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Abstract: The histopathological diagnosis of prostate adenocarcinoma in needle biopsy specimens
is of pivotal importance for determining optimum prostate cancer treatment. Since diagnosing a
large number of cases containing 12 core biopsy specimens by pathologists using a microscope is
time-consuming manual system and limited in terms of human resources, it is necessary to develop
new techniques that can rapidly and accurately screen large numbers of histopathological prostate
needle biopsy specimens. Computational pathology applications that can assist pathologists in
detecting and classifying prostate adenocarcinoma from whole-slide images (WSIs) would be of great
benefit for routine pathological practice. In this paper, we trained deep learning models capable
of classifying needle biopsy WSIs into adenocarcinoma and benign (non-neoplastic) lesions. We
evaluated the models on needle biopsy, transurethral resection of the prostate (TUR-P), and The
Cancer Genome Atlas (TCGA) public dataset test sets, achieving an ROC-AUC up to 0.978 in needle
biopsy test sets and up to 0.9873 in TCGA test sets for adenocarcinoma.

Keywords: deep learning; adenocarcinoma; prostate; biopsy; whole-slide image; transfer learning

1. Introduction

According to the Global Cancer Statistics 2020, prostate cancer was the second-most-
frequent cancer and the fifth leading cause of cancer death among men in 2020 with an
estimated 1,414,259 new cases and 375,304 deaths worldwide, which is the most frequently
diagnosed cancer in men in over one-half (112 of 185) of the countries [1].

Serum prostate-specific antigen (PSA) is the most important and clinically useful
biochemical marker in prostate [2]. PSA has contributed to an increase in the early detection
rate of prostate cancer and is now advocated for routine use for screening in men [2].
Serum PSA is also an important tool in the management of prostate cancer. Elevation
of PSA correlates with cancer recurrence and progression after treatment. Thus, PSA
is a sensitive marker for tumor recurrence after treatment and is useful for the early
detection of metastases. However, n elevated serum PSA concentration is seen not only in
patients with adenocarcinoma, but also in patients with aging, prostatitis, benign prostatic
hyperplasia, and transiently following biopsy [3–5]. Although PSA elevations might
indicate the presence of prostate disease (e.g., prostate cancer, benign prostatic hyperplasia,
and prostatitis), not all men with prostate disease have elevated PSA levels, and PSA
elevations are not specific for prostate cancer. Therefore, it is necessary to perform definitive
diagnosis of the presence of prostate adenocarcinoma by needle biopsy for cancer treatment.

As for needle biopsy, in the past, the standard approach was to take six cores (sextant
biopsies) [6]. However, based on a systematic review [7], it has been shown that cancer yield
was significantly associated with increasing number of cores, more so in the case of laterally
directed cores than centrally directed cores. This is based on the finding that schemes
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with 12 laterally directed cores detected 31% more cancers than the six cores. Schemes
with further cores (18 to 24) showed no further gains in cancer detection. Hence, a 12-core
systematic biopsy that incorporates apical and far-lateral cores in the template distribution
allows maximal cancer detection, avoids repeat biopsy, and provides information adequate
for identifying men who need cancer treatment [8]. However, diagnosing a large number
of cases containing 12 core biopsy specimens is a time-consuming manual system for
pathologists in routine practice.

Adenocarcinoma is by far the most common malignant tumor of the prostate gland. Ade-
nocarcinoma tends to be multifocal with a predilection for the peripheral zone. Histopatho-
logically, the majority of prostate adenocarcinomas are not difficult to diagnose. However,
the separation of well-differentiated adenocarcinoma from the vast number of benign pro-
static hyperplasia or atypical gland proliferation, the detection of small adenocarcinoma
foci, and the differentiation of poorly differentiated adenocarcinoma from inflammatory cell
infiltration are sometimes very challenging in routine diagnoses.

Therefore, all these factors mentioned above highlight the benefit of establishing a
histopathological screening system based on needle biopsy specimens for prostate adeno-
carcinoma patients. Conventional morphological diagnosis by human pathologists has
limitations, and it is necessary to construct a new diagnostic strategy based on the analysis
of a large number of cases in the future.

Deep learning has been widely applied in computational histopathology, with appli-
cations such as cancer classification in whole-slide images (WSIs), cell detection and seg-
mentation, and the stratification of patient outcomes [9–22]. For prostate histopathology in
particular, deep learning has been applied for the classification of cancer in WSIs [21,23–30].

