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ABSTRACT nirK-type and nirS-type denitrifier communities mediate the conversion
of nitrite to nitric oxide, which is the key step in denitrification. Results of previous
studies have indicated that nirK-type and nirS-type denitrifiers may occupy different
niches; however, the mechanisms and drivers of their responses to environmental
changes within community assembly are poorly understood. In this study, we eval-
uated the distribution and assembly of nirK-type and nirS-type denitrifier commun-
ities along an elevation gradient from 1,800 to 4,100 m at Mount Gongga, China.
Results showed that elevational patterns of alpha diversity in nirk-type and nirS-type
denitrifier communities followed hump-backed patterns along the elevation gradient.
However, nirk-type denitrifier communities formed two distinct clusters that were
primarily separated by elevation, whereas nirS-type denitrifier communities formed
three distinct clusters that were primarily separated by forest type along the eleva-
tion gradient. Moreover, deterministic processes were dominant in governing the
assemblages of nirK-type and nirS-type denitrifiers. Soil pH was a key factor influenc-
ing the alpha and beta diversity of the nirK-type denitrifier communities, whereas
plant richness was a primary variable influencing nirS-type denitrifiers. Additionally,
our work revealed that soil denitrification potential was mainly explained by the vari-
ation in the beta diversity of denitrifier communities rather than the alpha diversity
of denitrifier communities or denitrifier abundances over a large elevation gradient,
and nirK-type denitrifiers played more important roles in soil denitrification. These
results may contribute to predicting the consequences of global changes on denitri-
fier communities and their ecological services.

IMPORTANCE Mount Gongga is the highest peak in the Hengduan Mountain region
and is located at the southeastern fringe of the Tibetan Plateau, Sichuan Province,
southwest China. As a transitional zone between the Tibetan Plateau and Sichuan
Basin, Gongga Mountain features particularly diverse topography, geology, climate,
and biodiversity and is a globally significant hot spot of biodiversity. In this contribu-
tion, we comprehensively describe the diversity and assembly of denitrifier commun-
ities along an elevation gradient on Gongga Mountain. Our findings established for
the first time that the distribution patterns of beta diversity and driving factors dif-
fered between nirK-type and nirS-type denitrifier communities, and deterministic
processes were dominant in shaping communities of denitrifiers. Moreover, the beta
diversity of denitrifier communities rather than alpha diversity or denitrifier abun-
dance played an important role in explaining denitrification potential, and the beta
diversity of nirK-type denitrifier communities was more important than nirS-type
denitrifier communities in soil denitrification. This work provides crucial insights into
the spatial distribution of denitrifier communities and their ecological function and
increases our understanding of the mechanisms underlying spatial distribution of
community assembly along large elevation gradients.
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oil denitrifiers are crucial in the reduction of nitrate (NO;~) and/or nitrite (NO,™) to

gaseous nitrogen (N,) during denitrification (1). The reduction of NO,™ to nitric ox-
ide (NO), the key step in denitrification, is catalyzed by nitrite reductase encoded by
the nirK or nirS gene (2). Therefore, nirK and nirS are typically used as effective marker
genes for characterizing the abundances and community composition of denitrifiers in
ecosystems (3, 4). These two genes are considered mutually exclusive among denitrifiers
(5), and most denitrifiers possess either nirK or nirS, although a few strains have been
reported to possess both genes (6). In addition, these two genes are thought to occur in
two ecologically distinct denitrifying groups, and denitrifiers with nirk and nirS genes may
differ in different denitrification abilities (7-9). However, the linkages among biogeo-
graphic distributions, assembly processes, and key drivers of soil denitrifier communities
as well as the potential denitrification rate (PDR) in ecosystems remain unclear.

Previous studies have shown that nirK-type and nirS-type denitrifier communities in
estuary, watershed, and agricultural ecosystems respond differently to environmental
variables, such as soil type, climate, organic carbon, nitrate, plants, oxygen concentra-
tion, and salinity (7, 10-12). For example, Azziz et al. (10) reported that nirS-type deni-
trifier communities are more sensitive than the nirk-type denitrifiers to soil type, rice
cultivar, and water management. Moreover, nirS-type denitrifiers are more likely to be
influenced by plant species than nirK-type denitrifiers in terrestrial ecosystems (11, 13-
15). Plant communities influence soil microbial assemblages either through the effects
of rhizodeposits or the alteration of soil conditions (11, 16). Indeed, Hou et al. (11)
showed the nirS-type denitrifiers to be more sensitive than nirK-type denitrifiers to the
rhizosphere effect in agricultural soils and proposed that root exudates, acting as in-
ducible carbon sources, can exhibit different effects on nirS-type and nirK-type denitri-
fier communities. In contrast, a previous study reported a stronger effect on nirK-type
denitrifiers than nirS-type denitrifiers in the rhizosphere of a wetland plant (17).
Similarly, soil pH also shows different effects on the abundances and communities of
nirK-type and nirS-type denitrifiers in various ecosystems (4, 18, 19). For example, nirS-
type denitrifier communities are more sensitive to pH gradients (ranging from pH 4.2
to 6.6) than are nirK-type denitrifiers under a long-term (50 years) pH manipulation (4).
In addition, Ligi et al. (20) reported that the abundance of the nirS gene, but not that
of the nirK gene, was affected by soil pH in a constructed riverine wetland complex.
These inconsistent results may be attributed to different selection mechanisms for vari-
ous denitrifiers in specific ecosystems.

