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Trypanosoma cruzi, the causative agent of Chagas disease, colonizes the gut of triatomine insects, includ-
ing Rhodnius prolixus. It is believed that this colonization upsets the microbiota that are normally present,
presumably switching the environment to one more favorable for parasite survival. It was previously
thought that one particular bacterium, Rhodococcus rhodnii, was essential for insect survival due to its
ability to produce vital B-complex vitamins. However, these bacteria are not always identified in great
abundance in studies on R. prolixus microbiota. Here we sequenced the microbiota of the insect anterior
midgut using shotgun metagenomic sequencing in order to obtain a high-resolution snapshot of the
microbes inside at two different time points and under two conditions; in the presence or absence of par-
asite and immediately following infection, or three days post-infection. We identify a total of 217
metagenomic bins, and recovered one metagenome-assembled genome, which we placed in the genus
Dickeya. We show that, despite Rhodococcus being present, it is not the only microbe capable of synthe-
sizing B-complex vitamins, with the genes required for biosynthesis present in a number of different
microbes. This work helps to gain a new insight into the microbial ecology of R. prolixus.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Trypanosoma cruzi is a protozoan parasite that colonizes the
digestive tract of triatomine insect vectors (Reduviidae: Triatomi-
nae) [1]. The parasite is responsible for causing Chagas disease,
an illness that affects several million people worldwide, predomi-
nantly in Latin America. The insect hosts are generally nocturnal
feeders, that defecate following feeding. The parasite is excreted
in the insect faeces and may enter the bloodstream through the
bite wound [1,2]. Recent evidence also suggests that food contam-
inated with faeces or urine is increasingly responsible for infection,
where ingested parasite is sufficient to cause an acute phase of dis-
ease [3,4].

Colonization of the triatomines by the parasite results in
antimicrobial peptide (AMP) production in as little as two hours
post-feeding, ultimately leading to a decreased bacterial load.
These changes in the microbiota presumably render the gut ecol-
ogy more favorable for the parasite to replicate [2,4]. To date, sev-
eral studies have investigated the community composition of
triatomines following parasite colonization. These studies have uti-
lized various methods including denaturing gradient gel elec-
trophoresis [5,6], RADseq [7] and 16S amplicon sequencing [8–
15]. Results from these studies vary, with some suggesting as
few as 20 species make up the community composition [6], while
others demonstrate a much higher diversity, despite having clearly
dominant members of the microbiota, such as Pectobacterium in R.
prolixus and Arsenophonus in the Triatoma brasiliensis complex [8].
No consensus has yet been found regarding microbial members of
a ‘‘core” community. It is therefore difficult to understand the role
of the microbiota with respect to Trypanosoma infection and tri-
atomines in general. One further obstacle is the fact that the blood
meal significantly alters the microbiota in triatomines, a detail fur-
ther complicated by observed differences between male and
female insects [9].
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Next generation sequencing techniques and their application on
triatomines have highlighted the diversity of bacteria associated
with different species of triatomine and across different labs. In
fact, dominant symbionts can include members of the Proteobacte-
ria, Actinomycetes or Bacilli [5–11]. What has yet to be determined
is the genetic capabilities that are afforded by the individual
microbes, which may account for the observed diversity. Early
studies indicated, for example, that B-complex vitamins were an
essential contribution of the microbiota and, in Rhodnius prolixus,
these vitamins are purportedly supplied by the bacterium,
Rhodococcus rhodnii [12]. However, it has not yet been closely
investigated whether other associated microbes also contribute
to essential metabolic processes.

To address the above supposition, we investigated the changes
that occur in the microbiome of the R. prolixus anterior midgut
three days post-feeding, by using shotgun metagenomic sequenc-
ing. This is the first instance of such a study in triatomines with
respect to T. cruzi infection and we provide insight into the coding
sequence potential of those organisms that are present following
parasitic exposure compared to uninfected controls.
2. Methods

2.1. Ethics statement

All experiments were performed in accordance with guidelines
on animal experimentation from FIOCRUZ, adhering to all Brazilian
legislation regarding animal welfare. Protocols were based upon
procedures set out by The Ministry of Science and Technology
(CONCEA/MCT) associated with the American Association

for Animal Science (AAAS), the Federation of European Labora-
tory Animal Science

