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The objective of this study was to evaluate the contribution of Fourier-transformed
infrared spectroscopy (FTIR) data for dairy cattle breeding through two different
approaches: (i) estimating the genetic parameters for 30 measured milk traits and their
FTIR predictions and investigating the additive genetic correlation between them and
(ii) evaluating the effectiveness of FTIR-derived phenotyping to replicate a candidate
bull’s progeny testing or breeding value prediction at birth. Records were available
from 1,123 cows phenotyped using gold standard laboratory methodologies (LAB
data). This included phenotypes related to fine milk composition and milk technological
characteristics, milk acidity, and milk protein fractions. The dataset used to generate
FTIR predictions comprised 729,202 test-day records from 51,059 Brown Swiss
cows (FIELD data). A first approach consisted of estimating genetic parameters for
phenotypes available from LAB and FIELD datasets. To do so, a set of bivariate
animal models were run, and genetic correlations between LAB and FIELD phenotypes
were estimated using FIELD information obtained at the population level. Heritability
estimates were generally higher for FIELD predictions than for the corresponding LAB
measures. The additive genetic correlations (ra) between LAB and FIELD phenotypes
had different magnitudes across traits but were generally strong. Overall, these results
demonstrated the potential of using FIELD information as indicator traits for the indirect
genetic improvement of LAB measures. In the second approach, we included genotype
information for 1,011 cows from the LAB dataset, 1,493 cows from the FIELD dataset,
181 sires with daughters in both LAB and FIELD datasets, and 540 sires with daughters
in the FIELD dataset only. Predictions were obtained using the single-step GBLUP
method. A four fold cross-validation was used to assess the predictive ability of
the different models, assessed as the ability to predict masked LAB records from
daughters of progeny testing bulls. The correlation between observed and predicted
LAB measures in validation was averaged over the four training-validation sets. Different
sets of phenotypic information were used sequentially in cross-validation schemes: (i)
LAB cows from the training set; (ii) FIELD cows from the training set; and (iii) FIELD cows
from the validation set. Models that included FIELD records showed an improvement for
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the majority of traits. This study suggests that breeding programs for difficult-to-measure
traits could be implemented using FTIR information. While these programs should use
progeny testing, acceptable values of accuracy can be achieved also for bulls without
phenotyped progeny. Robust calibration equations are, deemed as essential.

Keywords: high-throughput phenotyping, Fourier-transformed infrared spectroscopy, genetic parameters,
genomic predictions, dairy cattle, single-step GBLUP

INTRODUCTION

In the omics- era, an emerging field of research is represented by
phenomics, which is the study of phenotypes on a genome-wide
scale (Bilder et al., 2009; Houle et al., 2010). In animal breeding,
the advance in high-throughput genomics has increased the
need for simple, fast, accurate, and high-throughput phenotyping
technologies. Fourier-transformed infrared spectroscopy (FTIR),
including part of near- and mid-infrared (NIR and MIR)
electromagnetic radiations, is a versatile and cost-effective
analytical tool to collect individual data for monitoring
traditional and novel milk traits in dairy cattle (Boichard
and Brochard, 2012). For many years, milk composition traits
such as fat and protein content, as well as lactose, urea,
and casein content, have been routinely estimated by FTIR
spectroscopy (Barbano and Clark, 1989). More recently, infrared
technology has also been proposed as an alternative method
for the quantification of difficult- or expensive-to-measure milk
phenotypes including protein fractions, fatty acids, and minerals
as well as milk coagulation properties (MCP), cheese yield, and
curd nutrient recoveries (Soyeurt et al., 2006a,b, 2011; Ferragina
et al., 2013; Cecchinato et al., 2015; Sanchez et al., 2018). In
addition, FTIR data has been shown to be a potentially valuable
tool for predicting health and reproductive phenotypes (Belay
et al., 2017; Toledo-Alvarado et al., 2018), as well as residual feed
intake, dry matter intake (DMI), and methane emissions (Bittante
and Cipolat-Gotet, 2018; Dórea et al., 2018).

Within the animal breeding context, studies have shown
the potential for using FTIR predictions as indicator traits
of novel phenotypes like MPC, fatty acid profiles, and other
milk components (Cecchinato et al., 2009; Rutten et al., 2011;
Bonfatti et al., 2017). Multi-trait prediction allows simultaneous
use of information from relatives and from different traits
(Henderson and Quaas, 1976). It has been demonstrated that,
using different databases, breeds, and traits, the effectiveness of
FTIR calibrations to provide novel phenotypes exploitable in
indirect selective breeding relies on the magnitude of heritability
of FTIR predictions, and the additive genetic correlation between
predictions and the measured traits (i.e., gold standard/breeding
targets). Although the predictive ability of FTIR data is moderate
for some traits, the genetic response achievable using FTIR
predictions as indicator traits may be equal to or slightly lower
than the response achievable from direct measurements of traits
are utilized (Cecchinato et al., 2009; Rutten et al., 2010).

Besides the infrared technology, genome-wide prediction
using the single-step approach has also been recognized as an
important tool to predict phenotypes (Lee et al., 2008; Aguilar
et al., 2010). The key principle for all these applications is

the simultaneous estimation of all genome-wide marker effects
based on a reference population with known phenotypes. Within
this framework, the accuracy of prediction might also benefit
from the added value of including genomic information in
multi-trait prediction models, which have been shown to have
better performances compared to single-trait models (Calus
and Veerkamp, 2011; Guo et al., 2014; Karaman et al., 2018).
While dairy cattle genetic improvement has historically hinged
on progeny testing, genomic selection has made available high-
accuracy breeding value predictions for candidate bulls at birth.
This could mean that the traditional progeny testing is no longer
required, provided that these early breeding value predictions
are reliable. In this context, we hypothesized that multi-trait
genomic prediction models applied to indicator traits estimated
from routinely collected FTIR data, and their corresponding
gold-standard measured traits could represent a viable option to
evaluate the contribution of FTIR data collection for dairy cattle
breeding. Cross-validation could be used to test the predictive
ability of models that include or do not include FTIR-predicted
phenotypes, to replicate a candidate bulls’ progeny testing or
prediction of breeding value at birth.

Therefore, the overall objective of this study was to test the
value of FTIR predictions from field data (FIELD) for the genetic
improvement of difficult-to-measure traits in dairy cattle. Steps to
address this objective were (i) to infer (co)variance components,
heritabilities, and additive genetic correlations between 30 LAB-
measured and FIELD-predicted phenotypes, divergent in terms
of biological meaning, variability, and heritability, related to
fine milk composition and milk technological characteristics
[traditional MCP, curd firming (CF) traits, cheese yields and
recoveries of nutrients, milk acidity and milk protein fractions]
and (ii) to use bivariate single-step GBLUP for evaluating the
predictive ability of FTIR-derived phenotyping for these traits by
using different phenotyping and genotyping strategies.

MATERIALS AND METHODS

Ethics Statement
This study did not require any specific ethics permit. The
cows sampled belonged to commercial private herds and were
not experimentally manipulated. Milk samples were collected
during routine milk recording coordinated by technicians from
the Breeders Federations of Trento Province (FPA, Trento,
Italy) and of Alto Adige/Südtirol (Associazione Provinciale
delle Organizzazioni Zootecniche Altotesine/Vereinigung der
Südtiroler Tierzuchtverbände, Bolzano/Bozen, Italy).
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Data Structure
In this study, we used two sets of data collected on Brown
Swiss cows: (i) a LAB dataset in which laboratory measurements
and spectra data for phenotypes related to milk quality and
cheese-making were available to develop calibration equations
and (ii) a FIELD-FTIR dataset for testing field prediction at
the population level. A subset of the FIELD-FTIR dataset
including only first lactation records was used for estimating
(co)variance components (FIELDlact1); the whole database was
instead used for the genomic analyses (FIELD). The data
structure is summarized in Table 1.