Community assembly processes include deterministic and stochastic processes (21,
22). According to the framework described in previous studies (21), deterministic proc-
esses include heterogeneous and homogenous selection, whereas stochastic processes
include dispersal limitation, homogenizing dispersal, and drift. Homogeneous selection
(under homogeneous conditions) results in lower variation in community structure or
species/compositional turnover, whereas heterogeneous selection under heterogeneous
environmental conditions produces high variation in community structure. Mountain eco-
systems exhibit great changes in climate, plant parameters, and soil properties over short
spatial distances, which can be used as analogs to environmental gradients to understand
microbial activity, community assembly, and their relationships with environmental fac-
tors. Previous studies have revealed that deterministic processes (heterogeneous selec-
tion) dominate in the assembly processes of soil microbial communities (including com-
munities of soil bacteria, diazotrophs, and methanotrophs) along a large altitudinal
gradient, among which climate, plant, and soil parameters play important roles in shaping
microbial communities (23-25). Moreover, along with environmental factors (such as tem-
perature and plant parameters) that covary with elevation and could influence the distri-
bution patterns of soil microbial communities (23, 26), geological processes (such as par-
ent rock and weathering) explain additional variation in plant and microbial communities
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(27). However, the relative contributions of deterministic versus stochastic processes in
the assemblies of nirK-type and nirS-type denitrifier communities along large elevation
gradients remain unknown.

Various elevational biodiversity (species richness) patterns of soil bacterial commun-
ities (23, 28-30) and functional microbial groups, e.g. diazotrophs (25) and methano-
trophs (24), have been observed, suggesting that microbial diversity patterns along eleva-
tion gradients are ecosystem specific and scale dependent. However, previous studies
have primarily focused on the changes in elevational biodiversity patterns in terms of spe-
cies richness (a-diversity), and the elevational changes in microbial community turnover
(B-diversity) have been much less studied (31). Moreover, some studies have suggested
that the B-diversity of denitrifier communities is a more robust indicator for interpreting
the variation in PDR than denitrifier abundances in arid and semiarid regions (32, 33).
However, denitrifier gene (nirK or nirS) abundances, but not denitrifier communities, are
reported to be good predictors of PDR (1, 34). For example, studies have reported PDR to
be correlated with the abundance of nirS-type denitrifiers or nirk-nirS gene abundance in
fertilized grassland soil (35) and in soils from a permafrost black spruce forest to a rich fen
(1), whereas another study also found PDR to be positively correlated with the abundance
of nirK-type denitrifiers but not correlated with changes in corresponding community
composition in forest soils (34). In addition, previous studies have suggested that nirS-
type denitrifiers are more likely to be capable of complete denitrification under suitable
conditions than are nirK-type denitrifiers (36). Therefore, nirS-type denitrifiers may play
more important roles in denitrification, since they can produce greater quantities of deni-
trification enzyme than can the nirK community (4). However, the relative contributions of
nirk-type and nirS-type denitrifier communities/abundances to PDR remain poorly under-
stood along elevation gradients.

Mount Gongga is the highest mountain on the eastern boundary of the Tibetan
Plateau. The drastic environmental changes along the elevation gradient on the east-
ern slope of Mount Gongga offer a unique platform for investigating the biogeographi-
cal distributions of nirK-type and nirS-type denitrifiers and the ecological processes reg-
ulating community assembly over such a large elevational scale. Hence, our primary
objectives were to compare the biogeographical distributions, assembly processes,
and key driving factors of the variations of nirk-type and nirS-type denitrifiers and to
assess the relationships between variation in nirk-type and nirS-type denitrifiers and
PDR along the elevation gradient. Specifically, we hypothesized (i) that deterministic
processes (heterogeneous selection) dominate the assembly processes of denitrifier
communities and that soil pH and plant parameters are the key environmental factors
shaping nirK-type and nirS-type denitrifier communities along an elevation gradient,
and (i) that PDR is mainly explained by variation in the beta diversity of denitrifier
communities rather than by denitrifier abundances or the alpha diversity of denitrifier
communities along a large elevation gradient and that nirS-type denitrifiers play more
important roles in soil denitrification.

RESULTS

Climate, plant, and soil properties along the elevation gradient. The mean an-
nual temperature (MAT) decreased and the mean annual precipitation (MAP) increased
with elevated altitude. The average total carbon (TC), total nitrogen (TN), extractable
nitrate ion (NO5 ™), and conductivity were significantly higher at low elevations (1,800
to 2,800 m) than those at high elevations (3,000 to 4,100 m). Soil pH (ranging from 3.53
to 7.23) was significantly higher at 1,800 to 2,600 m than at 2,800 to 4,100 m. The ex-
tractable ammonium ion (NH,*) levels varied from 1.81 to 62.78 mg (kg dry weight
soil)~" along the elevation gradient. Among the woody plant species, the evergreen
broadleaf trees (EB), the deciduous broadleaf trees (DB), and dark coniferous trees (DC)
exhibited an uneven distribution at all elevations. Plant richness first decreased and
then increased with increasing altitude. These data were from Li et al. (23).
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FIG 1 a-Diversity indices for nirk-type and nirS-type denitrifier communities, including observed operational taxonomic units (OTUs) and Chao1 along the

elevation gradient.

The a-diversity, community composition, and abundances of nirK-type and nirS-
type denitrifiers. The a-diversities of nirK-type and nirS-type denitrifier communities
exhibited hump-backed patterns along the elevation gradient, and the peak values
occurred at 2,600 and 3,800 m, respectively (Fig. 1). Moreover, an abrupt decrease in
alpha diversity of denitrifier communities occurred between 2,600 and 2,800 m.
However, the results of nonparametric multivariate analysis of variance (NPMANOVA)
showed that the nirK-type and nirS-type denitrifier communities changed significantly
with elevation, except for those in several neighboring sites (Fig. 2; see also Tables S1
and S2 in the supplemental material). The nirK-type denitrifier communities formed
two distinct clusters that were primarily separated by elevation, and they were also
separated by the presence of mixed forests of deciduous broadleaf and dark coniferous
species at 2,800 m (Fig. 2). However, nirS-type denitrifier communities formed three
distinct clusters that were separated primarily by deciduous broadleaf/dark coniferous
forests and alpine shrub meadows along the elevation gradient (Fig. 2).