In this study, we trained a WSI prostate adenocarcinoma classification model using
transfer learning and weakly supervised learning. We evaluated the models on needle
biopsy, transurethral resection of the prostate (TUR-P), and TCGA public dataset test
sets to confirm application of the algorithm in different types of specimens, achieving an
ROC-AUC up to 0.978 in needle biopsy test sets and up to 0.9873 in The Cancer Genome
Atlas (TCGA) test sets for adenocarcinoma. We also evaluated on the needle biopsy test
sets, without fine-tuning, models that had been previously trained on other organs for
the classification of adenocarcinomas [22,31–37]. These findings suggest that computa-
tional algorithms might be useful as routine histopathological diagnostic aids for prostate
adenocarcinoma classification.

2. Materials and Methods
2.1. Clinical Cases and Pathological Records

This was a retrospective study. A total of 2926 hematoxylin and eosin (H&E)-stained
histopathological specimens of human prostate adenocarcinoma and benign lesions—1682
needle biopsy and 1244 TUR-P—were collected from the surgical pathology files of five
hospitals: Shinyukuhashi, Wajiro, Shinkuki, Shinkomonji, and Shinmizumaki hospitals (Ka-
machi Group Hospitals, Fukuoka, Japan), after histopathological review of those specimens
by surgical pathologists. The cases were selected randomly so as to reflect a real clinical
scenario as much as possible. The pathologists excluded cases that had poor scan quality.
Each WSI diagnosis was observed by at least two pathologists, with the final checking and
verification performed by a senior pathologist. All WSIs were scanned at a magnification of
20× using the same Leica Aperio AT2 scanner and were saved in the SVS file format with
JPEG2000 compression.

2.2. Dataset

Tables 1 and 2 break down the distribution of the dataset into training, validation, and
test sets. The training and validation sets consisted of needle biopsy WSIs (Table 1). The
test sets consisted of needle biopsy, TUR-P, and TCGA public dataset WSIs (Table 2). The
regions of the prostate sampled by TUR-P and needle biopsy tend to be different. TUR-P
specimens usually consist of tissues from the transition zone, urethra, periurethral area,
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bladder neck, anterior fibromuscular stroma, and occasionally, small portions of seminal
vesicles. In contrast, most needle biopsy specimens consist mainly of tissue from the
peripheral zone. The split was carried out randomly taking into account the proportion of
each label in the dataset. Hospitals that provided histopathological cases were anonymized
(e.g., Hospital A, Hospital B). The patients’ pathological records were used to extract
the WSIs’ pathological diagnoses and to assign WSI labels. Training set WSIs were not
annotated, and the training algorithm only used the WSI diagnosis labels, meaning that the
only information available for the training was whether the WSI contained adenocarcinoma
or was benign (non-neoplastic), but no information about the location of the cancerous
tissue lesions.

Table 1. Distribution of the WSIs in the training and validation sets.

Adenocarcinoma Benign Total

Training set

Hospital A 144 260 404
Hospital B 100 75 175
Hospital C 115 159 274
Hospital D 56 118 174
Hospital E 23 72 95

Total 438 684 1122

Validation set

Hospital A 6 6 12
Hospital B 6 6 12
Hospital C 6 6 12
Hospital D 6 6 12
Hospital E 6 6 12

Total 30 30 60

Table 2. Distribution of the WSIs in the test sets.

Adenocarcinoma Benign Total

Biopsy

Hospitals A–C 250 250 500
Hospital A 100 100 200
Hospital B 100 100 200
Hospital C 50 50 100

TUR-P
Hospitals A–B 162 1082 1244

Hospital A 109 352 461
Hospital B 53 730 783

Public dataset TCGA 733 34 768

2.3. Deep Learning Models

We trained the models using the partial fine-tuning approach [38]. It consisted of
using the weights of an existing pre-trained model and only fine-tuning the affine pa-
rameters of the batch normalization layers and the final classification layer. We used the
EfficientNetB1 [39] model starting with pre-trained weights on ImageNet. Figure 1 shows
an overview of the training method.