Associations (FELASA), the International Council for Animal
Science (ICLAS) and the Association for Assessment and Accredita-
tion of Laboratory Animal Care International (AAALAC). Ethical
approval under license number LW-8/17 was approved by the
Committee for Ethics in the Use of Animals, CEUA-FIOCRUZ.
2.2. Insect rearing and dissection

Nymphs used in this study came from a colony maintained at a
temperature of 25 ± 1 �C, 60 ± 10% relative humidity and natural
illumination by the Vector Behaviour and Pathogen Interaction
Group, Belo Horizonte, Brazil. Insects are fed monthly with citrated
rabbit blood (10% v/v/) obtained from the Centro de Criação de Ani-
mais de Laborató rio (CECAL, Fiocruz, Rio de Janeiro, Brazil) offered
in an artificial feeder equipped with a latex membrane and a circu-
lating heated water flow (37 �C), and chicken anesthetized with
intraperitoneal injections of a mixture of ketamine (20 mg/kg;
Cristália, Brazil) and detomidine (0.3 mg/kg; Syntec, Brazil).

For infection with T. cruzi, a SWR/J mouse was inoculated with
200 ml of triatomine urine containing ~ 5x104 metacyclic trypo-
mastigotes/ml from Dm28c strain. The strain was originally iso-
lated from naturally infected opossum and kept in laboratory
culture. The parasites were cultured by two weekly passages in
liver-infusion tryptose (LIT) supplemented with 15% fetal bovine
serum, 100 mg/ml streptomycin and 100 units/ml penicillin. To
prevent loss of activity, parasites were submitted to cycles of
triatomine-mice infection every six month. Nine days post-
infection, the mouse was anesthetized with ketamine (150 mg/
kg; Cristália, Brazil) and xylazine (10 mg/kg; Bayer, Brazil) and
the presence of parasite was confirmed by light microscopy. The
mice were then offered to R. prolixus fifth instar nymphs in the
early morning, which had fasted for approximately 30 days.
Nymphs in the same physiological conditions were fed on an anes-
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thetized healthy mouse and used as a control group. Nymphs were
fed for the same amount of time and we proceeded on the assump-
tion that small differences in blood taken would not affect results
in a major way since samples from each treatment group were sub-
sequently pooled.

Insect gut sections were segregated using a dissecting micro-
scope (Motic, SMZ-168) and sterile instruments immediately after
feeding (approx. 5 to 15 min) and three days post-feeding. This
time point was chosen because the transformation of the infectious
trypomastigote stages of T. cruzi into epimastigote stages, which
only occur in the invertebrate hosts, begins as early as a few hours
after infection [13]. Three days after the bloodmeal, the coloniza-
tion should therefore be well established. In total, twelve triatomi-
nes were prepared for DNA extraction. Three anterior midguts
from exposed nymphs were combined immediately after feeding
as well as three anterior midguts from unexposed insects. This sec-
tion of the intestine was chosen because there is reportedly a
higher antimicrobial activity than in the posterior midgut [4].
The same was done three days post-feeding resulting in the four
samples ‘T. cruzi infected blood time point 00 (TcInfT0), ‘T. cruzi
infected blood time point 30 (TcInfT3), ‘T. cruzi control time point
00 (TcContT0) and ‘T. cruzi control time point 30 (TcContT3). By
combining the anterior midguts of several individuals, enough
intestinal DNA material could be obtained for the shotgun metage-
nomic sequencing.

2.3. DNA extraction and sequencing

Following dissection of R. prolixus, DNA of the four samples,
each with three pooled anterior midguts, was extracted using the
AllPrep DNA/RNA minikit (Qiagen) following the manufacturer’s
recommendations. Purified DNA was shipped to Novogene and
four libraries, one for each sample, were prepared by Novogene.
Sample preparation was done using the NEB UltraII DNA library
preparation kit with four amplification cycles. Paired-end
(150 bp) sequencing was performed on an Illumina NovaSeq6000
instrument.