The nirK-type denitrifier communities were dominated by class Alphaproteobacteria
(relative abundance, 63 to 88%) (Fig. S1), followed by Betaproteobacteria (3 to 10%) and
Gammaproteobacteria (0.1 to 5%) (Fig. S1). In this study, the genera with relative abun-
dance of =0.05% at least at one elevation were defined as major genera. The major genera
of nirk-type denitrifiers were Achromobacter, Bradyrhizobium, Chelativorans, Mesorhizobium,
Nitrosomonas, Pseudomonas, and Rhodopseudomonas (Fig. 3). The nirS-type denitri-
fier communities were dominated by classes Betaproteobacteria (23 to 82%) and
Gammaproteobacteria (9 to 68%) (Fig. S1), whereas Alphaproteobacteria only accounted
for 2 to 13% (Fig. S1). The major genera of nirS-type denitrifiers included Azoarcus,
Bordetella, Bradyrhizobium, Cupriavidus, Dechlorospirillum, Halomonas, Pseudomonas,
Ralstonia, Rhodanobacter, Rubrivivax, Sulfuricaulis, Sulfuritalea, and Thauera (Fig. 3).
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FIG 2 Principal coordinate analysis (PCoA) of nirk-type and nirS-type denitrifier community composition along the elevation gradient, ranked by elevation
(upper and lower right) and vegetation type (upper and lower left) based on the Bray-Curtis dissimilarity matrix. Ellipses were defined as 95% confidence

intervals for the centroids of denitrifiers.

The different patterns of nirk-type and nirS-type denitrifiers along the elevation gra-
dient were also reflected in specific taxa (Fig. S2 and S3). Among the major genera,
only Bradyrhizobium and Pseudomonas occurred in both nirk-type and nirS-type denitrifier
communities (Fig. 3). However, nirk-type denitrifiers in Bradyrhizobium and Pseudomonas
showed response patterns to elevation differing from those of nirS-type denitrifiers.
Specifically, the relative abundance of nirK-type Bradyrhizobium increased significantly
with elevation, whereas the relative abundance of nirS-type Bradyrhizobium decreased
significantly with elevation. The presence of nirk-type Pseudomonas was only detected at
high elevations of 3,600 and 3,800 m, with relative abundance first increasing and then
decreasing, whereas the relative abundance of nirS-type Pseudomonas increased at a low
elevation and then decreased at elevations above 3,200 m (Fig. S2 and S3).

The numbers of copies of nirK and nirS genes decreased with increasing altitude, ranging
from (1.40 = 0.46) x 108 to (8.89 = 4.89) x 108 copies g~ dry soil and (1.05 = 0.26) x 107
to (1.05 = 6.61) x 107 copies g~ dry soil, respectively (Table S3). The abundances of the
nirk genes were 16.67 = 9.82 to 44.99 + 11.77 times greater than those of nirS genes at all
elevations (Table S3).

Ecological processes shaping denitrifier community assemblies. For nirk-type
and nirS-type denitrifier communities, the mean nearest taxon index (NTI) was 1.27 or
1.38, respectively (P < 0.05), indicating that both nirK-type and nirS-type communities
were phylogenetically clustered and that the assemblies of nirK-type and nirS-type
denitrifier communities were affected mainly by environmental filtration. Moreover,
based on the results of phylogenetic null model analysis, heterogeneous selection and
homogeneous selection explained 40.9% and 18.2%, respectively, of the turnover in
community composition for nirK-type denitrifiers, with 25.3%, 8.6%, and 7% explained
by dispersal limitation, homogenizing dispersal, and undominated, respectively (Fig. 4).
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For the nirS-type denitrifier communities, heterogeneous and homogeneous selection
explained 44.5% and 16.7% of the community turnover, followed by 21.4%, 9.8%, and
7.5% explained by dispersal limitation, homogenizing dispersal, and undominated,
respectively (Fig. 4).

Factors influencing the community composition and abundances of nirK-type
and nirS-type denitrifiers along the elevation gradient. Most observed environmen-
tal factors were significantly associated with community-level attributes and the abun-
dances of denitrifiers (Table S4). Among all the variables, soil pH and the total diameter
at breast height (DBH) in DC (DBH-DC) forest explained the most variation in the a-diversity
of nirK-type denitrifier communities, whereas plant richness was the main predictor of the
a-diversity of nirS-type denitrifiers (Table 1). In addition, the DBH in DB (DBH-DB) and TC/TN
explained the most variation in number of copies of nirK (Table 1), whereas TN and plant
richness were the major predictors for the nirS (Table 1). Soil pH showed a significant correla-
tion with the relative abundances of Bradyrhizobium, Chelativorans, and Rhodopseudomonas
in the nirk-type communities (Table S5), whereas plant richness was significantly correlated
with the relative abundances of Bradyrhizobium, Rubrivivax, Cupriavidus, Ralstonia, Halomonas,
and Thauera in the nirS-type communities (Table S6).

Partial least-squares path modeling (PLS_PM) explained 89% and 82% of the variation in
nirk-type and nirS-type denitrifier communities, respectively (Fig. 5) (goodness of fit = 0.69
and 0.72, respectively). Geographical distance (PCNM1) significantly influenced nirK-type
denitrifiers directly or indirectly through its effect on climate (MAT), MAT significantly influ-
enced nirk-type denitrifiers indirectly through its effect on plants, and plants significantly
influenced nirK-type denitrifier communities directly or indirectly through their effects on
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FIG 4 Phylogenetic null model approach was used to quantify the relative contributions of deterministic
processes (including heterogeneous selection and homogeneous selection) and stochastic processes (including
dispersal limitation, homogenizing dispersal, and drift) to nirk-type and nirS-type denitrifier community assembly.

soil properties (Fig. 5). The direct effect of soil properties (path coefficient of 0.32) on the
nirk-type denitrifiers exceeded those of PCNM1 (path coefficient of 0.26) and plants (path
coefficient of 0.28) (Fig. 5). Among the environmental variables, soil pH was the most im-
portant factor shaping nirk-type communities (Fig. 6, Table 2).