The training method that we used in this study was exactly the same as reported in
a previous study [34]. For completeness, we repeat the method here. To apply the CNN
on the WSIs, we performed slide tiling by extracting square tiles from tissue regions. On a
given WSI, we detected the tissue regions and eliminated most of the white background
by performing a thresholding on a grayscale version of the WSI using Otsu’s method [40].
During prediction, we performed the tiling in a sliding window fashion, using a fixed-
size stride, to obtain predictions for all the tissue regions. During training, we initially
performed random balanced sampling of tiles from the tissue regions, where we tried to
maintain an equal balance of each label in the training batch. To do so, we placed the WSIs
in a shuffled queue such that we looped over the labels in succession (i.e., we alternated
between picking a WSI with a positive label and a negative label). Once a WSI was selected,
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we randomly sampled batch size
num labels tiles from each WSI to form a balanced batch. To maintain

the balance on the WSI, we oversampled from the WSIs to ensure the model trained on
tiles from all of the WSIs in each epoch. We then switched to the hard mining of tiles once
there was no longer any improvement on the validation set after two epochs. To perform
the hard mining, we alternated between training and inference. During inference, the CNN
was applied in a sliding window fashion on all of the tissue regions in the WSI, and we then
selected the k tiles with the highest probability for being positive if the WSI was negative
and the k tiles with the lowest probability for being positive if the WSI was positive. This
step effectively selected the hard examples with which the model was struggling. The
selected tiles were placed in a training subset, and once that subset contained N tiles, the
training was run. We used k = 8, N = 256, and a batch size of 32.

Figure 1. (a) shows a zoomed-in example of a tile in a WSI. (b) During training, we iteratively
alternated between inference and training steps. The model weights were frozen during the inference
step, and this was applied in a sliding window fashion on the entire tissue regions of each WSI. The
top k tiles with the highest probabilities were then selected from each WSI and placed into a queue.
During training, the selected tiles from multiple WSIs formed a training batch and were used to train
the model.

To obtain a prediction on a WSI, the model was applied in a sliding window fashion,
generating a prediction per tile. The WSI prediction was then obtained by taking the
maximum from all of the tiles.

We trained the models with the Adam optimization algorithm [41] with the following
parameters: beta1 = 0.9, beta2 = 0.999, and a batch size of 32. We used a learning rate
of 0.001 when fine-tuning. We applied a learning rate decay of 0.95 every 2 epochs. We used
the binary cross-entropy loss function. We used early stopping by tracking the performance
of the model on a validation set, and training was stopped automatically when there was
no further improvement on the validation loss for 10 epochs. The model with the lowest
validation loss was chosen as the final model.

2.4. Software and Statistical Analysis

The deep learning models were implemented and trained using TensorFlow [42].
AUCs were calculated in Python using the scikit-learn package [43] and plotted using
matplotlib [44]. The 95% CIs of the AUCs were estimated using the bootstrap method [45]
with 1000 iterations.
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The true positive rate (TPR) was computed as:

TPR =
TP

TP + FN
(1)

and the false positive rate (FPR) was computed as:

FPR =
FP

FP + TN
(2)

where TP, FP, and TN represent true positive, false positive, and true negative, respectively.
The ROC curve was computed by varying the probability threshold from 0.0 to 1.0 and
computing both the TPR and FPR at the given threshold.

2.5. Code Availability

To train the classification model in this study, we used the publicly available Tensor-
Flow training script available at https://github.com/tensorflow/models/tree/master/
official/vision/image_classification, accessed on 23 March 2021.

3. Results
3.1. High AUC Performance of the WSI Evaluation of Prostate Adenocarcinoma Histopathology
Images in the Needle Biopsy, TUR-P, and TCGA Test Sets

The aim of this retrospective study was to train deep learning models for the clas-
sification of prostate adenocarcinoma in WSIs of prostate needle biopsy specimens. We
had a total of 1122 needle biopsy WSIs (438 adenocarcinoma and 684 benign WSIs) for
the training set and a total of 60 WSIs (30 adenocarcinoma and 30 benign WSIs) for the
validation set from five sources (Hospitals A, B, C, D, and E) (Table 1). We used a transfer
learning (TL) approach based on partial fine-tuning [38] to train the models. We refer to
the trained models as TL <magnification> <tile size> <model size>, based on the different
configurations. As we had at our disposal ten models that had been trained specifically on
specimens from different organs (breast, colon, stomach, pancreas, and lung) [22,31–37],
we evaluated these models without fine-tuning on the biopsy test sets (Hospitals A–C)
(Table 2) to investigate whether morphological cancer similarities transferred across organs
without additional training. Table 3 breaks down the values of ROC-AUC and log loss in
the biopsy test set (Hospitals A–C) and shows that the colon poorly differentiated adeno-
carcinoma model (colon poorly ADC-2 (20×, 512)) [36] exhibited the highest ROC-AUC
(0.8172, CI: 0.7815–0.855) and the lowest log loss (0.5216, CI: 0.4748–0.5695), indicating its
capability as a base model for the transfer learning approach.

