ESI-MS/MS) was used for metabolite
analysis on 05 August 2021 [50]. A freeze-dried sample was ground with zirconium beads,
50 mg of sample powder at 500 µL extract from the extract (50% methanol aqueous solution
of 0.1% hydrochloric acid) was added, and then centrifuged to extract the supernatant.
Finally, the supernatant was filtered by a microporous membrane (pore size 0.22 µm).

https://sciex.com.cn/
http://sciex.com.cn/
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Liquid phase condition: chromatographic column: ACQUITY BEH C18 1.7 µm,
2.1 mm × 100 mm; mobile phase: phase A was ultrapure water (add 0.1% formic acid), and
phase B was methanol (add 0.1% formic acid); elution gradient: the proportion of phase B
was 5% at 0.00 min, increased to 50% at 6.00 min, increased to 95% at 12 min, maintained
for 2 min, decreased to 5% at 14 min, and the equilibrium time was 2 min; the flow rate
was 0.35 mL/min; column temperature was 40 ◦C; and the injection volume was 2 µL.

Mass spectrometry conditions: electron ionization temperature was 550 ◦C and positive
ion mass spectrometry voltage was 5500 V. Curtain gas was pressurized as 35 psi. Scanning
and detection were conducted according to declustering potential and collision energy.
The database was built based on the standard sample to qualitatively analyze the data
detected by mass spectrometry. Quantitative analysis was completed by the multiple
reaction monitoring of triple quadrupole mass spectrometry.

4.4. RNA-Seq

The samples were sent to Novogene Bioinformatics Technology Co. Ltd. (Beijing, China)
for transcriptome sequencing. The total RNA in the sample was extracted with Tri-
zol Reagent (Invitrogen, Carlsbad, CA, USA). After the RNA purity (OD260/280 and
OD260/230 ratio) was detected by nanophotometer spectrophotometer and the RNA in-
tegrity was accurately detected by Agilent 2100 Bioanalyzer, the database was established.
The library building kit used in the library building was NEBNext of Illumina® UltraTM
RNA Library Prep Kit. The mRNA with polyA tail was enriched by Oligo (T) magnetic
beads, and the second strand of cDNA was synthesized from dNTPs. After end repair,
adding A-tail and connecting sequencing connector, the cDNA of about 250~300 bp was
screened and amplified by PCR, and finally, the library was obtained. Removed low-quality
reads (reads with a base number of Qphred≤ 20 accounting for more than 50% of the whole
read length). Meanwhile, Q20, Q30, and GC contents of clean data were calculated. The
sequencing platform was Illumina Hiseq TM2000, and the sample had three biological repli-
cates. Reference genome downloaded from https://www.ncbi.nlm.nih.gov/genome/10896
on 2 December 2021.

4.5. Differential Expression Analysis

DE mRNA was determined by the Ballground method. The differential expression
analysis between the two comparison combinations was performed using DEseq2 software
(1.16.1). Genes with p < 0.05 were considered differentially expressed genes. The corrected
p-value and |log2foldchange| were used as the threshold of significant differential ex-
pression. KEGG (Kyoto Encyclopedia of Genes and Genomes) is the main public database
related to this pathway (https://www.genome.jp/kegg/, accessed on 24 July 2022).

4.6. RNA Extraction and Quantitative Reverse Transcription PCR

Total RNA was extracted with RNA prep pure plant plus Kit (Tian Gen, Beijing, China).
According to the manufacturer’s protocol, RT Super Mix (Tian Gen, Beijing, China) was
eliminated with Fast King gDNA to complete the cDNA synthesis process. Specific primers
were designed using Primer 5. The expression of important unigenes in the metabolic path-
way was confirmed by the Light Cycle 96 Real-Time PCR system (Roche, Switzerland) [2].
Based on 2−∆∆CT method was used to evaluate the relative expression level of the target
gene. See Supplementary Table S4 for primer information.

4.7. Statistical Analysis

The data processing system (DPS) version 7.05 software was used. The heatmaps were
drawn by TBtools software. R-package WGCNA was used to calculate the functional set,
network construction, gene screening, etc. of weighted association analysis. Cytoscape
3.7.1 software was used to construct the co-expression network of genes [4].

https://www.ncbi.nlm.nih.gov/genome/10896
https://www.genome.jp/kegg/
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5. Conclusions

Anthocyanins in purple pepper fruit only accumulated in a small amount in the pericarp
after 48 h of light treatment, but a large number of related genes affecting anthocyanin
synthesis have been expressed rapidly. Ten anthocyanin synthesis structural genes, three
transporters, and six important transcription factor genes belong to the brown module, and
their expression is significantly up-regulated, indicating that the genes of this module may
play a common regulatory role in anthocyanin synthesis. In particular, CHS, DFR, CHI,
EGL1, MATE, and WRKY44 are highly connected with the hub gene 107839364 in the gene
co-expression network. Our study further supports the hypothesis that vacuolar isolation of
flavonoids involves vesicle transport, membrane transporter, and glutathione S-transferase.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23158357/s1.
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