Geographical distance (PCNM1) significantly influenced the nirS-type communities
indirectly by its effect on climate (MAT). MAT significantly influenced nirS-type denitri-
fiers directly or indirectly by its effect on plants, and plants significantly influenced
nirS-type denitrifier communities directly or indirectly by their effects on soil properties
(Fig. 5). The direct effect of plants (path coefficient of —0.47) on nirS-type denitrifiers
was greater than those of MAT (path coefficient of —0.36) and soil properties (path
coefficient of —0.15) (Fig. 5). Among the environmental variables, plant richness was
the main factor shaping nirS-type denitrifier communities (Fig. 6, Table 2).

The results of cooccurrence network analysis showed that positive correlations
dominated in relationships between nirk-type and nirS-type denitrifiers (Fig. S4). Moreover,
plant richness played an important role in influencing the cooccurrence relationships
between nirk-type and nirS-type denitrifiers (Fig. S4).

MSystems’

TABLE 1 Roles of environmental variables on a-diversity and copy numbers of the nirK and nirS genes evaluated by stepwise multivariate

regression modeling

a-Diversity/copy Explanatory Contribution of the Adjusted R? for full
Gene no. test variable individual predictor? (%) P value model (P value)
nirK Chao 1 pH 13.1 0.001 0.20 (<0.0001)
DBH-DC 7.2 0.050
Observed OTUS pH 10.6 0.012 0.20 (<0.0001)
DBH-DC 9.5 0.024
Copy no. DBH-DB 19.2 0.028 0.35(<0.0001)
TC/TN 16.0 0.000
nirS Chao 1 Plant richness 30.1 0.000 0.40 (<0.0001)
NO,~-N 9.9 0.002
Observed OTUS Plant richness 15.9 0.000 0.23 (<0.0001)
NO,~-N 6.8 0.007
MAT 0.5 0.046
Copy no. TN 213 0.001 0.51 (<0.0001)
Plant richness 17.4 0.008
Cond 7.5 0.008
DBH-EB 4.5 0.017

aPercentage of the total sum of squares explained by each variable. DBH represents the total diameter at breast height, while DBH-DB, DBH-EB, and DBH-DC represent the
percentage representation of deciduous broadleaf trees, evergreen broadleaf trees, and dark coniferous trees, respectively, in total DBH. TC, total carbon; TN, total nitrogen;

MAT, mean annual temperature; Cond, Conductivity.
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Soil denitrification potential and its relationship with denitrifier communities
and abundances. Based on the acetylene inhibition technique, the PDR was esti-
mated. The results showed that the PDR was significantly higher at low elevations
(ranging from 21.30 to 285.96 ng N,O-N g~ dry soil h~', 1,800 to 2,600 m) than at
high elevations (ranging from 1.32 to 63.50 ug N,O-N g~ dry soil h~7, 2,800 to 4,100
m) (Fig. 7). Results of multiple regression on distance matrices (VRM) showed that the
B-diversity of nirk-type and nirS-type denitrifier communities explained PDR well, and
B-diversity of nirK-type denitrifier communities were more important in explaining
PDR than were nirS-type denitrifiers (Fig. 6). However, the abundances and a-diversity of
nirk-type and nirS-type denitrifier communities did not show significant effects on PDR.

DISCUSSION

The patterns of assembly of nirK-type and nirS-type denitrifier communities
along the elevation gradient. The a-diversity of the nirk-type and nirS-type denitrifier
communities showed hump-backed patterns along the elevation gradient. Moreover,
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factors in the turnover of nirk-type and nirStype denitrifier communities along the altitudinal gradient (a) and the relative variation in
nitrification potential explained by nirk-type and nirS-type denitrifier communities (b) in the low- and high-altitudinal sections, respectively.
MAT, mean annual temperature; MAP, mean annual precipitation; PR, plant richness; TC, total carbon; TN, total nitrogen; Cond, conductivity.
DBH represents the total diameter at breast height. DB, EB, and DC represent the percent representations of deciduous broadleaf trees,
evergreen broadleaf trees, and dark coniferous trees, respectively, in total DBH. **, P < 0.01; ***, P < 0.001.
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TABLE 2 Partial Mantel test analysis between the nirK- and nirS-type denitrifier communities and environmental factors along the elevation
gradient?

nirK-type communities nirS-type communities
Factor pMantel.r P value pMantel.r P value
Elevation 0.02 0.22 —0.07 1.00
Longitude 0.1 0.01* 0.24 0.00**
Latitude 0.07 0.04* 0.1 0.01*
pH 0.28 0.00** 0.29 0.00**
NH,*-N 0.10 0.02* 0.16 0.00**
NO;~-N —0.04 0.76 0.10 0.04*
TC 0.03 0.23 0.12 0.01*
TN 0.03 0.20 0.1 0.01*
TC/TN 0.05 0.14 0.04 0.21
Conductivity 0.05 0.14 0.14 0.01*
MAT —0.08 1.00 —0.10 1.00
MAP 0.02 0.21 —0.05 0.99
Plant richness 0.15 0.00** 0.36 0.00**
DBH-DB 0.03 0.23 0.19 0.00**
DBH-EB 0.03 0.26 0.18 0.00**
DBH-DC 0.13 0.00** 0.31 0.00**

aTC, total carbon; TN, total nitrogen; MAT, mean annual air temperature; MAP, mean annual precipitation. DBH represents the total diameter at breast height, while DBH-DB,
DBH-EB, and DBH-DC represent the percent representation of deciduous broadleaf trees, evergreen broadleaf trees, and dark coniferous trees, respectively, in total
DBH. *, P< 0.05; **, P < 0.01.