Overall, we trained three different models: (1) a transfer learning model (TL-colon
poorly ADC-2 (20×, 512)) using the existing colon poorly differentiated adenocarcinoma
model (colon poorly ADC-2 (20×, 512)) [36] at a magnification 20× and a tile size of
512 px × 512 px; (2) a model (EfficientNetB1 (20×, 512)) using the EfficientNetB1 at mag-
nification 20× and a tile size of 512 px × 512 px, starting with pre-trained weights from
ImageNet; (3) a model (EfficientNetB1 (10×, 224)) using the EfficientNetB1 at magnification
10× and a tile size of 224 px × 224 px, starting with pre-trained weights from ImageNet.

We evaluated the trained models on the needle biopsy, TUR-P, and TCGA test sets
(Table 2). We confirmed that the surgical pathologists were able to diagnose these cases
from visual inspection of the H&E-stained slides alone prior to the test sets’ evaluation.
The distribution of the number of WSIs in each test set is summarized in Table 2. For each
test set, we computed the ROC-AUC, log loss, accuracy, sensitivity, and specificity, and we
summarize the results in Tables 4 and 5 and Figure 2. In Table 4, we compare the results
of the ROC-AUC and log loss among three models (TL-colon poorly ADC-2 (20×, 512),
EfficientNetB1 (20×, 512), and EfficientNetB1 (10×, 224)) we trained.

https://github.com/tensorflow/models/tree/master/official/vision/image_classification
https://github.com/tensorflow/models/tree/master/official/vision/image_classification
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Table 3. ROC-AUC and log loss results for the various existing models on the prostate biopsy test sets.

Existing Models ROC-AUC Log Loss

Breast IDC (10×, 512) 0.704 [0.659–0.751] 0.947 [0.816–1.064]
Breast IDC, DCIS (10×, 224) 0.692 [0.644–0.735] 1.413 [1.282–1.566]
Colon ADC, AD (10×, 512) 0.553 [0.507–0.611] 1.525 [1.350–1.711]

Colon poorly ADC-1 (20×, 512) 0.795 [0.756–0.835] 0.572 [0.513–0.637]
Colon poorly ADC-2 (20×, 512) 0.817 [0.782–0.855] 0.522 [0.475–0.569]
Stomach ADC, AD (10×, 512) 0.706 [0.662–0.753] 1.391 [1.248–1.569]

Stomach poorly ADC (20×, 224) 0.724 [0.681–0.767] 0.598 [0.565–0.629]
Stomach SRCC (10×, 224) 0.804 [0.763–0.839] 0.998 [0.894–1.114]

Pancreas EUS-FNA ADC (10×, 224) 0.774 [0.735–0.817] 0.587 [0.544–0.629]
Lung carcinoma (10×, 512) 0.702 [0.659–0.751] 1.398 [1.2560–1.546]

Table 4. ROC-AUC and log loss results of the three different models for prostate adenocarcinoma on
the biopsy, TUR-P, and TCGA test sets.

TL-Colon Poorly ADC-2 (20×, 512)

ROC-AUC Log-Loss

Biopsy

Hospitals A–C 0.967 [0.955–0.982] 0.288 [0.210–0.354]
Hospital A 0.978 [0.966–0.995] 0.209 [0.117–0.276]
Hospital B 0.972 [0.948–0.988] 0.378 [0.276–0.536]
Hospital C 0.967 [0.922–0.993] 0.265 [0.117–0.512]

TUR-P
Hospitals A–B 0.845 [0.806–0.883] 4.152 [4.047–4.253]

Hospital A 0.909 [0.865–0.947] 3.269 [3.089–3.451]
Hospital B 0.737 [0.657–0.810] 4.672 [4.559–4.798]

Public dataset TCGA 0.987 [0.977–0.995] 0.074 [0.055–0.095]

EfficientNetB1 (20×, 512)