LAB Dataset
The LAB data were part of the Cowability/Cowplus projects.
Individual milk samples from 1,200 Brown Swiss cows from
85 herds located in the Alpine province of Trento (Italy)
were collected. Details of the animals used in this study and
characteristics of the area are reported in Mele et al. (2016). Data
on the cows, herds, and single test-day milk yield were provided
by the Superbrown Consortium of Bolzano and Trento (Italy),
and pedigree information was supplied by the Italian Brown
Swiss Cattle Breeders Association (Verona, Italy).

FTIR Spectra Data
Individual milk samples were analyzed using a MilkoScan
FT6000 (Foss Electric, Hillerød, Denmark). The spectrum covers
from the short-wavelength infrared (SWIR, also known as NIR
or IR-B), through the medium-wavelength infrared (MWIR,
also known as MIR), to the long-wavelength infrared (LWIR,
or LIR) regions with 1,060 spectral points from wavenumber
5,010 to 925 cm−1, which correspond to wavelengths ranging
from 1.99 to 10.81 µm and frequencies ranging from 150.19 to
27.73 THz. Spectra were expressed as absorbance calculated as
log(1/transmittance). Two spectral acquisitions were carried out
for each sample (collected during the evening milking), and the
results were averaged before data analysis (Ferragina et al., 2015).

Phenotypes
Traditional Milk Coagulation Properties
Measures of MCP were obtained using two different instruments:
a Formagraph (Foss Electric A/S) and an Optigraph (Ysebaert SA,

TABLE 1 | Summary of data structure for laboratory (LAB) measures, after editing,
and Fourier transform infrared predictions (FIELD).

Item LAB FIELDlact1
1 FIELD2

Animals 1,123 39,833 51,059

Records 1,123 235,372 729,202

Herds 83 2,494 2,607

Animals in the pedigree 6,526 97,933 136,332

Number of generations 5 5 13

Sires 266 1,210 1,835

Dams 1,044 29,716 38,449

1FIELDlact1 = dataset limited to cows belonging to first lactation.
2FIELD = whole dataset.

Frépillon, France) according to Cecchinato et al. (2013). Briefly,
milk samples (10 mL) were heated to 35◦C and 200 µL of a
rennet solution (Hansen Standard 160, with 80 ± 5% chymosin
and 20 ± 5% pepsin; 160 international milk clotting units/mL;
Pacovis Amrein AG, Bern, Switzerland), diluted to 1.6% (wt/vol)
in distilled water, was added at the beginning of the analysis. The
time of analysis was extended up to 90 min after rennet addition.
Rennet coagulation time (RCT) was defined as the time (min)
from the addition of enzyme to the beginning of coagulation, k20
(min) was defined as the interval from RCT to the time at which a
curd firmness of 20 mm was obtained, and a30 and a45 (mm) were
measurements of curd firmness at 30 and 45 min after rennet
addition, respectively.

Modeling the Curd Firmness
A set of parameters of CF at time t (CFt) was estimated,
and details are described in Bittante et al. (2015). Estimated
parameters included rennet coagulation time (RCTeq, min),
estimated from the CFt equation; potential asymptotical curd
firmness (CFP, mm), representing the maximum potential curd
firmness after infinite time in the absence of syneresis; curd-
firming rate constant (kCF , %/min), which is a measure of the
rate of CF; syneresis rate constant (kSR, %/min); maximum curd
firmness (CFmax, mm); and time to CFmax (tmax, min).

Milk Acidity
The milk pH was measured using a Crison Basic 25 electrode
(Crison, Barcelona, Spain).

Cheese Yields and Curd Nutrient Recoveries
To assess cheese-making properties, milk samples were processed
according to all the steps of the cheese-making practice used in
artisanal commercial dairies for producing a traditional whole
milk cheese described by Bittante et al. (2014). Briefly, 1,500 mL
of milk was heated to 35◦C in a stainless steel microvat,
supplemented with thermophilic starter culture, and mixed with
rennet. The resulting curd from each vat was double-cut and
heated for 30 min to 55◦C, drained, shaped in wheels, pressed,
salted, and weighed. The whey was drained from the curd,
weighted, and analyzed for fat, protein, lactose, and total solid
content using FT2 (Foss Electric A/S, Hillerød, Denmark). Three
cheese yield (CY) traits were calculated expressing the weight (wt)
of fresh curd (%CYCURD), of curd DM (%CYSOLIDS), and of water
retained in the curd (%CYWATER) as a percentage of the weight
of milk processed. Four recovery (REC) traits were calculated
as proportions of nutrients and energy of the milk retained in
the curd (RECSOLIDS, RECFAT , RECPROTEIN , and RECENERGY
calculated as the % ratio between the nutrient in curd and the
corresponding nutrient in processed milk). The energy within the
curd was calculated as the difference between energy in the milk
and in the whey (NRC, 2001).

Milk Proteins
Concentrations of the major casein (CN) fractions (αS1−CN,
αS2−CN, β-CN, and κ-CN) and whey proteins, β-lactoglobulin
(β-LG), and alpha-lactalbumin (α-LA) were determined
using a validated reversed phase high-performance liquid
chromatography (RP-HPLC) method (Bonfatti et al., 2008). Each
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protein fraction was expressed as a percentage of the milk total
nitrogen (N) content.

Data Editing
Only records with spectra and measured phenotypes available
were kept. After data editing and removing observations outside
three standard deviations, the final number of records and

phenotypes used in subsequent analyses varied from 770 to 1,120
depending on the trait as reported in Table 2.

Field Data
Spectra Data
The FIELD data for our study were provided by the Breeders
Federations of Trento Province (FPA, Trento, Italy) and

TABLE 2 | Descriptive statistics for laboratory (LAB) measures and Fourier transform infrared predictions (FIELD) for the investigated traits.