an abrupt decrease in the a-diversity of denitrifier communities occurred between
2,600 and 2,800 m (Fig. 1). Similar patterns have also been reported for the elevational
changes of soil bacteria (28), diazotrophs (25), and methanotrophs (24) along the same
elevation gradient. Such a pattern of variation may be ascribed to the significant differ-
ences in soil properties (such as pH, NO;~-N, TC, TN, and conductivity) between low
(1,800 to 2,800 m) and high (3,000 to 4,100 m) elevations (23). Indeed, the variations in
these soil properties significantly influenced nirK-type and nirS-type denitrifiers (Fig. 6;
see also Tables S4 to S6 in the supplemental material), consistent with the findings of
previous studies (7, 10-12). In addition, plants can influence nirk-type and nirS-type
denitrifier communities (11, 14, 15). In this study, plants changed from mixed forests of
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FIG 7 Soil denitrification potential along the elevation gradient.
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deciduous broadleaf and coniferous species to uniformly coniferous forests at 2,850 m,
suggesting that the changes in plant community at approximately 2,850 m contribute
to the differentiation in a-diversity of denitrifier communities between low and high
elevations. In addition to the contemporary factors described above, the elevational
breakpoint of denitrifier diversity at approximately 2,800 m coincided with the Indus-
Yalu suture zone fault in this region, which implies that past geological processes (e.g.,
parent rock and weathering) have left a strong signature on the elevational patterns of
soil microbial diversity (27).

Moreover, nirk-type denitrifier communities formed two clusters at low (1,800 to
2,800 m) and high (3,000 to 4,100 m) elevational sections (Fig. 2). Similar results have
been reported for the distribution of soil bacterial and methanotrophic communities
along the same elevation gradients (23, 24), and differences in community structure
between the lower and higher elevations were attributed mainly to changes in soil pH.
However, unlike the nirK-type denitrifiers, three clusters of nirS-type denitrifier com-
munities were observed along the elevation gradient (Fig. 2), which was consistent
with the changes in plant communities. The differences in elevation pattern between
the nirS-type and nirK-type denitrifier communities suggest that they are adapted to
different ecological niches. nirK-type denitrifier communities were dominated by class
Alphaproteobacteria, whereas the nirS-type denitrifier communities were dominated by
classes Betaproteobacteria and Gammaproteobacteria (Fig. S1). This is consistent with
the report by Heylen et al. (37). The major genera Bradyrhizobium and Pseudomonas
showed different patterns of response to elevation between nirk-type and nirS-type
denitrifiers (Fig. S2 and S3). The relative abundance of nirk-type Bradyrhizobium was pri-
marily correlated with soil pH, whereas relative abundances of nirS-type Bradyrhizobium
were primarily correlated with plant richness (Table S6). These results further support the
possibility that they are adapted to different ecological niches.

Deterministic processes dominating the assemblies of nirK-type and nirS-type
denitrifier communities. This study proved that nirK-type and nirS-type denitrifier
communities were phylogenetically clustered. Deterministic processes (heterogeneous
selection) were dominant in shaping nirK-type and nirS-type communities over the ele-
vation gradient, and similar results have also been observed for soil bacteria (23, 30), diaz-
otrophs (25), and methanotrophs (24) along the same elevation gradient. Furthermore,
heterogeneous selection explained a high fraction of turnover in community composition
of nirk-type and nirS-type denitrifiers (Fig. 4). These results provide partial support for hy-
pothesis i. Natural selection was not able to explain denitrifier community structure com-
pletely because the drastic variation in climate, vegetation, and soil properties over a short
spatial distance along the elevation gradient resulted in high variation in community
structure. In addition, microbes may have ubiquitous dispersal capabilities due to their
size and lower degree of restriction by geographical barriers (38); however, microbes have
been recognized to be dispersal limited through a modeling approach (39). Indeed, this
study demonstrated that dispersal limitation was also important in explaining the varia-
tions in the nirk-type and nirS-type denitrifier communities in montane ecosystems
(Fig. 4). Therefore, our results confirmed the interactive effect of heterogeneous selection
and dispersal limitation in shaping soil microbial communities.

Different key drivers shifting nirK-type and nirS-type denitrifier communities.
Soil pH was the primary environmental variable explaining the variation in nirk-type
denitrifier communities (Fig. 6, Tables 1 and 2). Indeed, previous studies have demon-
strated the importance of pH in shaping denitrifier communities and other microbial
groups in various ecosystems (4, 40, 41). Appropriate pH is crucial for the growth and
activity of denitrifiers (4), and it is considered the primary variable that links soil organic
matter recycling, plant nutrition, and plant-microbial interactions in soils (13, 42). For
example, soil pH can influence the level of dissolved organic matter by affecting the
sorption of dissolved organic matter components to soil molecules (13). Changes in
nutrient availability can influence the abundances and community composition of
denitrifiers (4). However, there is a debate about the relative effects of pH and climate
(temperature) on soil microbial communities (43). In this study, PLS_PM analysis
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showed that the direct effect of a soil property (pH) on nirk-type denitrifier commun-
ities was greater than that of climate (Fig. 5). Moreover, soil pH showed a significant
correlation with the relative abundances of Bradyrhizobium, Chelativorans, and
Rhodopseudomonas (Table S5). These nirK-type denitrifiers were abundant general-
ists found in all the samples (Fig. S2). Therefore, soil pH may directly mediate nirk-
type denitrifiers by species sorting mechanisms that shift the relative abundances of
Bradyrhizobium, Chelativorans, and Rhodopseudomonas.