2.4. Sequence analysis

Raw reads of all samples were trimmed using Trimmomatic
(v0.33) [14] to remove low quality bases and reads lacking a pair
using the following settings: ILLUMINACLIP:TruSeq3-PE.fa:2:30:1
0 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. For
taxonomic classification, reads were uploaded to the Kaiju[15]
web server. Results were downloaded and processed according to
scripts available at https://github.com/ntobias-85/metagenome-
csbj-2020. Trimmed reads were filtered against the R. prolixus gen-
ome (GCA_000181055.3) using bowtie2 (v2.2.5) [16] and the –un-
conc option to keep only reads not mapping to the reference. Reads
not mapping to R. prolixus were used to generate a co-assembly of
all four samples with megahit (v1.1.4) [17] with the --kmin-1pass
option activated. Individual samples were then independently
mapped to the co-assembly to generate bam files using bowtie2
(v2.2.5) and samtools (v1.2) [18]. In this way, sample-specific
information such as the relative abundance of sequences from each
bin can be determined.

Anvi’o is a bioinformatic package designed to streamline
metagenomic workflows. The co-assembly of the four samples
was used to generate a contig database in anvi’o (v5.1) [19], which
includes annotation of open reading frames using Prodigal (v2.6.3)
[20] as a built-in function. Anvi’o was further used to run hidden
Markov models to identify single copy gene collections (anvi-
run-hmms) and annotate NCBI COGs (anvi-run-ncbi-cogs). COGs
(Clusters of Orthologous Groups) represent families of orthologous
protein-coding genes which can be used to study microbial phy-
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logeny and genome annotation. Taxonomy for genes was added by
using centrifuge (v1.0.2) [21] and importing the output into the
contig database using the script anvi-import-taxonomy-for-
genes. Profiles for each single sample were generated, removing
all contigs less than 2,500 nucleotides. Finally, the profiles were
merged with the anvi-merge command, which includes an auto-
matic binning step with CONCOCT [22]. Amino acid sequences
for each gene were exported from the contig database and used
as input in the GhostKOALA webserver. The output was parsed
back into the contig database using the KEGG-to-anvio script, fol-
lowed by anvi-import of the resulting output. The automatic bin-
ning was manually inspected and refined based on predicted
taxonomy, including blastx searches of annotated genes, read cov-
erage and GC-content of contigs. The pangenomic analysis [23] was
carried out using anvi’o with settings --minbit = 0.5; --mcl-
inflation = 10 and --use-ncbi-blast activated.

For phylogenetic analyses, genomes were downloaded from
NCBI and converted to contig databases using the ‘anvi-script-FA
STA-to-contigs-db’ script. The program ‘anvi-get-sequences-for-h
mm-hits’ was then used to extract ribosomal RNA sequences com-
mon among all downloaded genomes and the respective metage-
nomic bin. Ribosomal proteins were extracted from the database
with --concatenate activated. Concatenated protein sequences
were then imported into Geneious v6.1.8 and a maximum likeli-
hood tree was constructed with 100 bootstraps using PhyML[24]
(version 3.0).
2.5. KEGG analysis

The output from GhostKOALA was used as input for KEGG_de-
coder (Kyoto Encyclopedia of Genes and Genomes) [25] and subse-
quently KEGG_encoder, which uses hidden markov models to
incorporate some further processes. The outputs were then com-
bined with the python script, Decode_and_Expand.py [25], gener-
ating a heatmap of all processes identified for each sample.
3. Results and discussion

3.1. Microbial populations of the R. prolixus anterior midgut

Studies on the microbiome of R. prolixus have so far predomi-
nantly profiled bacterial species using the 16S rRNA. Results show
that there is little intra-individual diversity associated with the
microbiota and insects are often dominated by a single group of
organisms [8,26]. In the case of Rhodnius spp., these are especially
Enterobacteria, such as Pectobacteria and Serratia [6,8,31]. Further-
more, the Actinobacteria Rhododcoccus, is found not only in Rhod-
nius, but also in other triatomine genera such as Triatoma
[11,32,33]. One consequence of only investigating 16S rRNA is that
interactions between the insect, fungi, viruses and even other par-
asites that may be present are totally excluded from analysis.
Moreover, bacterial species often possess multiple copies of 16S
rRNA genes making a reliable quantification difficult [34]. Another
drawback is that sequences can only accurately be assigned to
higher level taxonomies, with some difficulty to obtain resolution
between species. Nevertheless, 16S amplicon sequencing has sev-
eral advantages. A large and comprehensive reference database is
available facilitating the detection of rare taxa. Additionally, it is
significantly cheaper than metagenomic shotgun sequencing and
the lower data output is easier to process with regard to bioinfor-
matic pipelines and computational capacity. 16S rRNA amplicon
sequencing is therefore highly suitable for taxonomic analysis
approaches, such as community composition studies.