Trait1 LAB FIELDlact1
2 FIELD3

N Mean SD N Mean SD N Mean SD

Traditional MCP

RCT, min 1,096 19.8 5.38 232,660 20.47 4.76 712,420 19.98 4.81

k20, min 1,073 5.34 2.43 232,775 5.59 1.68 710,826 5.59 1.66

a30, mm 1,051 29.29 10.97 232,702 27.3 8.53 713,759 27.92 8.59

a45, mm 1,096 33.28 8.00 232,869 33.31 4.06 714,254 32.78 4.03

Curd firming

RCTeq, min 1,093 20.62 5.41 233,828 21.23 5.17 718,385 20.86 5.18

CFp, mm 1,105 49.89 9.43 234,065 49.21 5.95 723,632 49.37 6.14

kCF , % × min−1 1,104 12.83 3.91 233,641 12.12 2.61 721,173 12.84 2.70

kSR, % × min−1 1,102 1.21 0.43 233,568 1.14 0.23 721,261 1.21 0.25

Cmax , mm 1,105 37.23 7.03 234,106 37.04 4.53 723,364 36.80 4.68

tmax , min 1,071 40.34 9.85 233,779 42.76 8.74 720,164 41.17 8.88

Optigraph

RCT, min 787 18.88 4.11 232,856 18.77 3.29 712,568 18.80 3.35

k20, min 770 8.04 2.62 232,628 8.09 2.15 709,025 8.41 2.09

a30, mm 782 26.6 10.6 232,561 25.91 8.34 713,482 25.54 8.31

a45, mm 786 41.03 11.04 232,783 40 8.67 713,992 39.65 8.63

Acidity

pH 1,112 6.64 0.08 232,772 6.63 0.07 715,433 6.65 0.06

Cheese yields, %

CYCURD 1,120 15.04 1.9 234,247 14.92 1.64 722,328 14.95 1.65

CYSOLIDS 1,101 7.19 0.9 233,860 7.11 0.84 719,915 7.13 0.86

CYWATER 1,112 7.80 1.29 234,317 7.9 1.03 724,431 7.77 1.04

Recoveries, %

RECPROTEIN 1,112 78.09 2.44 233,940 78.81 2.18 720,358 78.25 2.28

RECFAT 1,083 89.97 3.27 233,818 89.39 2.92 716,200 89.48 2.95

RECSOLIDS 1,115 52.00 3.55 233,973 51.21 3.07 721,441 51.66 3.18

RECENERGY 1,101 67.25 3.28 233,630 66.58 2.89 719,822 67.05 3.00

N fractions, % total N

Caseins 1,097 77.97 1.2 233,395 78.25 1.41 700,206 77.88 1.36

β-CN 1,098 32.12 2.42 233,861 32.86 1.60 721,345 32.22 1.69

κ-CN 1,087 9.53 1.33 234,358 9.26 1.50 713,219 9.44 1.49

αS1-CN 1,096 25.71 1.69 235,058 25.80 0.71 724,579 25.72 0.75

αS2-CN 1,091 9.17 1.05 234,457 9.12 0.58 723,390 9.15 0.59

Whey proteins 1,094 11.06 1.61 234,276 11.08 1.16 722,788 10.99 1.18

β-LG 1,091 8.70 1.47 234,252 8.71 1.33 721,472 8.63 1.36

α-LA 1,097 2.37 0.49 232,535 2.38 0.46 713,999 2.34 0.46

1RCT = rennet coagulation time; k20 = curd firming rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet
coagulation time estimated using the equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant;
CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax ; %CYCURD = weight of fresh curd as percentage of weight of milk
processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed; %CYWATER = weight of water curd as percentage of weight of milk processed;
RECPROTEIN = protein of the curd as percentage of the protein of the milk processed; RECFAT = fat of the curd as percentage of the fat of the milk processed;
RECSOLIDS = solids of the curd as percentage of the solids of the milk processed; RECENERGY = energy of the curd as percentage of energy of the milk processed;
true protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2- CN (αs2-casein);
caseins: 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin), whey proteins: 6(β-LG+ α-LA). 2FIELDlact1 = dataset limited to cows belonging
to first lactation. 3FIELD = whole dataset.
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of Alto Adige/Südtirol (Associazione Provinciale delle
Organizzazioni Zootecniche Altotesine/Vereinigung der
Südtiroler Tierzuchtverbände, Bolzano/Bozen, Italy) as part of
the Cowability/Cowplus projects. All milk samples were analyzed
using a MilkoScan FT6000 (Foss Electric, Hillerød, Denmark).
Spectra characteristics, in terms of wavelengths and way of
expression (absorbance), were the same as for the LAB data.
Spectra were collected between 2010 and 2017.

Spectra Editing
A preliminary analysis was carried out to identify the outlier
spectra based on the Mahalanobis distance from the first five
principal component scores. The probability level for the chi-
squared distribution of a sample’s Mahalanobis distance was
calculated from the incomplete gamma function with five
degrees of freedom (Toledo-Alvarado et al., 2018). Samples with
P < 0.01 were removed from the dataset. To overcome spectral
variations, the absorbance values for every wavelength were
centered to a null mean and standardized to a unit sample
variance within year periods. Records without parity number,
date of calving, animal ID, or pedigree information were also
removed. If a cow had predictions from both LAB and FIELD
datasets, the FIELD prediction records of that specific cow
were deleted. This latter editing step was performed for the
following reasons: (i) to avoid an overestimation of additive
genetic correlations; (ii) to force the connection between LAB
and FIELD data only through the additive genetic effect; and
(iii) to avoid EBV inflation for cows with both LAB and
FIELD records.

To detect outliers among the predicted phenotypes, a mixed
model was fitted for each trait including the fixed non-genetic
effects of (i) the stage of lactation (12 monthly classes), (ii) the
combined effect of herd (∼2,460 levels), year of the test day
(2010–2017), and two seasons of calving (April to September
and October to March) (∼22,200 levels). The permanent
environmental effects (∼39,600) and animal additive genetic
effects were included as random terms.

The residuals of phenotypes outside 3 standard deviations
were considered as outliers.

Genotypes
The pool of genotyped individuals consisted of (i) 1,011
LAB cows genotyped with the Illumina BovineSNP50 v.2
BeadChip (Illumina, Inc., San Diego, CA, United States;
54,000 SNPs); (ii) 1,463 FIELD cows which were genotyped
with the BovineLD v2.0 BeadChip (Illumina, Inc., San Diego,
CA, United States; 7,931 SNPs); (iii) 181 sires with both
LAB and FIELD daughters genotyped with the Illumina
BovineSNP50 v.2 BeadChip or the Illumina Bovine HD
BeadChip (Illumina, Inc., San Diego, CA, United States;
777,000 SNPs); and (iv) 540 sires with FIELD daughters only
genotyped as (v). The software FImpute (Sargolzaei et al.,
2014) was used for imputation and all individuals were
imputed to the BovineSNP50 v.2 BeadChip panel. A total
number of 3,195 genotyped individuals were available for
this study.

Marker editing was performed using the preGSf90
software (Misztal et al., 2002). Markers were excluded
where the call rate was below 95%, the minor allele
frequency was below 5%, and/or there was significant
deviation from the Hardy–Weinberg equilibrium (P < 10−6).
SNPs mapped to the sex chromosomes or with unknown
position on the genome were also removed. After
editing, the number of markers available for analyses
was 37,093.

Statistical Analyses
Calibration Equations
Separate models were fitted for each trait considered. We used a
Bayesian model (BayesB model) implemented in BGLR (de los
Campos and Perez-Rodriguez, 2014), as previously described by
Ferragina et al. (2015). Phenotypes in LAB (i.e., the calibration
dataset) were regressed on standardized spectra covariates using
the linear model:

yi = β0 +

1,060∑
j=1

xijβj + εi,

where β0 is an intercept, {xij} are standardized FTIR spectra-
derived wavelength data(j = 1, · · ·1, 060), βj are the effects of
each of the wavelengths, and εi are model residuals assumed to be
independent and identically distributed, with normal distribution
centered at zero and variance σ2

ε . Models were applied with
100,000 iterations and 20,000 chains discarded as burn in. The
editing and analysis were conducted using R software (R Core
Team, 2018). To evaluate predictive performance, the coefficient
of correlation for the calibration model developed on LAB
measures and used for FIELD predictions was calculated for
each trait (rC_LAB). The calibration equations obtained with
this procedure in LAB data were then applied to the spectral
population data (FIELD) in order to obtain FIELD predictions
for all traits of concerns.