Plant richness was the main factor explaining the variation in the nirS-type denitri-
fier communities (Fig. 6, Tables 1 and 2). The results described above provide support
for hypothesis i. The pattern of distribution of nirS-type denitrifiers was consistent with
spatial variation in the plant community, which suggests that nirS-type denitrifiers are
more sensitive to plant properties than are nirk-type denitrifiers in mountain ecosys-
tems. Previous studies have reported nirS-type denitrifiers to be more closely associ-
ated than nirK-type denitrifiers with plants in forest soils (13), watershed soils (14), agri-
cultural soils (11), and wetland soils (15), although some other studies have shown that
nirS-type denitrifiers are sensitive to chemical and physical properties (44, 45).
Genomic data have shown that the nirS-type denitrifiers may have a more complete
denitrification pathway than that of nirK-type denitrifiers (46), and the majority of nirS-
type denitrifiers are anaerobic heterotrophic microorganisms that can grow on the ex-
udation of labile carbon (10, 11). Plants influence denitrifier communities not only by
directly increasing the amount and quality of plant aboveground (litter) and below-
ground (root exudation) materials (11, 16, 47) but also by indirectly modifying soil
physicochemical properties, including soil permeability, pH, substrate availability, and
soil moisture (48-50). Plant richness was significantly correlated with the relative abun-
dances of Bradyrhizobium, Rubrivivax, Cupriavidus, Ralstonia, Halomonas, and Thauera
(Table S6), which were abundant nirS-type denitrifiers widely distributed along the ele-
vation gradient (Fig. S3). Therefore, plants may directly influence nirS-type denitrifiers
by shifting the abundances of these microbes and indirectly by their effects on soil
properties. Additionally, plant richness also played an important role in influencing the
cooccurrence of nirk-type and nirS-type denitrifiers along elevation gradients (Fig. S4),
suggesting that the cooccurrence relationships between nirK-type and nirS-type deni-
trifiers will readily suffer the effects of variation in plant communities in mountain eco-
systems in the future.

Relationships between denitrifier communities and soil denitrification potential.
In this study, the distinct changes in PDR were significantly associated with the
changes in B-diversity of nirkK-type and nirS-type denitrifier communities (Fig. 6). This
provides partial support for hypothesis ii. This result was consistent with those of
recent studies that have found nirK-type and nirS-type communities to play important
roles in determining denitrification rates in grassland systems (35) and in pasture soils
(32). Our results suggest that the predictive strength of models explaining facultative proc-
esses could be improved by taking into account denitrifier communities. Moreover, the
B-diversity of the nirK-type denitrifiers explained more of the variation in PDR than did that
of nirS-type denitrifiers, implicating more important roles of nirk-type denitrifiers in soil deni-
trification. This result did not support hypothesis ii, that the composition of nirS-type com-
munities plays more important roles in explaining PDR. This result was also inconsistent with
finding of previous studies that have reported that nirS-type denitrifiers were able to pro-
duce greater quantities of denitrification enzyme and, thus, maintain higher PDR (4) and
that nirS-type denitrifiers are more likely than nirk-type denitrifiers to be capable of com-
plete denitrification (36). These inconsistent results may be ascribed to the increased sensi-
tivity to pH of transcription found in nirS-type denitrifiers, with transcription limited at low
pH (for example, pH 4.7) (4, 51); therefore, nirS-type denitrifiers have poor capacity to reduce
NO,™ to NO at low pH values. Unlike nirS-type denitrifiers, nirk-type denitrifiers did not show
sensitivity to soil pH; therefore, nirk-type denitrifiers may have a competitive advantage at
low pH values. However, the abundances of denitrifiers did not show significant correlations
with PDR. This finding is inconsistent with previous reports that gene abundance can be
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used as an integrative ecological variable to predict the dynamics of PDR (1, 7, 33). This con-
tradiction might be ascribed to the dominant effects of environmental variables on PDR,
since the fluctuations of certain environmental factors (such as soil pH and total organic car-
bon) may result in simultaneous changes in the denitrification rate but not denitrifier gene
abundances (33).

Conclusions. This study revealed elevation patterns of nirkK-type and nirS-type deni-
trifier communities along the elevation gradient on Mount Gongga. We have found,
for the first time, that deterministic processes, mainly heterogeneous selection, were
more important than other processes in shaping the assemblies of nirkK-type and nirS-
type denitrifier communities. Moreover, the primary influencing variables were pH for
nirK-type denitrifiers and plant richness for nirS-type denitrifiers. In addition, the B-di-
versity of nirK-type denitrifier communities explained more variation in PDR than that
of nirS-type denitrifier communities. These results indicate close linkages among deni-
trifier diversity, climate, plant richness, and soil properties, which are critical for predict-
ing the consequences of global changes on denitrifier communities and their ecologi-
cal functions.