ROC-AUC Log-Loss

Biopsy

Hospitals A–C 0.971 [0.955–0.982] 0.256 [0.188–0.349]
Hospital A 0.979 [0.962–0.993] 0.209 [0.110–0.322]
Hospital B 0.978 [0.963–0.992] 0.279 [0.167–0.398]
Hospital C 0.977 [0.959–1.000] 0.306 [0.037–0.406]

TUR-P
Hospitals A–B 0.803 [0.765–0.848] 5.113 [4.976–5.252]

Hospital A 0.875 [0.834–0.923] 4.308 [4.059–4.550]
Hospital B 0.670 [0.597–0.753] 5.588 [5.411–5.729]

Public dataset TCGA 0.945 [0.912–0.973] 0.101 [0.067–0.147]

EfficientNetB1 (10×, 224)

ROC-AUC Log-Loss

Biopsy

Hospitals A–C 0.739 [0.691–0.783] 0.631 [0.545–0.724]
Hospital A 0.751 [0.668–0.810] 0.605 [0.511–0.744]
Hospital B 0.929 [0.885–0.970] 0.335 [0.223–0.427]
Hospital C 0.472 [0.348–0.572] 1.278 [0.979–1.501]

TUR-P
Hospitals A–B 0.804 [0.760–0.847] 0.392 [0.369–0.417]

Hospital A 0.771 [0.705–0.820] 0.424 [0.384–0.474]
Hospital B 0.928 [0.859–0.980] 0.373 [0.347–0.408]

Public dataset TCGA 0.578 [0.497–0.661] 1.575 [1.481–1.657]
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Table 5. Accuracy, sensitivity, specificity, and F1-score results of the transfer learning model (TL-colon
poorly ADC-2 (20×, 512)) from the existing colon poorly differentiated adenocarcinoma model for
prostate adenocarcinoma on the biopsy, TUR-P, and TCGA test sets.

Accuracy Sensitivity Specificity F1-Score

Biopsy

Hospitals A–C 0.918 [0.894–0.942] 0.912 [0.878–0.946] 0.924 [0.888–0.955] 0.918 [0.889–0.941]
Hospital A 0.945 [0.920–0.980] 0.930 [0.897–0.989] 0.960 [0.915–0.991] 0.944 [0.920–0.981]
Hospital B 0.925 [0.885–0.955] 0.890 [0.824–0.944] 0.960 [0.912–0.991] 0.922 [0.878–0.955]
Hospital C 0.940 [0.880–0.980] 0.900 [0.796–0.964] 0.980 [0.921–1.000] 0.938 [0.870–0.978]

TUR-P
Hospitals A–B 0.894 [0.866–0.922] 0.700 [0.603–0.813] 0.926 [0.896–0.950] 0.618 [0.561–0.675]

Hospital A 0.918 [0.889–0.939] 0.798 [0.712–0.867] 0.955 [0.930–0.975] 0.821 [0.749–0.871]
Hospital B 0.890 [0.867–0.909] 0.415 [0.265–0.529] 0.925 [0.906–0.940] 0.339 [0.212–0.424]

Public dataset TCGA 0.949 [0.934–0.965] 0.948 [0.932–0.965] 0.971 [0.906–1.000] 0.973 [0.964–0.981]

Figure 2. ROC curves on the biopsy (Hospitals A, B, C, and A–C), TUR-P (Hospitals A, B, and A and
B), and TCGA test sets of the TL-colon poorly ADC-2 (20×, 512) model.

The model (TL-colon poorly ADC-2 (20×, 512)) achieved the highest ROC-AUCs of
0.9873 (CI: 0.9881-0.995) and the lowest log loss of 0.0742 (CI: 0.0551–0.0959) for prostate
adenocarcinoma on the TCGA test set (Table 4). On the needle biopsy test set, the model
(TL-colon poorly ADC-2 (20×, 512)) also achieved very high ROC-AUCs (0.967–0.978) with
low values of the log loss (0.2094–0.3788) (Table 4). In contrast, ROC-AUCs on the TUR-P
test set were lower than the biopsy test set, and the log loss on the TUR-P test set was higher
than the biopsy test set (Table 4). In addition, accuracy, sensitivity, and specificity results on
the model (TL-colon poorly ADC-2 (20×, 512)) on the biopsy, TUR-P, and TCGA test sets
are given in Table 5. The model (TL-colon poorly ADC-2 (20×, 512)) achieved very high
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accuracy (0.918–0.949), sensitivity (0.89–0.948), and specificity (0.924–0.98) on the biopsy
and TCGA test sets (Table 5). On the TUR-P test sets, the model (TL-colon poorly ADC-2
(20×, 512)) achieved high accuracy (0.8902–0.9176) and specificity (0.9247–0.9545), but low
sensitivity (0.4151–0.7982) (Table 5). As shown in Figure 2, the model (TL-colon poorly
ADC-2 (20×, 512)) is fully applicable for prostate adenocarcinoma classification on the
needle biopsy WSIs, as well as the TCGA public WSI dataset, but not on the TUR-P WSIs.

