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Abstract

Background: The study of the genetic structure of Aedes aegypti is essential to understanding their population
dynamics as well as for the analysis of factors responsible for their resistance and ecological adaptation. The use of
molecular markers in identifying differences amongst populations of Ae. aegypti in different geographical areas as
well as the temporal variation of the vector populations has contributed to the improvement of vector control
strategies. The present study aims to determine the genetic variability of Ae. aegypti populations in a small
geographical area (state of Sergipe, Northeastern Brazil) by means of inter-simple sequence repeat (ISSR) and single
nucleotide polymorphism (SNP) molecular markers.

Results: ISSR markers revealed a more heterogeneous pattern of genetic diversity among the populations with an
expected heterozygosity (HE) ranging from 0.261 ± 0.03 to 0.120 ± 0.032, while a similar trend was detected through
SNPs across populations with an HE between 0.375 ± 0.054 and 0.269 ± 0.042. The population’s genetic
differentiation assessed with ISSR and SNP markers indicated a very low structuring among the populations with
the highest diversity observed within the populations 72 % (ISSR) and 92 % (SNP). Clustering analysis also
suggested little variation among populations: the seven populations were grouped into only three ISSR clusters and
a single panmictic group based on SNP markers. The present study identified a close relationship between the
populations, which probably results mainly from passive gene flow between mosquitoes from distinct geographic
regions, influenced by humans commuting along roads.

Conclusions: There was an intense migration of mosquitos across municipalities, leading to a potential increase in
risk of arbovirus and insecticide resistance associated-alleles spreading between mosquito populations.
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Background
Aedes aegypti is a major vector of several human arbovi-
ruses including Yellow fever, Dengue fever, Chikungunya
and Zika virus in several tropical and sub-tropical
countries. In Brazil, the mosquito has been reported in
all states and the number of cities where it is found has
increased with time [1]. The prevalence of this vector is
alarming as it is the main factor related to Dengue fever,
Zika and Chikungunya epidemics. It also reveals the
failure of the current vector control strategy held by the
National Dengue Control Program, based on breeding
site elimination, which has prompted the search for new
control strategies [2–4].
The discovery of genetic markers has facilitated the

following-up of groups of genes or of genome segments
related to a phenotype of interest. Studies based on
biological markers such as isoenzymes, random amplified
polymorphic DNA (RAPD), restriction fragment length
polymorphism (RFLP), single-strand conformation poly-
morphism (SSCP), single nucleotide polymorphism (SNPs)
and microsatellites have resulted in the construction of
genetic maps for Ae. aegypti [5]. In spite of this, a limited
number of new microsatellites have been identified in Ae.
aegypti [6–9]. Studies on new microsatellite loci in Anoph-
eles gambiae, Culex quinquefasciatus and Ae. aegypti have
shown they are more abundant (with regards to the
genome frequency percentage) in An. gambiae (0.75 %) and
less abundant in Ae. aegypti (0.109 %) [10].
The inter-simple sequence repeat-polymerase chain

reaction (ISSR-PCR) technique amplifies regions
between microsatellites, using core microsatellite
sequences as primers. Two important characteristics
are observed when using ISSR-PCR: (i) high levels of
polymorphism, which is particularly important for
geographically small-scale intraspecific studies that
aim to genetically identify different populations of a
species; and (ii) the increased annealing temperature
of the primers, which leads to high reproducibility of
the DNA band pattern [11].
Understanding the genetics of Ae. aegypti is essential

in order to gain an in-depth understanding of popula-
tion dynamics, factors responsible for resistance to
insecticides and ecological adaptation [12]. Molecular
markers can aid the identification of geographical and
temporal differences amongst Ae. aegypti populations,
contributing to the improvement of mosquito vector
control strategies [13–15]. Investigation of the Ae. aegyti
genome indicates that SNP frequency is often dependent
on gene function [16]. The partial sequencing of seven Ae.
aegypti genes revealed the existence of 53 polymorphic
SNPs, eight of these were used to outline the population
structure of three Ae. aegypti populations, proving to be
highly polymorphic markers that are useful for population
studies [17].

The aim of the present study was to determine the
genetic variability of Ae. aegypti populations on a small
geographical scale with high spatial heterogeneity by
means of SNP and ISSR molecular markers. The study
included cities located in humid tropical, agreste and
semiarid areas in the state of Sergipe, northeastern
Brazil. The results of this study will not only contribute
to the vector biology knowledge base, but may even be
suitable for supporting new approaches of mosquito
control, and furthering studies of the main factors
related to the genetic differences observed.