MATERIALS AND METHODS

Site description, sample collection, and soil characterization. Mount Gongga (29°33’ to 29°36’ N,
101°57" to 102°05’ E) is located on the eastern boundary of the Tibetan Plateau, Sichuan Province,
southwest China. Mount Gongga is also the easternmost 7,556-m peak in the world and the third high-
est peak outside the Himalayan/Karakoram Range, after Tirich Mir and Kongur Tagh. The eastern slope
of Mount Gongga is relatively steep (average slope, 75%), and the western slope is less steep (average
slope, 25%). The mean annual temperature on the eastern slope of Mount Gongga decreases by 0.67°C
when the elevation increases by 100 m, whereas the mean annual precipitation increases by 67.5 mm.
Climatic and topographic variation create a vertical zonation of different forest types, with the vegeta-
tion on the east aspect of Mount Gongga representing the complete vegetation spectrum of the sub-
tropical region in China. Evergreen broadleaf forests range from 1,200 to 1,800 m and mainly include
Lindera spp., Cinnamomum spp., Cyclobalanopsis spp., etc. Mixed evergreen and deciduous broadleaf for-
ests range from 1,800 to 2,500 m and mainly include Lithocarpus cleistocarpus and Quercus spp. Mixed
forests of deciduous broadleaf and coniferous species range from 2,500 to 2,850 m and mainly include
Tsuga dumosa, Picea brachytyla, and Acer flabellatum. From 2,850 m up to the treeline at approximately
3,850 m, the species Abies fabri is dominant in the subalpine forests. From 3,600 to 3,700 m, alpine
shrubs (Rhododendron lapponicum) dominate in the lower region, and mixed mosaics of alpine shrubs
and meadows range from 3,650 to 4,200 m (52).

Soil samples were collected in October 2014 from 12 sites along a 1,800- to 4,100-m elevation gradi-
ent with a pairwise interval of approximately 200 m along the east slope of Mount Gongga, as described
by Li et al. (23). Briefly, at each sampling site, eight 10-m by 10-m plots were established. At each plot,
five random soil core samples (0 to 10 cm) were collected using a soil corer (2.5-cm diameter) and then
pooled as one composite sample for further analysis. Overall, 96 topsoil samples were collected from 12
sites along the elevation gradient. After passing through a 2-mm sieve, each fresh soil sample was sepa-
rated into two parts, one of which was stored at 4°C for measuring soil physiochemical properties,
whereas the other was stored at —40°C for molecular analysis.

The following climatic, plant, and soil properties were collected or determined and used in subse-
quent statistical analyses: latitude; longitude; elevation; MAT; MAP; TC, TN, NH,*, and NO,~ concentra-
tions; pH; and conductivity. Moreover, the plant species composition and richness were recorded in
each plot (23). The diameter at breast height was measured for each woody plant, and the percentages
of total DBH of EB, DB, and DC were calculated at each elevation based on the sum of diameters of all
the woody plants at each elevation (23). Descriptions of climate data collection and plant and soil prop-
erty measurements are available in Li et al. (23).

DNA extraction and qPCR amplification. Total soil DNA was extracted from 0.25 g soil using a
MoBio Powersoil DNA isolation kit (San Diego, CA, USA) by following the manufacturer’s instructions.
The concentration and purity of the extracted DNA were quantified using a NanoDrop spectrophotome-
ter and 1% agarose gels, and high-quality DNA was stored at —20°C for downstream analysis. The nirK
and nirS genes were amplified using the primer pairs F1aCu/R3Cu (53) and cd3aF/R3cd (54), respectively.
Quantitative PCR (qPCR) is an effective method and is widely used to determine the abundances of deni-
trifier genes (nirK and nirS) (1, 55). Despite its high variability, qPCR still allows for a comparative analysis
of the relative abundance of each gene across the different soil samples (56). The reaction volume was
10 wl and contained 0.5 wl of each primer, 5 ul of 2x SYBR green gPCR master mix (Bio-Rad, USA), 2 ul
of DNA template, and 2 ul of sterilized water. PCR was performed in a thermocycler for 5 min at 95°C,
followed by 40 cycles of denaturation at 95°C for 30 s, annealing for 30 s (57 and 55°C for the nirK and
nirS genes, respectively), and extension at 72°C for 30 s. Melting curve analysis was conducted after
amplification. The gPCR standards for quantification were obtained from PCR amplification products of
genes from environmental DNA using each primer set, and the detailed method is available in Kou et al.
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(57). Amplification efficiencies were 99% and 98% for the nirK and nirS genes, respectively, with R? values
higher than 0.99 and no detection of signals in the negative controls.

PCR amplification and MiSeq sequencing. Amplification of nirK and nirS genes was performed
using the gene primers F1aCu/R3Cu (53) and cd3aF/R3cd (54), respectively. The 25-ul reaction system
contained 0.3 uM forward and reverse primers, 12.5 ul of 2x EasyTaq PCR SuperMix (TransGen Biotech,
China), 25 ng DNA template, and sterile water. Thermal cycling included an initial denaturation at 95°C
for 5 min, followed by 35 cycles of amplification (94°C for 30 s, 57°C for nirK gene or 55°C for nirS gene
for 1 min, and 72°C for 3 min) and a final extension at 72°C for 8 min. Four replicate PCR products from
the same DNA sample were pooled and purified using a DNA gel extraction kit (Axygen, USA) by follow-
ing the manufacturer's instructions, and the concentration and purity of DNA were determined using a
NanoDrop spectrophotometer. PCR products were mixed in equal amounts and sequenced with an
lllumina MiSeq PE300 sequencer by following the 2 x 300 bp paired-end sequencing protocol at
Chengdu Institute of Biology, CAS, China. The error rate of the sequencing platform was 1.5% for nirK
and 2.1% for nirS.

Processing of sequence data. The QIIME pipeline was used to analyze raw sequences according to
the barcodes, with trimming and quality filtering (58). Reads containing any ambiguous bases or any nu-
cleotide mismatches within the barcodes or primer sequences were removed prior to analysis. Reads
longer than 300 nucleotides and with high average quality score (Q = 30) were used for further analysis.
Chimeric sequences (averages of 2.9 and 4.7% for the nirK and nirS genes, respectively) were removed
using Usearch 8 (59). Nonchimeric sequences with frameshifts (averages of 7.3% for nirk and 8.3% for
nirS) were discarded (60). The analysis described above resulted in 217,082 (nirK) and 280,487 (nirS)
high-quality sequences. All samples were resampled to an equal depth of 1,500 sequences per sample.
Operational taxonomic unit (OTU) clustering was performed at a 3% dissimilarity cutoff value based on
the nucleotide sequences using the UCHIME algorithm (v4.2.40) (61). Furthermore, the databases for
both the nucleotide sequence alignment and species assignments were extracted from NCBI (http://
www.ncbi.nlm.nih.gov/) and the Ribosomal Database Project function gene pipeline (http://fungene
.cme.msu.edu/) (11, 62). To reduce sequence redundancy in diversity computation, identical nirk and
nirS sequences were dereplicated using PRINSEQ (63). Classification of OTUs was performed using BLAST
and the lowest common ancestor (LCA) algorithm in MEGAN (64). Related scripts about the bioinfor-
matic analysis of nirK and nirS genes are available at http://egcloud.cib.cn and http://Ixzgroup.cib.cas.cn/
kytj/yjff/.