Genetic Analyses: (Co)Variance Components
Estimation Between Measured (LAB) and Predicted
(FIELD) Phenotypes
The (co)variance components were estimated using REMLF90
and AIREMLF90 (Misztal et al., 2002), considering LAB
measures and FIELD predictions as distinct traits. The
connection between the two datasets was guaranteed by
266 sires, 1,044 dams, 94 sires of sires, and 372 sires of dams in
common between LAB and FIELD datasets (Table 1). To save
time and improve convergence of models, for this first approach,
the FIELD dataset has been limited to cows belonging to first
lactation (FIELDlact1).

The program was run until a convergence criterion of
1e−10 was reached.

The model for LAB-measures was

y = Xb+ Zaa+ e, (1)

where y is the vector of observations for traits of concern; b,
a, and e correspond to the vector of fixed non-genetic effects,
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random animal additive genetic effects, and random residual
effects, respectively; X and Za are the incidence matrices relating
each observation in y to b and a. The non-genetic fixed effects
included in the model were (i) the DIM of each cow within parity
(60 levels) and (ii) herd-test day (83 levels). The random terms
were animal additive genetic effects and residual effects. The
pedigree file included all phenotyped animals and their ancestors
(∼6,500 animals).

Heritability was computed as h2
=

σ2
a

σ2
a + σ2

e

where σ2
a and σ2

e are the additive genetic and residual
variances, respectively.

The model for FIELDlact1 records was

y = Xb+ Zaa+ Zpepe+ e, (2)

where y is the vector of observations for the traits of concern;
b, a, pe, and e correspond to the vector of fixed non-
genetic effects, random animal additive genetic effects, random
permanent environmental effects, and random residuals effects,
respectively; X, Za, and Zpe are the incidence matrices relating
each observation in y, a, b, and pe, respectively. The fixed non-
genetic effects were (i) the stage of lactation (12 monthly classes)
and (ii) the combined effect of herd (∼2,460 levels), year of the
test-day (2010–2017), and season of calving (April to September
and October to March) (∼22,200 levels). The random terms were
permanent environmental effects (∼39,600), animal additive
genetic effects, and residual effects. The pedigree file included
all phenotyped animals and their ancestors (∼97,900 animals).
Only first lactation records were utilized to avoid convergence
problems. The residuals were considered uncorrelated across the
two traits (LAB and FIELDlact1 predictions).

Heritability was computed as
h2=

σ2
a

σ2
a+σ2

pe+σ2
e

where σ2
a, σ2

pe , and σ2
e are the additive genetic, permanent

environmental, and residual variances, respectively.
For each trait, the additive genetic correlation between LAB

and FIELDlact1 was estimated from the variance–covariance
matrix of the random additive genetic effect as ra =

σa1,a2
σa1×σa2

where σa1,a2 is the additive genetic covariance between two traits,
and σa1 and σa2 are the additive genetic standard deviations for
traits 1 and 2, respectively.

Predictive Ability Estimated Using Genomic and
Infrared Information
In order to assess the ability of FIELD data to predict LAB records
as phenotypes of interest, a fourfold cross-validation was used.
In this setting, the LAB phenotype is considered as the breeding
goal while the FIELD record is its correlated trait. The models
employed for both LAB and FIELD data were the same as for the
variance component estimation, except for the stage of lactation
effect in the FIELD dataset that was replaced with a stage of
lactation by parity effect (5 parity classes, 72 levels in total), since

the whole FIELD dataset was used (not restricting the records to
first lactation).

Sires with both LAB and FIELD daughters were randomly
assigned to four groups, evenly sized based on the number
of LAB cows for each sire. Details on the number of records
and cows in each set are reported in Supplementary Table S1.
Cross-validation was performed using alternatively 3 groups for
training (denoted with the suffix “t”) and one group for validation
(denoted with the suffix “v”), for the scenarios that only included
the training sets.

The cross-validation considered different training sets, either
using LAB or FIELD data alone or combined: (i) model “LAB.t”
included phenotypes available are from LAB cows that were
daughters of the sires in the training set; (ii) model “FIELD.t”
included phenotypes available from FIELD cows that were
daughters of the sires in the training set; (iii) model “LAB.t
+ FIELD.t” included phenotypes from LAB and FIELD cows
that were daughters of the sires in the training set; (iv) model
“FIELD.t + FIELD.v” included phenotypes available are from all
FIELD cows (no alternate masking of phenotypes was performed
here); and (v) model “LAB.t + FIELD.t + FIELD.v” included
phenotypes available from LAB cows that were daughters of
the sires from the training set and all FIELD cows. Model
“LAB.t” assesses the predictive ability when FIELD records
are not collected, i.e., no use of FTIR data. Model “FIELD.t”
evaluates the impact of FIELD phenotyping the daughters of
the bulls in the reference population, with no LAB phenotypes
included in the genetic evaluation. Model “LAB.t + FIELD.t”
evaluates the impact of including FIELD phenotypes for the
daughters of the bulls in the progeny test. In model “FIELD.t
+ FIELD.v,” progeny testing bulls have daughters phenotyped
with FTIR data while in model “LAB.t + FIELD.t + FIELD.v,”
the progeny testing bulls have daughters phenotyped with
LAB data as well.

Accuracy of prediction was quantified as

accx = cor(yLABval,x,(G)EBVLAB
val,x)

where accx is the accuracy in the validation set x (x = 1,2,3,4),
yLABval,x are the masked LAB records from cows in validation set
x, (G)EBVLAB

val,x is the estimated genomic breeding value for LAB
cows in validation set x, and cor refers to the Pearson correlation.
Estimated genomic breeding values were calculated using the
program BLUPf90 (Misztal et al., 2002) that combines pedigree-
derived and SNP-derived genomic relationship matrices (Legarra
et al., 2009). All 3,195 genotypes available for this study were
included in the analysis.

For this part of the study, we did not use the variance
components estimated in the previous step, but we tested
different genetic correlation (covariance) values in order to
find those that better maximized prediction accuracy. Firstly,
estimates of variance components were obtained from single-
trait models (Supplementary Table S2). Single-trait models were
used in order to remove the inflation in the estimates due to
genetic covariances. Then, different values of genetic correlation
between LAB and FIELD phenotypes ranging from 0.1 to 1,
with 0.1 step increases, were generated. Each prediction run
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was then repeated for the values of covariance generated by
each value of assumed genetic correlation. This allowed the
exploration of the predictive ability over all the potential values
of genetic correlation.

RESULTS AND DISCUSSION

Descriptive Statistics
Descriptive statistics for all investigated LAB-measured and
FIELD-predicted traits are summarized in Table 2. Extensive
description and discussion of the results for the LAB dataset
have been reported in previous works, including the differences
between MCP measured with FRM and OPT (Cecchinato et al.,
2013; Bittante et al., 2015; Pegolo et al., 2018). Generally,
we observed consistency between the mean values from LAB,
FIELDlact1, and FIELD datasets for all the investigated traits. We
only observed a slight loss of variability for all the FTIR-predicted
phenotypes as demonstrated by the lower standard deviations,
compared to for the observed traits.