Figures 3–7 show representative cases of true positives (biopsy and TUR-P), false
positives (biopsy and TUR-P), and false negatives (biopsy), respectively, using the model
(TL-colon poorly ADC-2 (20×, 512)).

Figure 3. Representative true positive prostate adenocarcinoma from the biopsy test sets. On the
prostate needle biopsy whole-slide image (A), Specimens #1–#4 are benign (non-neoplastic), and there
are adenocarcinoma cell infiltration foci (C,E,G) in Specimens #5 and #6 based on the pathological
diagnostic report, which the pathologists marked as red ink dots (yellow triangles) on the glass
slides. The heat map image (B) shows the true positive prediction of adenocarcinoma cells (D,F,H)
using transfer learning from the colon poorly differentiated adenocarcinoma model (TL-colon poorly
ADC-2 (20×, 512)), which corresponds respectively to the H&E histopathology (C,E,G). The heat
map uses the jet color map where blue indicates low probability and red indicates high probability.
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Figure 4. Representative examples of prostate adenocarcinoma false positive prediction outputs
on cases from the needle biopsy test sets. Histopathologically, (A,E) are benign (non-neoplastic)
lesions. The heat map images (B,F) exhibit false positive predictions of adenocarcinoma (D,H) using
transfer learning from the colon poorly differentiated adenocarcinoma model (TL-colon poorly ADC-
2 (20×, 512)). Infiltration of chronic inflammatory cells including histiocytes, lymphocytes, and
plasma cells (C) would be the primary cause of the false positives due to a morphology analogous to
adenocarcinoma cells’ infiltration (D). Areas where prostatic hyperplasia (G) would be the primary
cause of false positives (H). The heat map uses the jet color map where blue indicates low probability
and red indicates high probability.
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Figure 5. Representative false negative prostate adenocarcinoma from the needle biopsy test sets.
According to the histopathological report, there were four needle biopsy specimens in the WSI,
and three of them had adenocarcinomas (A). The pathologists marked the adenocarcinoma areas in
blue dots (A). High-power view showing that there were adenocarcinoma foci (C–E). The heat map
image (B) shows no true positive predictions of adenocarcinoma using transfer learning from the
colon poorly differentiated adenocarcinoma model (TL-colon poorly ADC-2 (20×, 512)).
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Figure 6. Representative true positive prostate adenocarcinoma from the transurethral resection of
the prostate (TUR-P) test sets. In the TUR-P specimen (A), there are adenocarcinoma cell infiltration
foci (C) based on the histopathological report. The heat map image (B) shows the true positive
prediction of adenocarcinoma cells (D) using transfer learning from the colon poorly differentiated
adenocarcinoma model (TL-colon poorly ADC-2 (20×, 512)). The heat map uses the jet color map
where blue indicates low probability and red indicates high probability.

3.2. True Positive Prediction on Needle Biopsy Specimens

Our model (TL-colon poorly ADC-2 (20×, 512)) satisfactorily predicted prostate ade-
nocarcinoma on needle biopsy specimens (Figure 3A). According to the pathological diag-
nostic report, there were adenocarcinoma foci in two of six needle biopsy cores (#5 and #6),
which the pathologists marked as red ink dots (yellow triangles) on the glass slides. The
heat map image shows true positive predictions (Figure 3B,D,F,H) of adenocarcinoma cell
infiltrating areas (Figure 3C,E,G). In Figure 3G, the pathologists did not mark when they
performed the diagnosis; however, the heat map image show true positive predictions
of adenocarcinoma foci, which were reviewed and verified as adenocarcinoma by other
pathologists (Figure 3H). In contrast, the heat map image does not show true positive pre-
dictions on glomeruloid glands precisely, which were assigned a Gleason Pattern 4 [46,47]
(Figure 3G,H). Importantly, the heat map images also exhibit a perfect true negative predic-
tion of needle biopsy cores (#1–#4) on the same WSI (Figure 3B).