Methods
Mosquito samples and DNA extraction
The study was carried out in the state of Sergipe,
northeastern Brazil (9°31′S to 11°33′S and 36°25′W to
38°14′W), covering an area of 21,918 km2 and including
2,068,017 inhabitants [18]. The distribution of annual
precipitation in this state is highly heterogeneous, with a
decreasing gradient from the shoreline’s humid tropical
climate and annual precipitation of over 1600 mm,
stretching through to the agreste (transition zone)
towards the sertão (semiarid climate), where annual pre-
cipitation below 500 mm has been recorded. The rainy
period in this state is concentrated between April and
August, with peaks in May, June and July [19].
Aedes aegypti was sampled from 7 locations in Sergipe,

including Carira (CA), Pinhão (PI) and Neópolis (NEO)
(Agreste), Canindé de São Francisco (CSF) (semiarid),
Maruim (MA), Aracaju (ARA) and Umbaúba (UMB)
(humid tropical) (Fig. 1). A hundred ovitraps were
installed in each city, except the state capital Aracaju,
where only one neighborhood was sampled with 30
ovitraps. The selection of the cities aimed to include
most of the state, taking into consideration the different
climatic types (humid tropical, agreste and semiarid).
The longest distance registered was between the cities of
Canindé de São Francisco and Umbaúba (road =
243 km/linear = 193 km) and the shortest one was
between Carira and Pinhão (road = 30 km/linear =
20 km). Although Carira and Pinhão are geographically
very close, they were treated as distinct populations
since they showed different levels of resistance to teme-
phos (data not shown) in the susceptibility test per-
formed for these populations in our laboratory.
Rearing of the Ae. aegypti populations was held in

an acclimated area with monitored temperature and
humidity (temperature at 26 °C ± 2 °C, air relative
humidity at 70 % ± 20 °C and 12-h photoperiod). For
each city, 20 three-day-old Ae. aegypti females from
the wild population were analyzed, adding up to a
total of 140 individuals. The genomic DNA was
extracted from the whole body according to a
published method [20], and stored at -20 °C.
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Genetic analysis
ISSR genotyping
Two primers designated (CA)8RY and (GA)8RY were used.
The primers possess one random purine (R) and pyrimi-
dine (Y) anchored in the 3′ portion. The premix for PCR
consisted of a reaction of 15 μl, containing 50 ng genomic
DNA, RB 10× buffer (10 mM Tris-HCl pH 8.5, 50 mM
KCl, 1.5 mM MgCl2), 1.5 U of Taq polymerase (5U/μl)
(Invitrogen, Carlsbad, CA, USA), 0.2 mM of dNTPs and
1 μM of the primers (CA)8RY or (GA)8RY. Samples were
processed in duplicate as follows: denaturation at 95 °C for
5 min, followed by 39 cycles of denaturation at 95 °C for
30 s, annealing at 47.5 °C and 45.2 °C for 30 s for the
primer (CA)8RY and (GA)8RY, respectively, and extension
at 72 °C for 2 min. A final extension step at 72 °C for 5 min
was also included. The amplification product underwent
1 % agarose gel electrophoresis using ethidium bromide as
colorant. The selection of the bands was carried out with
the aid of the GelAnalyser v. 2010a software (http://
www.gelanalyzer.com) and reproducibility of the gel
comparison results obtained from the amplification in
duplicate, with each band considered as a locus.

SNPs genotyping
For the characterization of populations, we used 9 SNP
markers related to the genes ef2 (elongation factor),

aeimuc1 (mucin-like protein), nak (sodium/potassium
channel), pgk (phosphoglycerate kinase), apolp-2 (apolipo-
phorin II), ferh (ferritin heavy chain), cyp9j2 (cytocrome
P450), tsf (transferrin) and chym (chymotrypsin), which
have previously been selected for the population study of
Ae. aegypti in Brazil [17]. These genes were chosen because
they are randomly distributed in the Ae. aegypti genome.
The DNA of each mosquito underwent amplification by

quantitative real-time PCR using the StepOnePlus™ v. 2.1
platform (Thermo Fisher Scientific, Waltham, MA, USA)
using 96-well optical plate and TaqMan® system (Thermo
Fisher Scientific, Waltham, MA, USA) for the allelic
discrimination. The initial amplification conditions were
25 °C for 30 s (equipment pre-reading); denaturation at 95 °
C for 3 min, followed by 40 cycles of denaturation at 95 °C
for 3 s, annealing/extension at 60 °C for 30 s and a final
step at 25 °C for 30 s. SNPs were automatically identified
with the help of the StepOnePlus™ v. 2.1 platform software
(Thermo Fisher Scientific, Waltham, MA, USA).