Variance Components and Heritability of
Measured and Predicted Traits
Coagulation Traits and Milk Acidity
Variance components and heritability estimates from LAB and
FIELDlact1 datasets for coagulation traits and milk acidity are
reported in Table 3 and Figure 1. The coefficient of correlation

for the calibration models developed on LAB measures (rC_LAB)
and used for FIELD predictions, and the additive genetic
correlation (ra) between LAB and FIELD traits are reported
in Table 3 and Figure 2. As previously reported, in order to
guarantee convergence of animal models, these analyses have
been restricted to a dataset with only first lactation records of
FIELD data. Generally, a decrease in both genetic and residual
variances was observed in FIELDlact1 with respect to LAB data.
A similar pattern was reported in other studies (Bonfatti et al.,
2017). In particular, residual variances for LAB traits were 1.3–
6 times greater than residual plus permanent environmental
variances in FIELDlact1. In the case of LAB parameters obtained
from mechanical lacto-dynamographs (traditional MCP and
Curd firming model), this difference increases particularly for
traits recorded at increasing time intervals from milk gelation.
This is caused by the decreasing repeatability of the measures
recorded by the instrument with the progress of the textural
test. Therefore, heritability estimates were comparable between
datasets for traits recorded earlier (e.g., RCT, kCF), whereas
heritability estimates decreased for later measured LAB traits,
but not for FTIR predicted FIELDlact1 traits (a30, a45, CFP,
CFmax). Optigraph, yielding an optical prediction and not a
mechanical measurement, does not show the same decrease in
repeatability and heritability, for traits describing the later part
of CF pattern. Generally, heritability estimates of measured and
predicted traits were comparable to other studies (Cecchinato
et al., 2009; Bonfatti et al., 2017).

TABLE 3 | Estimates of variance components and heritability of measured LAB traits, coefficient of correlation of the calibration model used for infrared prediction
(rC_LAB) developed on LAB measures and used for FIELD predictions, estimates of variance components and heritability of Fourier transform infrared FIELDlact1

predictions, and additive genetic correlation (ra) between LAB and FIELD traits for the coagulation and acidity traits.

Traits1 LAB rC_LAB FIELDlact1
2 ra

σ2
a σ2

e σ2
p h2 SE σ2

a σ2
pe σ2

e σ2
p h2 SE Est SE

Traditional MCP

RCT, min 7.155 14.967 22.122 0.323 0.098 0.858 5.911 2.091 8.901 16.904 0.350 0.003 0.892 0.081

k20, min 1.160 4.552 5.712 0.203 0.089 0.682 0.751 0.303 1.095 2.149 0.350 0.010 0.780 0.031

a30, mm 15.998 93.280 109.278 0.146 0.080 0.722 21.905 8.288 28.067 58.260 0.376 0.011 0.836 0.026

a45, mm 4.592 47.238 51.830 0.089 0.067 0.586 3.499 1.480 6.158 11.137 0.314 0.010 0.787 0.042

Curd firming

RCTeq, min 6.648 15.588 22.236 0.299 0.098 0.853 6.057 2.301 10.469 18.827 0.322 0.010 0.863 0.018

CFp, mm 10.389 58.367 68.756 0.151 0.076 0.742 8.010 2.681 14.418 25.110 0.319 0.010 0.835 0.027

kCF , % × min−1 3.678 8.720 12.398 0.297 0.095 0.656 1.676 0.702 2.974 5.352 0.313 0.010 0.683 0.038

kSR, % × min−1 0.035 0.115 0.150 0.233 0.088 0.571 0.012 0.005 0.027 0.044 0.270 0.009 0.602 0.052

Cmax , mm 5.786 32.505 38.291 0.151 0.076 0.742 4.888 1.852 7.733 14.474 0.338 0.011 0.847 0.025

tmax , min 21.794 54.064 75.858 0.287 0.097 0.774 18.862 7.647 29.049 55.558 0.340 0.011 0.783 0.028

Optigraph

RCT, min 3.426 9.261 12.687 0.270 0.111 0.837 2.783 0.978 4.095 7.856 0.354 0.010 0.904 0.134

k20, min 1.629 4.441 6.070 0.268 0.119 0.809 1.426 0.466 1.567 3.460 0.412 0.011 0.919 0.012

a30, mm 26.076 76.993 103.069 0.253 0.115 0.760 20.611 8.158 28.236 57.005 0.362 0.003 0.802 0.016

a45, mm 47.194 64.650 111.844 0.422 0.131 0.743 19.957 7.373 28.803 56.133 0.356 0.010 0.799 0.024

Acidity

pH 0.001 0.002 0.003 0.201 0.081 0.752 0.001 0.000 0.002 0.003 0.205 0.007 0.756 0.035

1RCT = rennet coagulation time; k20 = curd firming rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet
coagulation time estimated using the equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant;
CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax . 2FIELDlact1 = dataset limited to cows belonging to first lactation.
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FIGURE 1 | Estimates of heritability for LAB measures and FTIR predictions of the investigated traits using LAB and FIELDlact1 data. MCP = milk coagulation
properties; RCT = rennet coagulation time; k20 = curd firming (CF) rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet
addition; RCTeq = rennet coagulation time estimated using the equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant;
kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax ; OPT = Optigraph;
CY = cheese yield; %CYCURD = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk
processed; %CYWATER = weight of water curd as percentage of weight of milk processed; REC = recoveries; RECPROTEIN = protein of the curd as percentage of the
protein of the milk processed; RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of
the milk processed; RECENERGY = energy of the curd as percentage of energy of the milk processed. 1True protein nitrogen (N) and milk N fractions are expressed as
percentage of total milk N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2-CN (αs2-casein); caseins (CN): 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG
(β-lactoglobulin), α-LA (α-lactalbumin), whey proteins (WP): 6(β-LG+ α-LA).

Cheese-making traits. Variance components and heritability
estimates of LAB and FIELDlact1 for cheese yield and recovery
traits are reported in Table 4 and Figure 1. In addition, the rC_LAB
developed on LAB data and the ra between LAB and FIELD
traits are reported in Table 4 and Figure 2. For CY traits, genetic
variances were larger in FIELDlact1 for CYCURD (∼1.2-fold)
and CYSOLIDS (∼1.6-fold) and smaller for CYWATER (∼1.2-fold).

For all these traits, a ∼1.5-fold reduction was observed in
residual plus permanent environmental variances. For CYCURD
and CYWATER, heritability estimates were comparable between
the two datasets, while the heritability estimate of CYSOLIDS was
almost double in FIELDlact1 (0.358), compared to LAB (0.192).
Variance components for REC traits had different behaviors:
RECPROTEIN and RECFAT had smaller genetic variances for
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FIGURE 2 | Coefficient of correlation of the calibration models used for infrared prediction (rC_LAB) and additive genetic correlations (ra) between LAB measures and
FTIR predictions of the investigated traits using LAB and FIELDlact1 data. MCP = milk coagulation properties; RCT = rennet coagulation time; k20 = curd firming (CF)
rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet coagulation time estimated using the
equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd firmness
achieved within 45 min; tmax = time at achievement of CFmax ; OPT = Optigraph; CY = cheese yield; %CYCURD = weight of fresh curd as percentage of weight of milk
processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed; %CYWATER = weight of water curd as percentage of weight of milk
processed; REC = recoveries; RECPROTEIN = protein of the curd as percentage of the protein of the milk processed; RECFAT = fat of the curd as percentage of the fat
of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of the milk processed; RECENERGY = energy of the curd as percentage of energy of
the milk processed. 1True protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN
(αs1-casein), αs2- CN (αs2-casein); caseins (CN): 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin), whey proteins (WP): 6(β-LG+ α-LA).