3.3. False Positive Prediction on Needle Biopsy Specimens

Inflammatory tissues (Figure 4A) and prostatic hyperplasia (Figure 4E) were false
positively predicted for prostate adenocarcinoma (Figure 4B,F) using the transfer learning
model (TL-colon poorly ADC-2 (20×, 512)). In the inflammatory tissue (Figure 4A), the
infiltration of chronic inflammatory cells including histiocytes, lymphocytes, and plasma
cells (Figure 4C) was the primary cause of the false positive prediction (Figure 4D) due to
a morphology analogous to adenocarcinoma cells. Prostatic hyperplasia (Figure 4E) with
irregularly shaped and diverse sizes of tubular structures (Figure 4G) was the primary
cause of the false positive prediction (Figure 4H).
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Figure 7. Representative examples of prostate adenocarcinoma false positive prediction outputs on
cases from the transurethral resection of the prostate (TUR-P) test sets. Histopathologically, (A,E) are
benign (non-neoplastic) lesions. The heat map images (B,F) exhibit false positive predictions of
adenocarcinoma (D,H) using transfer learning from the colon poorly differentiated adenocarcinoma
model (TL-colon poorly ADC-2 (20×, 512)). Inflammation with infiltration of inflammatory cells
including foam cells (C) would be the primary cause of the false positives due to a morphology
analogous to adenocarcinoma cells’ infiltration (D). The cauterized area of the marginal zone of the
specimen (G) would be the primary cause of the false positives (H). The heat map uses the jet color
map where blue indicates low probability and red indicates high probability.
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3.4. False Negative Prediction on the Needle Biopsy Specimens

In a representative false negative case (Figure 5A), histopathologically, there were
adenocarcinoma foci (Figure 5C–E) in three out of four needle biopsy specimens, which
the pathologists marked with blue dots when they performed the pathological diagnoses.
However, the heat map image exhibits no true positive predictions (Figure 5B).

3.5. True Positive Prediction on the TUR-P Specimens

Although not as accurate as the biopsy specimens (Table 4), there were many cases in
which prostate adenocarcinoma could be classified precisely on the TUR-P specimens. In a
representative true positive TUR-P case (Figure 6A), the transfer learning model (TL-colon
poorly ADC-2 (20×, 512)) satisfactorily predicted prostate the adenocarcinoma-invading area
(Figure 6B). The heat map image shows the true positive predictions of adenocarcinoma cell
infiltration (Figure 6C,D) with the true negative prediction of prostatic hyperplasia (Figure 6A,B).

3.6. False Positive Prediction on TUR-P Specimens

By the transfer learning model (TL-colon poorly ADC-2 (20×, 512)), false positives
on the TUR-P specimens were not only due to prostatic hyperplasia, as observed for the
needle biopsy specimens (Figure 4E–H), but also due to inflammation (Figure 7A–D) and
false positives coinciding with areas of tissue degeneration caused by thermal ablation at
the specimen margins (Figure 7E–H) because in TUR-P, the endoscope is inserted into the
prostate through the urethra and the tissue is harvested with an electrocautery, resulting in
marginal degeneration of the specimen due to thermal cauterization.

4. Discussion

In this study, we trained deep learning models for the classification of prostate adeno-
carcinoma in needle biopsy WSIs. Of the three models we trained (Table 4), the best model
(TL-colon poorly ADC-2 (20×, 512)) achieved ROC-AUCs in the range of 0.967–0.978 on
the needle biopsy, in the range of 0.7377–0.9098 on the TUR-P, and 0.9873 on the TCGA
public datasets. The other two models were trained using the EfficientNetB1 [39] model
starting with pre-rained weights on ImageNet at different magnifications (10×, 20×) and
tile sizes (224 × 224, 512 × 512). The model based on EfficientNetB1 (EfficientNetB1 (20×,
512)) achieved high ROC-AUCs in close proximity to the values of, but lower than, the best
model (TL-colon poorly ADC-2 (20×, 512)). The best model (TL-colon poorly ADC-2 (20×,
512)) was trained by the transfer learning approach based on our existing colon poorly
differentiated adenocarcinoma classification model [36]. To train the models, we used only
1122 needle biopsy WSIs (adenocarcinoma: 438 WSIs, benign: 684 WSIs) without manual
annotations by the pathologists [22,37], as compared to the previous study (about 8400
needle biopsy WSIs for training) [21]. However, we needed to train the models for TUR-P
WSIs separately in the next step because TUR-P WSIs were not applicable to be predicted
precisely by the best model (TL-colon poorly ADC-2 (20×, 512)).