Given the advances in sequencing technology and the desire to
more fully understand the microbial ecology of triatomine midgut
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at high-resolution, we proceeded to use metagenomic shotgun
sequencing to analyze the anterior midgut of R. prolixus under four
different conditions (described in methods). Sequencing resulted in
a total 145,812,112 clean reads (TcContT0: 34,750,241 (10.4 GB),
TcContT3: 47,062,804 (14.1 GB), TcInfT0: 33,499,209 (10.1 GB)
and TcInfT3: 30,499,858 (9.2 GB) for further analysis. To begin
with, we used Kaiju [15], which directly BLASTs each read pair
against the non-redundant nucleotide database, to profile the com-
position of microbial communities associated with our samples
using the paired end input option for each sample (raw data is
available from the European Nucleotide Archive under accession
number PRJEB33861). This was done initially to determine the
number of raw reads that could be directly attributed to any given
organism. Our analysis suggests that, apart from bacterial DNA, a
large part of the DNA originates from a mixture of fungi, viruses,
parasites and other eukaryotic sequences (Supplementary Fig. 1).
We also detected an increase in the proportion of bacterial DNA
after the blood meal. This is probably due to the increased supply
of nutrients and has been observed several times before [4,8]. One
key difference to keep in mind between this and other studies is
the fact that here, we have used a more natural approach to infec-
tion, feeding triatomines on mice infected with triatomine urine
(with or without parasite), as opposed to other studies that tend
to use a significantly higher parasitic load for infection experi-
ments. One final difference is the way in which our bacterial taxon-
omy was initially determined. We used kaiju from samples
originating from the anterior midgut, where the majority of other
studies instead use 16S amplicon sequencing from the hindgut
(or directly on faeces). Despite these differences, we do see some-
what similar results to previously published work in that there is a
moderate proportion of Actinobacteria, Proteobacteria and Firmi-
cutes identified in the samples (Supplementary Fig. 2) [5,7–
11,27–32]. However, the dominant order in our experiment is
Chlamydiales, possibly indicative of a dominant microbe in the
insect colony used. To more directly compare taxonomic classifica-
tion of sequencing data with previous works, future experiments
should include an additional 16S amplicon sequencing analysis
on the same sample used for shotgun sequencing.

3.2. Metagenome assembly and annotation

We were primarily interested in the gene content of the micro-
biota present in the anterior midgut of R. prolixus. Therefore, initial
filtering of our reads was performed against the R. prolixus genome
to remove all sequences mapping to the insect DNA. Since the
insects originated from the same colony, we predicted that their
microbiomes would be relatively similar. We therefore performed
a co-assembly with the remaining reads. Co-assembly involves
using all available sequence data to get the best assembly possible.
The individual samples are then mapped back to this co-assembly
to obtain sample specific coverage details. Combining all four sam-
ples using megahit, resulted in an assembly containing a total of
480,315 contigs larger than 1,000 bp (max 152,936 bp, average
2,302 bp, N50 2,496 bp). For the annotation, only contigs with
2,500 bp or more were kept (max 152,936 bp, average 6,481 bp,
N50 19,857 bp). This cutoff was chosen to ensure a meaningful sig-
nal of sequence composition and coverage for subsequent binning
steps. The annotation resulted in a total of 357,390 gene calls. Sup-
plementary annotation with the KEGG database allowed us to map
the presence or absence of individual pathways to each sample. We
then utilized this data to define samples that contained enriched
pathways, relative to all other samples. The KEGG decoder and
expander script [25] utilizes a hidden Markov database to identify
and fill false-negative gaps in pathways that appear incomplete.
Based upon this, we screened 162 individual pathways, most of
which contained little to no difference between samples. Minor



Fig. 1. Coassembly of metagenomic sequencing samples from anterior midguts of triatomines fed uninfected blood immediately after feeding (TcContT0) or 3 days post-
feeding (TcContT3) or infected blood immediately following feeding (TcInfT0) or after 3 days (TcInfT3). In total 217 metagenomic bins were detected (each node on the
central tree). The inner four layers represent the relative abundance of sequence in each sample. Layers labeled with vitamin B highlight those metagenomic bins that contain
at least one enzyme annotated as being a part of the pathway of the respective vitamin B biosynthesis. Any bins containing 3 or more orthologs are highlighted in the
heatmap, with numbers representing the number of orthologs in a given pathway. A full overview can be seen in Supplementary Fig. 7. Also labeled is MAG_NJT_1, a member
of the Dickeya genus and TcAA_NJT_2, a Rhodococcus.
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differences could be identified between time point 0 and time
point 3 such as in nitrate reduction pathways (Supplementary
Fig. 3), but we expect differences would be more evident when
including a greater number of samples.