FIELDlact1 compared to LAB traits (∼1.6- and 1.2-fold,
respectively), while RECSOLIDS and RECENERGY had larger
genetic variances in FIELDlact1, compared to LAB (∼1.3-fold).
On the other hand, we observed a reduction in residual variance
for all traits except RECPROTEIN which had a slightly higher
value in FIELDlact1, compared to the LAB trait. Accordingly,
heritability estimates for REC traits were comparable or higher in
FIELDlact1, with the exception of RECPROTEIN which had a lower
value in FIELDlact1 (0.247 vs. 0.563).

Milk Protein Fractions
Genetic parameters of milk protein fractions are also presented
in Table 4 and Figure 1. In the case of milk proteins, heritability
estimates of LAB traits were comparable to previous studies
(Schopen et al., 2009). FTIR-predicted milk proteins showed a
marked decrease in genetic variance, compared to LAB measures
(especially αS1-CN, from 0.873 to 0.065), while residual variances
were larger for total CN, κ-CN, total whey, β-LG, and α-LA,
smaller for αS1-CN and αS2-CN, and comparable for β-CN.
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TABLE 4 | Estimates (Est, with standard error reported as SE) of variance components and heritability of measured LAB traits, coefficient of correlation of the calibration
model used for infrared prediction (rC_LAB) developed on LAB measures and used for predictions using FIELD spectra, estimates of variance components and heritability
of Fourier transform infrared FIELDlact1 predictions, and additive genetic correlation (ra) between LAB and FIELD for the cheese yield, curd nutrient recovery traits, and
protein fractions.

Traits1 LAB rC_LAB FIELDlact1
2 ra

σ2
a σ2

e σ2
p h2 SE σ2

a σ2
pe σ2

e σ2
p h2 SE Est SE

Cheese yields, %

%CYCURD 0.408 1.687 2.094 0.195 0.079 0.899 0.495 0.218 1.075 1.788 0.277 0.010 0.814 0.028

%CYSOLIDS 0.105 0.443 0.548 0.192 0.080 0.905 0.170 0.066 0.240 0.477 0.358 0.011 0.754 0.034

%CYWATER 0.192 0.681 0.874 0.220 0.086 0.773 0.158 0.093 0.480 0.731 0.216 0.009 0.900 0.017

Recoveries, %

RECPROTEIN 2.302 1.783 4.084 0.563 0.116 0.897 1.437 0.507 2.203 4.147 0.347 0.010 0.901 0.010

RECFAT 1.633 5.718 7.351 0.222 0.088 0.655 1.395 0.538 4.212 6.145 0.227 0.009 0.810 0.030

RECSOLIDS 1.707 7.071 8.778 0.194 0.081 0.861 2.283 0.792 3.124 6.200 0.368 0.011 0.868 0.019

RECENERGY 1.539 6.933 8.472 0.182 0.081 0.814 2.027 0.703 3.963 6.693 0.303 0.004 0.902 0.010

N fractions, % total N

Caseins 0.133 0.589 0.722 0.182 0.086 0.953 0.174 0.031 1.211 1.416 0.123 0.006 0.665 0.059

β-CN 3.199 1.492 4.690 0.678 0.104 0.656 0.519 0.180 1.450 2.148 0.242 0.009 0.782 0.020

κ-CN 0.765 0.752 1.516 0.501 0.106 0.687 0.300 0.170 1.145 1.615 0.186 0.008 0.760 0.029

αs1-CN 0.873 0.901 1.774 0.492 0.108 0.598 0.065 0.028 0.259 0.352 0.186 0.008 0.396 0.058

αs2-CN 0.240 0.466 0.706 0.337 0.104 0.623 0.056 0.033 0.187 0.276 0.203 0.009 0.535 0.058

Whey proteins 0.852 0.631 1.482 0.571 0.852 0.686 0.295 0.124 0.701 1.120 0.264 0.090 0.603 0.112

β-LG 0.635 0.537 1.712 0.538 0.103 0.722 0.289 0.117 0.976 1.382 0.209 0.008 0.656 0.034

α-LA 0.026 0.069 0.095 0.270 0.099 0.743 0.006 0.002 0.120 0.127 0.051 0.002 0.733 0.037

1%CYCURD = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed;
%CYWATER = weight of water curd as percentage of weight of milk processed; RECPROTEIN = protein of the curd as percentage of the protein of the milk processed;
RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of the milk processed;
RECENERGY = energy of the curd as percentage of energy of the milk processed; true protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N;
β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2-CN (αs2-casein); caseins: 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin),
whey proteins: 6(β-LG+ α-LA). 2FIELDlact1 = dataset limited to cows belonging to first lactation.

Heritability estimates were lower in FIELDlact1 for all protein
traits, ranging from high-moderate (ranging from 0.182 to 0.678)
to moderate-low (ranging from 0.051 to 0.264; Figure 1). These
results were in accordance with previous studies, showing a
decrease in the estimated genetic variance and heritabilities for
predicted milk proteins compared to measured traits (Rutten
et al., 2011; Bonfatti et al., 2017), and are essentially due to the
low rC_LAB values obtained for these traits.

Reliability of Calibrations and Genetic
Correlation Between Measured and
Predicted Traits
To assess the reliability of calibration equations in the animal
breeding context, we estimated, besides the rC_LAB, the ra between
LAB and FIELDlact1 traits as an indicator of the potential of FTIR
calibrations to provide novel phenotypes for indirect selective
breeding. Results are displayed in Figure 2. The rC_LAB ranged
from 0.571 (kSR) to 0.953 (total CN). In general, estimates of ra
for milk coagulation and cheese-making traits were high (>0.75),
except for kCF and kSR which displayed moderate-high estimates
(>0.60). On the other hand, only two milk proteins showed
ra smaller than 0.6: αS1-CN (0.396) and αS2-CN (0.535). These
two traits were those with the lowest rC_LAB among all traits
tested (Table 4: 0.598 and 0.623, respectively). This means that

expected genetic gain using these two predicted milk proteins
would be moderately lower, compared to that achievable for the
other traits. These results were in accordance with Bonfatti et al.
(2017) which found high ra for milk protein content but lower
ra for percentage traits (0.58, on average). On the other hand,
Rutten et al. (2011) reported greater ra values compared to those
in our study (0.62–0.97), which might be ascribed to differences
in population (breed, size) and/or in the analytical technique
used for milk protein investigation (capillary electrophoresis vs.
HPLC). The reliability of calibration rC_LAB was associated with
the decrease in genetic variance between LAB and FIELDlact1
traits (R2 = 0.45). In particular, lower rC_LAB corresponded
to larger decrease in genetic variance (Figure 3A). A weaker
relationship was observed between rC_LAB and the decrease in
residual variance (R2 = 0.09, data not reported in Figures).
A positive relationship (R2 = 0.26) was observed between rC_LAB
and ra: a higher reliability of the calibration model corresponded
to a higher additive genetic correlation between the LAB-
measures and FIELDlact1 predictions (Figure 3B). Beyond this
correlation, it is worth noting from Figure 2 that 22 out of 30
investigated traits presented genetic correlations greater than the
reliability of calibration (ra > rC_LAB). So, even calibrations with
a relatively small predictive ability could be exploited in selective
breeding, if their ra between measured and predicted traits is
sufficiently high.
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FIGURE 3 | Relationships between the coefficient of correlation of calibration
models (rC_LAB) used for infrared prediction and (A) the change in additive
genetic variance (1σ2

a ) and (B) the additive genetic correlation (ra) between
LAB measures and FTIR predictions.