Data analysis
The index of genetic diversity and the molecular variance
(AMOVA) were carried out using GenAlEx [21]. Genetic
differentiation among populations was estimated through a
Bayesian analysis using STRUCTURE 2.3 [22]. In this
analysis, all 140 individuals were probabilistically assigned

Fig. 1 Map of the state of Sergipe (Brazil) showing the locations of the cities selected for the study
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to a single cluster without using the known geographic
sample collection location. To identify the optimal number
of clusters (K), with the assumption that the sampled
belong to an unknown number of K genetically distinct
clusters, twenty independent runs were conducted for each
K value (ranging from K = 1 to K = 10), with 5000 interac-
tions and 50,000 replications. The most likely K value was
calculated for each run with the log likelihood [LnP(D)]
method and results compiled using CLUMPP [23]. Popula-
tion structure was also evaluated with discriminant analysis
of principal components (DAPC) using the adegenet R
package [24]. To identify an optimal number of clusters for
the DAPC clustering, K-means values were sequentially
tested and then compared using Bayesian information
criterion (BIC), with the lowest value of BIC used as the
likely number of population clusters.

Results
Genetic diversity
ISSR markers
For this analysis, 17 bands were selected for the
primer (CA)8RY, which varied between 450 and 2230

base pairs (bp) and 13 bands for the primer (GA)8RY, which
varied between 350 and 1700 bp, resulting in a total of 30
bands (Additional file 1: Table S1; Additional file 2: Figure
S1), of which 29 were polymorphic. The highest number of
bands was observed in the population CA with a total of 25
bands (with 3 private alleles), while the lowest number of
bands was detected in NEO with only 19 markers (Fig. 2).
Across populations, a significant difference was detected in
the expected heterozygosity which ranged from HE = 0.261
± 0.03 to HE = 0.120 ± 0.032 (Fig. 2 and Additional file 1:
Table S1), with the percentage of polymorphic loci varying
between 73.33 and 43.33 % in mosquitoes from CSF and
PI, respectively.

SNP markers
Across all populations, the 7 loci studied were polymorphic
in 95.25 % of the locus/locations, with the exception of 3
loci; pgk, nak and ferh which were monomorphic in CA, PI
and NEO, respectively (Additional file 3: Table S2;
Additional file 4: Figure S2). Among the 7 loci, a higher
genetic diversity was observed for ferh (HE = 0.750) in PI
where a distinct pattern of HE was detected between

Fig. 2 Characterization of genetic diversity in Aedes aegypti mosquitoes from Sergipe, Brazil. a and b correspond to genetic diversity index based
on ISSR and SNPs, respectively. CSF: Canindé de São Francisco; CA: Carira; PI: Pinhão; MA: Maruim; ARA: Aracaju; NEO: Neópolis; UMB: Umbaúba;
No. Bands: No. of different b ands; No. private bands: No. of bands unique to a single population; No. LComm Bands: No. of locally common
bands; Na: No. of different alleles; Ne: No. of effective alleles; I: Shannon’s information index; He: expected heterozygosity
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populations (Additional file 3: Table S2, Additional file 5:
Table S3). Amongst the populations, a similar index of
genetic variability (Fig. 2) was observed, with the observed
heterozygosis ranging from 0.375 ± 0.054 to 0.269 ± 0.042
in samples from PI and NEO, respectively.
In all 60 instances where polymorphic locus/populations

were tested for locus Hardy-Weinberg (HW) equilibrium,
significant deviation from HW equilibrium was not
detected, with P > 0.05 (Additional file 5: Table S3). Never-
theless, for 6 loci, a significant departure from HW was
observed, with P < 0.01; apolp-2 (CA), ferh (PI), nak and
chym (NEO) and ef2 and aelmuc1 (UMB). In all 6 loci, a
deficit of heterozygosity was observed (Additional file 3:
Table S2; Additional file 6: Tables S4 and S5).