Annotations were useful in refining the automatic binning out-
put from CONCOCT. Although binning algorithms perform well in
most cases, manual refinement is still necessary to ensure the
accuracy of contig groupings. In total 217 bins were identified that
were unrelated to R. prolixus. One draft metagenome-assembled
genome (MAG), MAG_NJT_1, was recovered from the genomic bins,
which was preliminarily identified as being from the Dickeya genus
(more details below). Since Rhodococcus is reportedly an essential
symbiont of R. prolixus [33], we also searched for bins containing
predominantly Rhodococcus sequence (Fig. 1, annotated with the
bin name ‘‘TcAA_NJT_2”).

Our experiment consisted of DNA samples extracted from either
exposed or unexposed insects immediately after feeding and three
days post-feeding. We expected that the two samples at time point
zero should be similar, while we may see differences between
exposed and unexposed samples after three days. For the most part
this is true, although the differences associated with three-day
time points is limited to just a handful of bins (Fig. 1). We also
expected to see changes after three days due to the increase in
the expression of various AMPs during this time [2]. However,
we saw relatively few differences in the overall relative abun-
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dances of microbial profiles between exposed and unexposed (Sup-
plementary Table 1). This may be in part due to the different
infection strategy that we utilized (outlined above). The parasite
load in this experiment was low, which increases the possibility
of a lack of response and may partly explain unexpectedly few dif-
ferences between the control group and challenged insects.
Although further experiments are required to confirm the veracity
of our hypothesis, it is possible that microbial changes reported to
be associated with parasite entering the insect gut may be, at least
in part, due to a higher parasitic load than would naturally occur.
Despite this, we observed an increase in sequences derived from
MAG_NJT_1, and two other bins (Bin_22_4 and Bin 22_1_1) as well
as a decrease in TcAA_NJT_2, which we suspect is Rhodococcus
(Supplementary Fig. 4). Eichler and Schaub (2002) also identified
such a decrease of Rhodococcus after the blood meal, but the
amount of the bacteria recovered quickly and exceeded the start-
ing level after a few days [34]. These differences could be associ-
ated with the differential effects of AMPs against different
bacterial species [2], yet still raises the question of the importance
of Rhodococcus at this time point. Aposymbiotic Rhodnius prolixus,
which fail to develop beyond the second larval stage, regenerate
when fed with blood containing Rhodococcus [35]. However, since
other bacterial symbionts have never been examined in this way, it
cannot be determined whether they would have a similar remedy-
ing effect.



Fig. 2. Pangenomic analysis of 15 Dickeya species together with MAG_NJT_1. The phylogeny on the right represents a maximum likelihood analysis based on the amino acid
sequences of 50 randomly selected single-copy core genes (SCG, all SCGs are highlighted in the outermost ring). Comparative statistics on the right represent the respective
ring for each genome used in the analysis. Order of genes are based on gene cluster frequencies.

N.J. Tobias, F.E. Eberhard and A.A. Guarneri Computational and Structural Biotechnology Journal 18 (2020) 3395–3401
3.3. Presence of B-complex vitamin biosynthesis pathways

Early research into R. prolixus microbiota provides a narrative
that R. rhodnii are essential symbionts in triatomine biology [12]
and in the absence of these symbionts, the insects fail to moult
[36,37]. Deliberation of this point includes arguments that the bac-
teria are used as a food source themselves, with bacterial lysis sup-
plying required nutrients, as well as strong supporting evidence for
the role of B-complex vitamins and their production by the
Rhodococcus

[37]. Many of these studies were performed several years ago
(as early as 1936) and include culture-dependent methodologies.
In recent years however, several groups have revisited triatomine
microbiomes, with 16S amplicon sequencing emerging as the pre-
ferred method for investigations of bacteria.