Single-Step GBLUP Prediction Accuracy
by Cross-Validation
Table 5 and Supplementary Figure S1 report the results for
the cross-validation performed in order to compare different
phenotyping strategies. The cross-validation mimicked the
progeny testing scheme, where the LAB phenotypes of testing
sires were predicted based on LAB phenotypes from daughters of
proven bulls and FIELD information from daughters of proven
and progeny testing bulls. Results are presented as the average of
the prediction accuracy for the fourfold of sires. For the scenarios
that included FIELD information, results in Table 5 show the
largest predictive ability obtained within the range of genetic
correlation values tested, which is also reported in Table 5. The
change in prediction accuracy for each trait over the values of
genetic correlation is reported in Supplementary Figure S1.

Prediction With LAB Information
In the LAB.t scenario, daughters of progeny testing bulls are
not phenotyped and FIELD information is not included and
the genetic evaluation is based on a single-trait model. The
predictive ability for the different traits followed, to a large
extent, the trait heritability (Figure 1). Among MCP traits,
RCT showed the highest accuracy (0.118), with the other traits
showing almost null values. For CF traits, only RCTeq, kCF ,
and tmax showed values of accuracy above 0.10. CFp and Cmax
showed null values, which is in agreement with the low (∼0.1)
heritability estimates. Optigraph traits showed a different trend,

with RCT reporting the strongest prediction accuracy (0.168)
but not the largest heritability. Prediction accuracies were below
0.1 for all CY traits, for which heritability estimates barely
reached the value of 0.2. Prediction accuracy was largest for
RECPROTEIN among recovery traits, and its heritability estimate
was the largest in the group (∼0.55). A similar scenario was found
among casein fractions, where whey proteins, β-LG, and β-CN
showed one of the strongest prediction accuracies (0.208, 0.187,
and 0.153, respectively) and the largest heritability (above 0.50).
Surprisingly, αS1-CN showed a strong predictive ability (0.165),
yet not the largest heritability estimate (∼0.50). Prediction with
only LAB information can be considered unreliable from a
genetic evaluation standpoint, given the limited size of the dataset
and the relative cost needed to acquire each single record.
However, this scenario was included as a reference for the other,
more reliable, models.

Prediction When LAB and FIELD Information Is
Included
The LAB.t+FIELD.t scenario mimics a genetic evaluation where
both LAB and FIELD information of proven bulls is included.
The comparison with the LAB.t scenario proves the value of
including FIELD.t information, which highlights the importance
of the construction of FTIR calibration equations and the
collection of data at the population level on daughters of proven
bulls. Still, the genetic merit of bulls can be predicted at birth
under this scenario. The genetic evaluation leverages a bivariate
model. Overall, prediction accuracy showed a strong increase,
compared to the previous scenario. The largest increases in
prediction accuracy were observed for curd firming traits, with
MCP k20, a30, and a45 having prediction accuracies of 0.208,
0.190, and 0.181, respectively (compared to null accuracies in
LAB.t); Optigraph a30 prediction accuracy increased from 0.037
to 0.242; and CFp increased from 0.038 to 0.235. Among protein
composition traits, κ-CN increased from 0.051 to 0.330, while
αS1-CN did not increase (being the only trait not showing any
increase). For all the abovementioned traits that showed an
increase, the optimal value of genetic correlation appeared to
be 0.9, which corroborates the relevance of FIELD information
for accurately predicting LAB breeding values and phenotypes.
The values of correlation for the calibration model used for
infrared prediction (rC_LAB) and additive genetic correlations
(ra) estimated from the data were large for these traits but not
the largest found.

The LAB.t+FIELD.t+FIELD.v scenario mimicked a genetic
evaluation based on a progeny testing scheme, which implies
the collection of FTIR spectra information on the daughters of
progeny testing bulls (FIELD.v). Here, genetic merit of bulls
cannot be estimated at birth but collection of FIELD phenotypes
is needed as in traditional progeny testing. As compared to a
previously discussed scenario, the advantage of the FIELD.v data
seemed marginal, showing a maximum of 1.2-fold increase and
often a decrease in prediction accuracy. Traits that benefited the
most were OPT k20 (from 0.250 to 0.302), CYWATER (from 0.203
to 0.242), and casein proportion (from 0.198 to 0.230). Traits
that did not show an increase were αS2-CN, whey proteins, α-LA,
and β-LG.

Frontiers in Genetics | www.frontiersin.org 11 September 2020 | Volume 11 | Article 563393

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-563393 September 28, 2020 Time: 13:33 # 12

Cecchinato et al. Infrared Milk Spectra and Genetic Improvement

TABLE 5 | Best-performing model in terms of accuracy (acc) for each of the scenarios studied. The values in bold indicate the best performing scenario (in terms of
accuracy) for each trait.

Trait2 LAB.t1 LAB.t + FIELD.t LAB.t + FIELD.t + FIELD.v FIELD.t FIELD.t + FIELD.v