Genetic structure
The populations’ genetic differentiation was assessed
using ISSR and SNP markers across all 7 populations.
The genetic distances among populations ranged from
0.033 (NEO and MA) to 0.120 (ARA and UMB) for ISSR
markers (Additional file 7: Figure S3), while for SNPs
(Additional file 7: Figure S3), the highest genetic
distance (0.145) was observed between PI and NEO and
the lowest (0.008) between MA and ARA. Through
AMOVA, the highest diversity within the population,
72 % (ISSR) and 92 % (SNP), was observed for both
markers. In population and geographical clusters, a very
low differentiation of 0 and 28 % for ISSR was detected,
and 4 % in each category for SNP markers.
The small genetic differentiation suggested by AMOVA

analysis was also suggested by DAPC and STRUCTURE
analysis, indicating that the populations studied are very
close related. For ISSR markers, DAPC and STRUCTURE
analysis indicated the presence of only 2 and 3 clusters,
respectively (Figs. 3a and 4). On the other hand, when using
the SNP markers, both methods indicated an absence of
differentiation among populations: all populations were
grouped within a single cluster by DAPC (Fig. 3b) and had
a very low and unstable delta K-value through the STRUC-
TURE analysis (Additional file 8: Figure S4). For both
markers, no significant association between genetic and
geographical distance was observed using the Mantel test
(Additional file 9: Figure S5).

Discussion
Based on both genetic markers, ISSR and SNPs a high
level of genetic diversity was identified, with most of the
markers in all seven populations analyzed being poly-
morphic. Nevertheless, our analysis indicated a different
diversity trend across populations: with ISSR markers
significant genetic variability was observed whereas with
SNPs, no significant variation among the locations was
observed. This distinct pattern of diversity was some-
what expected and could reflect their genetic properties,

as ISSR is dominant and can amplify coding or neutral
genomic regions while SNPs are located within specific
expressed loci, which are more conserved and stable
genomic regions. As such, the ISSR markers located in
neutral genomic regions could be more diverse and
reflect the populations’ recent dynamic events, such as
variations in the effective population size, bottle necks
and migration. Many studies have shown large popula-
tions experience more mutations than those with a small
effective population size [25], while bottle necks (reduc-
tions in effective population size) reduce most-recent
common ancestor (MRCA) alleles, which in turn
reduces the average level of variability [26].
The genetic variation detected by ISSR markers might

also be linked to the different climate characteristics that
vary strongly within the small geographical area of Sergipe
State. In this region, the climate is characterized tropical
humid, agreste and semiarid. Rainfall and relative humidity
across these regions ranges from 1355 mm to 700 mm and
from 80 to 65 %, respectively [27]. Ecological studies of Ae.
aegytpi populations from Paraíba State, Brazil, showed that,
under experimental conditions with temperatures ranging
from 25 to 32 °C, variation in climatic conditions was
reflected in changes to mosquito larval development,
longevity, fecundity, eggs quantity and body size [28, 29].
Consequently, the genetic variation observed among
Sergipe’s populations could be linked to the ecological zone
from where samples were collected.
It is also possible that the distinct genetic diversity

between the populations might be associated with
differences in predominance/availability of breeding
sites in each city, i.e. predominance of laundry sinks
in Aracaju [30] and water tanks (cisterns) in Pinhão.
The increased availability of these breeding sites
could result in distinct mosquito population densities
and inbreeding, and then directly impact a popula-
tion’s genetic diversity.
On the other hand, the similar genetic diversity

observed with SNP markers across the populations/geo-
graphic groups might reflect the markers’ location in the
coding regions of the genes analyzed, resulting in a lower
mutation rate. It is also possible that these markers are
behaving as neutral markers since they might not be
linked with the possible selection pressure imposed by
vector control interventions. If selection pressure was
acting on one of these loci, a significant difference in allele
frequency among populations would be expected due to,
for example, a positive selection or selective sweep, which
changes allele frequency by increasing the frequency of
derived alleles and then increasing a population’s differen-
tiation [31, 32]. For instance, the identification of selection
footprints in insecticide resistance-associated alleles has
been detected by identifying a reduction in genetic
diversity [33, 34].
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Even though most of the locus/population were under
HW equilibrium, six markers (apolp-2, ferh, chym, nak,
ef2 and aelmuc1) were not in HW equilibrium in one
population each. Since HW disequilibrium did not occur
in all population/locus, the possibility of null alleles due to
problems in the annealing sites of the initiators used was
discarded [35]. Nonetheless, these deviations in HW’s
equilibrium may be due to environmental differences
among the populations’ geographic location. For instance,
although the geographic dimension evaluated here is
small, it presents the relevant climatic differences such as
a long drought period and high temperatures, which are

characteristic of the semiarid region. In particular, the
deviation from HW for the nak loci in Neopolis and
monomorphism in Pinhão is especially relevant as it is
located in the Sodium channel gene, which is the target-
site gene for pyrethroids and organochlorines insecticides
[36]. The link between a possible selection sweep and this
departure from HW equilibrium in these two populations
has already been shown in other vector species such as
Anopheles and Culex populations under insecticide selec-
tion pressure [37–39].
Both ISSR and SNP markers also indicated a high level of