Amplicon sequencing consistently demonstrates that R. rhodnii
are not the only bacterial species present, nor are they regularly
the dominant bacteria. Others have demonstrated that dominant
symbionts include Actinobacteria (of which Rhodococcus is a mem-
ber) [11], Serratia [6], Pectobacterium [8] and Arsenophonus
[6,26,28], which has already been shown to serve as a source of
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B-vitamins in whiteflies[38]. Furthermore, in other obligate hae-
matophagous insects, symbioses with various B-vitamin producing
bacteria have been detected. The Gammaproteobacteria Wig-
glesworthia spp. is regarded as the main vitamin B provider of
the tsetse fly, the aetiological agent of the African trypanosomiasis
and Riesia spp. seems to be indispensable for Pediculus humanus
humanus, the human body louse. A lack of these symbionts often
results in development retardation and a decrease in fecundity
[37,38]. Given this conflicting evidence, we decided to explore
the B-vitamin biosynthesis capabilities of the microbiota identified
in our study. We extracted all of the gene calls from the co-
assembly and uploaded them to GhostKoala to annotate each of
our putative coding sequences with KEGG ontology (KO) numbers.
Based on the KEGG pathways, we were then able to extract any
gene call with a KO number from each of the eight different vita-
min B pathways (see Supplementary Table 2 for a list of KO num-
bers used for each biosynthetic pathway). Unexpectedly, we see
that enzymes involved in B-complex vitamin biosynthesis are pre-
sent in a number of different organisms present within the micro-
biota (Fig. 1). Therefore, the provision of vitamin B derivatives
solely by Rhodococcus seems unlikely. Despite this, only two mem-
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bers contained enzymes present in all eight vitamin biosynthetic
pathways. These were TcAA_NJT_2, which is predicted to be
Rhodococcus, and have already been shown to possess vitamin B
biosynthesis genes including: thiamine (B1), riboflavin (B2), niacin
(B3), pantothenate (B5), pyridoxal (B6), biotin (B7), tetrahydrofolate
(B9), and cobalamin (B12) [39]. The second bin containing orthologs
in each of the vitamin B biosynthetic pathways was MAG_NJT_1.
3.4. Identification of the metagenome-assembled genome

A closer look at MAG_NJT_1 reveals an 89.21% completion and
0% redundancy estimate based on the presence of single copy
genes. To identify a likely taxon, we used BLAST to analyze one
of the ribosomal subunits, which suggested the bin originated form
Pectobacterium. Since some Pectobacterium isolates were reclassi-
fied into Brennaria and Dickeya [40], we used concatenated riboso-
mal proteins from a selection of these three genera, which placed
MAG_NJT_1 into the Dickeya genus (Supplementary Fig. 5). Dickeya
are a genus of Gammaproteobacteria that typically cause disease in
plants. Although these phytopathogens are reported to be wide-
spread in insects [41], it is curious that they should be a dominant
taxon in a hematophagous insect. However, this is not the first
time that a bacterium predominantly associated with plants has
been described as a major taxon associated with R. prolixus, with
Methylobacterium identified as the third most abundant microbe
in a North American lab colony of R. prolixus [26]. Nevertheless,
to check for contamination within this bin, we performed a pan-
genome analysis using 15 Dickeya isolates and MAG_NJT_1
(Fig. 2). Excluding MAG_NJT_1, other Dickeya isolates appear to
have approximately twice the number of gene clusters and are
approximately double the length of MAG_NJT_1. Based on this,
we estimate that this bin is in fact approximately 50% complete.
Of the single core genes (SCGs) present in all 16 isolates, 50 were
randomly selected to create a higher resolution phylogeny (Sup-
plementary Fig. 6, Fig. 2). MAG_NJT_1 clustered closely to Dickeya
paradisiaca (formerly Brenneria paradisiaca).

Although it is still likely that B-complex vitamins are essential
to Rhodnius development and survival, our data here show that
B-vitamins can be contributed to the gut ecology by a number of
different microbes. In fact, several of the major bacterial species
reported to be present in R. prolixus gut samples such as Arsenopho-
nus and Methylobacterium [8,26], can also produce vitamin B
derivatives [38,42,43]. We suggest that the apparent extensive
description of Rhodococcus in the early literature may be indicative
of an over-reliance on culture-based methods when in fact many
microbes are (i) present to fulfill the vitamin B biosynthesis and
(ii) are capable of doing so.
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