acc ra acc ra Acc ra acc ra acc

Traditional MCP

RCT, min 0.118 0.9 0.285 0.9 0.322 0.9 0.285 0.9 0.321

k20, min 0.016 0.9 0.208 1.0 0.227 0.9 0.212 0.4 0.233

a30, mm 0.032 0.9 0.190 0.9 0.212 0.8 0.193 0.9 0.215

a45, mm 0.027 0.9 0.181 0.9 0.192 0.9 0.184 0.9 0.196

Curd firming

RCTeq, min 0.102 0.9 0.286 0.9 0.319 0.9 0.286 0.9 0.312

CFp, mm 0.038 0.9 0.235 0.9 0.258 0.9 0.236 0.9 0.262

kCF , % × min−1 0.104 0.7 0.217 0.8 0.236 0.1 0.200 1.0 0.249

kSR, % × min−1 0.093 0.6 0.189 0.6 0.204 0.2 0.176 0.2 0.216

Cmax , mm 0.038 0.9 0.224 0.9 0.249 0.9 0.225 0.9 0.258

tmax , min 0.112 0.9 0.233 0.9 0.269 0.9 0.223 0.9 0.265

Optigraph

RCT, min 0.168 0.9 0.283 0.9 0.315 0.8 0.283 0.8 0.316

k20, min 0.053 1 0.250 1.0 0.302 0.9 0.248 1.0 0.296

a30, mm 0.037 0.9 0.242 0.9 0.262 0.9 0.257 0.9 0.274

a45, mm 0.060 0.9 0.331 0.9 0.350 0.9 0.325 0.9 0.346

Acidity

pH 0.113 0.7 0.221 0.6 0.225 0.3 0.227 0.3 0.236

Cheese yields, %

CYCURD 0.070 0.9 0.296 0.9 0.317 0.8 0.298 0.9 0.315

CYSOLIDS 0.088 0.9 0.348 0.9 0.362 0.9 0.343 0.9 0.331

CYWATER 0.076 0.9 0.203 0.9 0.242 0.9 0.198 0.9 0.249

Recoveries, %

RECPROTEIN 0.147 1 0.340 1 0.365 1 0.329 1 0.362

RECFAT 0.078 0.9 0.192 0.9 0.193 0.9 0.192 0.9 0.182

RECSOLIDS 0.071 0.9 0.376 0.9 0.377 0.8 0.376 0.9 0.345

RECENERGY 0.103 0.9 0.343 0.9 0.358 0.9 0.343 0.9 0.334

N fractions, % total milk N

Caseins 0.036 0.9 0.198 1 0.230 0.9 0.200 1 0.204

β-CN 0.153 0.9 0.297 0.9 0.308 0.2 0.287 0.9 0.284

κ-CN 0.051 1 0.307 1 0.330 1 0.296 0.9 0.280

αS1-CN 0.165 0.1 0.164 0.1 0.165 0.8 0.055 0.8 0.061

αS2-CN 0.099 0.6 0.170 0.6 0.159 0.5 0.146 0.6 0.123

Whey proteins 0.208 0.7 0.243 0.5 0.238 0.9 0.206 0.9 0.244

β-LG 0.187 0.5 0.224 0.5 0.224 0.9 0.206 0.9 0.254

α-LA 0.054 0.9 0.140 0.9 0.137 0.5 0.133 1 0.154

1The value of genetic correlation was implicitly considered equal to 0 in the LAB.t scenario. 2RCT = rennet coagulation time; k20 = curd firming rate as the time to a curd
firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet coagulation time estimated using the equation; CFP = asymptotic potential
curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at
achievement of CFmax ; %CYCURD = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk
processed; %CYWATER = weight of water curd as percentage of weight of milk processed; RECPROTEIN = protein of the curd as percentage of the protein of the milk
processed; RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of the milk processed;
RECENERGY = energy of the curd as percentage of energy of the milk processed. 1True protein nitrogen (N) and milk N fractions are expressed as percentage of total milk
N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2-CN (αs2-casein); caseins: 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin),
and whey proteins: 6(β-LG+ α-LA).

Prediction When LAB Information Is Not Included
Scenarios FIELD.t and FIELD.t+FIELD.v mimic a breeding
scheme where LAB information is not included in the genetic
evaluations. Still, LAB information is used to obtain FTIR
phenotype prediction equations. The underlying model is a

bivariate model that produces LAB breeding values, although
LAB records are not included. Comparing the LAB.t+FIELD.t
scenario to the FIELD.t scenario allows the evaluation of the
contribution of LAB information when FIELD information is
recorded on the daughters of proven bulls. Here, differences were
negligible, except for αS1-CN that showed a dramatic decrease
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from 0.165 to 0.055 when LAB information was removed. This
is due to the low quality of the calibration model used for FTIR
predictions (rC_LAB = 0.60 and ra = 0.40). The comparison of
the LAB.t+FIELD.t+FIELD.v scenario to the FIELD.t+FIELD.v
allows us to further prove the value of LAB phenotypes when
FIELD information is also recorded in daughters of progeny
testing bulls. Again, changes were negligible for most traits,
confirming the low relevance of LAB information when solid
FTIR calibration equations are used. The relevance of FIELD.v
information is assessed in the comparison of FIELD.t and
FIELD.t+FIELD.v, when LAB information is absent. While the
increase was negligible in the presence of LAB information
(maximum of 1.2-fold increase in accuracy), in this case the fold
increase reached 1.25 with several traits being about 1.1. This
supports the hypothesis that progeny testing could be beneficial
for most traits, but probably the gain in accuracy would not
match the cost of delaying the candidate bull’s evaluation. It
should be considered that generation interval can be dramatically
reduced when FIELD.v information is omitted, compromising
prediction accuracy, but probably not sufficiently to justify
progeny testing cost.

Best Performing Scenario in Terms of Prediction
Accuracy
With the exception of αS1-CN, which showed a poor FTIR
calibration equation, all traits showed an advantage in the
inclusion of FIELD information, supporting the need for
well-constructed calibration equations that allow us to obtain
predicted phenotypes at the population level. Furthermore, an
increase in prediction accuracy was found with the inclusion
of FIELD.v information rather than just FIELD.t, either with
or without the presence of LAB.t phenotypes. Scenarios that
included all FIELD information outperformed scenarios that just
included FIELD.t, with the exception of αS2-CN. This would lead
to further speculation on the need for conducting progeny testing
for new bulls, but the gain in accuracy of prediction is probably
not translated into gain in genetic progress due to increased
generation interval. It should also be noted that for some traits,
i.e., k20, kCF , kSR, βCN, pH, αS1-CN, and α-LA (not necessarily
those with low FTIR prediction accuracy), the trend of prediction
accuracy over the values of assumed genetic correlation was
sometimes null if not negative.

Despite the large number of traits involved, this study does
not allow us to declare a breakeven value for any genetic
parameter that would serve to predict the value of FIELD vs.
LAB information. The only trait that did not benefit from FIELD
information happened to be αS1-CN, for which the quality of
the FTIR calibration equation was particularly low, followed
by the low FIELD heritability and low genetic correlation with
LAB measures. All other traits benefited from the inclusion
of FIELD information and the accuracy gained with FIELD
information greatly depended on the genetic correlation between
LAB and FIELD traits. Nonetheless, it was not possible to declare
a breakeven value of genetic correlation which deemed the use
of FIELD information advantageous. Breakeven values of genetic
correlations for indicator traits were found to be 0.5 by Calus and
Veerkamp (2011), who studied genomic selection performance

under multi-trait scenarios, and 0.7–0.8 by Mulder and Bijma
(2007) who studied the impact of genotype by environment
interactions in breeding programs. Given that this study based
on field data, there could be more factors affecting the value of
indicator traits in genomic prediction. Further research is needed
in order to explore all potential contributions.

CONCLUSION

The present study reported two approaches for assessing the
contribution of FTIR calibration equations at the population level
for dairy cattle breeding. With the first approach, results indicate
that FIELD predictions can be used in breeding programs for
the genetic improvement of difficult-to-measure traits and that
indirect selection for FIELD predictions will provide satisfactory
responses. With the second approach, for the first time we
highlighted the utility of FTIR predictions for breeding purposes
using real data to simulate different genetic evaluation scenarios,
where FTIR-derived phenotypic information is dosed into
(single-step) GBLUP to predict wet-lab measured performance
of daughters of progeny testing bulls. Collection of FIELD
measures for progeny testing bulls appears to be advantageous for
increasing the predictive ability for most of the traits studied, but
the increase in generation interval due to progeny testing does
not justify the increase in prediction accuracy. LAB information
from proven bulls’ daughters could be included in the genetic
evaluations without a detrimental effect. As there is no evidence
of a clear advantage to including FIELD information for progeny
testing bulls, progeny testing schemes could be replaced by the
construction of robust calibration equations together with more
vast collection of FIELD measures on daughters of proven bulls.

In general, the increase in predictive ability observed with the
inclusion of FIELD information is very favorable and reaches
moderate values for 12 traits. While further research is needed in
the modeling of FTIR-predicted data, results are promising. Once
calibration equations are developed, the cost of collecting FIELD
is virtually null, provided that routine spectra acquisition within
milk recording schemes is performed and available for breeders.
Yet, the cost of developing robust calibration equations should be
factored into the total cost of implementing (genomic) selection
that includes FIELD data. Thus, an economic analysis should be
performed before progressing its use in breeding programs for
difficult-to-measure traits.
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