genetic similarity among populations, with the ISSR of

Fig. 3 Genetic differentiation estimates among the seven Ae. aegypti populations from Sergipe, Brazil. a, b First and second Principal Components
of the DAPC using ISSR and SNP markers, respectively. Inferred populations clusters are indicated by ellipses, which model 95 % of the
corresponding variability. CSF: Canindé de São Francisco; CA: Carira; PI: Pinhão; MA: Maruim; ARA: Aracaju; NEO: Neópolis; UMB: Umbaúba
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seven populations grouped into three clusters whereas for
SNPs, a single panmictic population was detected.
Although both markers are in agreement with low differen-
tiation among populations, the discordance between the
number of clusters could result from inherent differences
(dominant vs codominant) and level of polymorphism and
mutation rates (i.e. most SNPs are biallelic in contrast to
the multiallelic properties of ISSR due to slippage mutation
processes) [40]. Thus, these features could result in distinct
heterozygosities and allele frequencies, which may have im-
plications in the pattern of population relatedness observed
[41]. Secondly, the number of markers analyzed by ISSR
was around four times higher than the number of SNPs in-
vestigated indicating that due to a close relationship be-
tween the populations, a larger number of SNP markers
might be required to detect the populations’ differentiation
using this marker.
The low differentiation in Sergipe’s cities observed by

molecular variance analysis (AMOVA) for the ISSR and
SNP markers, with most of the variation detected within
the populations, was also reported in Ae. aegypti in
northeastern Argentina and Uruguay. Around 89 % of the
diversity observed within populations in those studies was
based on the same markers applied here [11]. Furthermore,
a similar pattern of differentiation as Sergipe’s population
was also reported in mitochondrial DNA analysis which
indicated the presence of only two haplotype groups of Ae.
aegypti circulating in Brazil [42, 43]. Nevertheless, the
subpopulations reported in this study for the ISSR marker
with three population clusters might not represent the two
previous clusters described for mitochondrial DNA, since it
has been reported that populations can have the same
mitochondrial haplotype but be distinct when analyzed with
nuclear SNPs [17, 44].
In addition to the likely impact of the introduction of

Ae. aegypti with little genetic variation in Brazil as
suggested by mitochondrial markers [42], it is also
important to consider that the differentiation among
Sergipe’s population could reflect the intense gene flow
mediated by the passive dispersion of mosquitoes, due

to the intense traffic of vehicles between the cities. Our
cluster analysis based on ISSR markers (Fig. 3a) also
supports evidence of the possible impact of geographical
distribution and route connection on a population’s
differentiation as the two more distinct clusters: CA and
UMB correspond exactly to the most distant mosquito
collection points, separated by 243 km (Fig. 1).
Paduan et al. [44] showed that regions connected by

trade routes tend to have a lower genetic differentiation
among Ae. aegypti populations when compared to areas
that are more isolated. Additionally, Damal et al. [45]
suggest that limited urbanization does not represent a
strong enough barrier to stop the genetic flow. This sug-
gests that passive movement has great importance in the
mosquito’s dispersion [46], as seen in our work, where road
transportation may play an important role in inter-
population dispersion, thus intensifying the dispersion of
insecticide resistance associated- alleles as well as poten-
tially mediating a quicker spread of arboviruses such as
Dengue, Zika and Chikungunya to nearby municipalities.

Conclusions
Our study showed that there is little differentiation
among Sergipe’s Ae. aegypti population, possibly
reflecting intense gene flow mediated by the passive
dispersion of mosquitoes, due to the intense traffic of
vehicles among the cities. The results of this work
could provide important assistance in the performance
assessment of strategies for the control and handling of
Ae. aegypti. Such actions have been the basis for the pre-
vention of Dengue fever, Zika virus and Chikungunya
epidemics with a focus on the control of both larval
and adult stages chiefly with insecticide. That practice
has generated resistance processes, compromising
mosquito control and increasing the risk of epidemics
every year. Thus, knowledge of the genetic structuring
and population dynamics of the species is crucial as
these genetically different populations may present
differences concerning their vectorial capacity and
vector competence.

Fig. 4 Bayesian cluster analysis based on ISSR markers. Diagrammatic representation of population clusters for the most likely K (K = 2), where
each vertical bar represents an individual and each colour represents the probability of belonging to one of the two clusters from Bayesian
STRUCTURE analyses. CSF: Canindé de São Francisco; CA: Carira, PI: Pinhão; MA: Maruim; ARA: Aracaju; NEO: Neópolis; UMB: Umbaúba
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