The best model (TL-colon poorly ADC-2 (20×, 512)) achieved similar values of the
ROC-AUC, log loss, accuracy, sensitivity, and specificity among three independent medical
institutes (Hospitals A, B, C) and the TCGA public dataset test sets (Tables 4 and 5), meaning
that the best model has general versatility in prostate needle biopsy WSIs.

Various benign (non-neoplastic) lesions can mimic adenocarcinoma on needle biopsy
specimens, which include glandular lesions such as adenosis, atrophy, verumontanum
mucosal gland hyperplasia, atypical adenomatous hyperplasia, nephrogenic metaplasia,
hyperplasia of mesonephric remnants, and basal cell hyperplasia [48]. Inflammation (acute
and chronic or granulomatous prostatitis) and prostatic hyperplasia are often present in
needle biopsy specimens, and they may become problematic to differentiate between benign
and adenocarcinoma if their histopathological features are similar to adenocarcinoma in
routine diagnosis. Similar to human pathologists, the major causes for false positives
predicted by the best model (TL-colon poorly ADC-2 (20×, 512)) were inflammatory cell
infiltration, especially histiocytes, lymphocytes, and plasma cells, which morphologically
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mimic adenocarcinoma cells and prostatic hyperplasia with irregularly shaped and different
sizes of tubular structures (Figure 4). In addition, normal benign prostate tissues including
seminal vesicles, paraganglia, and ganglion cells may also be confused histopathologically
with adenocarcinoma in needle biopsy specimens [48], which were also predicted as
adenocarcinoma at the tile level in the small areas of false positively predicted WSIs in
this study. Moreover, in routine clinical practice, prostate adenocarcinoma with atrophic
features is easily confused with benign acinar atrophy [49], which may cause false negative
prediction by deep learning models. It may be necessary to add controversial prostate
adenocarcinoma and benign WSIs, which are more likely to cause false positives and
false negatives, to attempt to further improve the model’s performance on such cases.
Interestingly, false positive predictions in cauterized areas of the marginal zone of the
specimens were characteristic of TUR-P WSIs (Figure 7). The lower observed results on
TUR-P were potentially due to the presence of prostate hyperplasia, which morphologically
mimics prostate adenocarcinoma. This indicates that to further improve performance on
TUR-P cases, we would require a training set that would specifically account for such cases
so as to aid the model in reducing false positives.

A greater number of prostate biopsies (usually 12-core systemic biopsy) are performed
currently, and more biopsy cores are submitted to surgical pathology than ever before,
resulting in a huge interpretive burden for pathologists. Indeed, many patients undergo
biopsy for elevated serum PSA with no other clinical evidence of cancer, resulting in an
enormous number of biopsies performed even if numerous diagnostic pitfalls (e.g., fatigue,
time-consuming workflow) and mimics of prostate cancer have been described. Thus,
the ultimate goal of prostate adenocarcinoma detection, as well as the prediction of the
outcome for the individual patient should be augmented by deep-learning-based software
applications. The deep learning models established in the present study achieved very high
ROC-AUC performances (Figure 2 and Table 4) on prostate needle biopsy WSIs; they offer
promising results that indicate they could be beneficial as a screening aid for pathologists
prior to observing histopathology on glass slides or WSIs. At the same time, it can be
used as a double-check to reduce the risk of missed cancer foci. The major advantage
of using an automated tool is that it can systematically handle large amounts of WSIs
without potential bias due to the fatigue commonly experienced by pathologists, which
could drastically alleviate the heavy clinical burden of practical pathology diagnosis using
conventional microscopes. While the results are promising, further clinical validation
studies are required in order to further evaluate the robustness of the models in a potential
clinical setting before they can actually be used in clinical practice. If such models are
deemed viable after rigorous clinical validation, they can transform the future of healthcare
and precision oncology.
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