Estimation of ecological processes shaping community assembly. A phylogenetic null model
approach was used to quantify the ecological processes shaping community assembly (21, 65, 66). We
calculated the nearest taxon index (NTI) of each sample and B-nearest taxon index (BNTI) for paired
samples using the R functions “comdistnt” and “ses.mntd” in the package “picante” (67, 68). The NTI can
be used to examine the average taxonomic distance between each species and its closest relative in the
tree (69). In general, NTI values significantly greater than zero indicate phylogenetic clustering; con-
versely, NTI values significantly less than zero indicate greater influence of stochastic processes (21). If
BNTI > 2 or BNTI < —2, deterministic processes are the most important factors in community assembly
(21), whereas if |BNTI| < 2, stochastic processes are critical in shaping community composition.
Specifically, if BNTI > 2, pairwise comparisons were evaluated as the contribution of heterogeneous
selection, whereas if BNTI < —2, pairwise comparisons were estimated as the contribution of homoge-
neous selection (21). The Raup-Crick metric incorporating the relative abundances of species (RCbray) was
used to further quantify the stochastic processes (21). If | BNTI| < 2 and RC,,,, > 0.95, pairwise compari-
sons were quantified as the fraction of the dispersal limitation, whereas if |NTI| < 2 and RC,,, <
—0.95, pairwise comparisons were quantified as homogenizing dispersal (21, 70). Finally, the fraction of
the pairwise comparisons with [BNTI| < 2 and |RC,,,,| < 0.95 was treated as undominated (70). The
detailed script for the calculation process of ecological processes shaping community assembly can be
found on GitHub (https://github.com/ChiLiubio/microeco).

Potential denitrification rate. The PDR was determined using the acetylene inhibition technique
(71). One hundred grams of fresh soil from each sample was weighed into a 1-liter glass bottle, and the
soil moisture was adjusted to 60% of field capacity. Bottles were preincubated with loosely capped stop-
pers at 25°C for 1 week, and then soil equivalent to 20 g dry soil from each sample was transferred to a
separate 250-ml serum bottle. A 5-ml solution containing 1,200 ©g ml~" glucose-C and 200 ug ml~'
NO,~-N was added to each bottle (9, 72). All of the serum bottles were sealed and made anoxic by filling
with pure N, gas (99.999%) for 2 min. Approximately 10% of the headspace of each bottle was replaced
with acetylene to block the conversion of N,O to N, during denitrification. At the same time, the gas
tightness of the incubation system was determined using a control bottle without soil. At 2 and 4 h, 10
ml headspace gas was taken from each bottle using a syringe. The N,O concentrations were measured
using a gas chromatograph (GC; Shimadzu, Kyoto, Japan) equipped with an electron capture detector.
The PDR values were calculated according to the change in the N,O concentration between the 2- and
4-h measurements (71).

Statistical analyses. The data were transformed by Box-Cox transformation and subjected to analy-
sis of variance (ANOVA), and Tukey's post hoc test was performed to determine significant (P < 0.05)
effects. One-way analysis of variance was performed to estimate significant differences (P < 0.05) in
numbers of copies of nirK and nirS genes as well as in PDR among 12 different elevation gradients.
Spearman’s rank correlation analysis was performed to correlate environmental factors with a-diversity
indices, the relative abundances of the denitrifier taxa, denitrifier gene abundances, and PDR. The P val-
ues from the correlation analysis were adjusted according to the Benjamini-Hochberg false discovery
rate (FDR) (73). Furthermore, stepwise multivariate regression modeling was used to identify the main
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factors influencing the a-diversity and numbers of copies of the nirK and nirS genes. Nonlinear fitting
was performed between the relative abundances of major genera of nirk-type and nirS-type denitrifiers
and elevation. The detailed scripts for the calculation process of nonliner fitting are available at http://
Ixzgroup.cib.cas.cn/kytj/yjff/. Principal coordinate analysis (PCoA) based on Bray-Curtis distances was
applied to explore the variation in denitrifier communities (B-diversity) along the elevation gradient.
The statistical significance of differences among 12 elevations was assessed by NPMANOVA, with
Bonferroni correction of P values for multiple comparisons, in PAST version 2.17.

We performed PLS_PM (74) to evaluate the fit of the nirK-type/nirS-type denitrifier communities to
geographical distance and measured environmental parameters. Principal components of neighbor mat-
rices (PCNM) represent the geographical distance and were calculated using the function “pcnm” in the
R package “vegan” (75). The models were constructed using the function “inner plot” in the R package
“plspm” (74). The method was described in detail by Kou et al. (57). In addition, MRM was performed to
identify the main factors shaping the denitrifier communities at the OTU level using the “"MRM” function
in the R-library “ecodist.” Furthermore, the effects of variation in nirk-type/nirS-type denitrifier commun-
ities and numbers of copies of nirK-type/nirS-type denitrifiers on PDR were estimated by MRM. In the
MRM model, Euclidean distance matrices and Bray-Curtis distance matrices were used for environmental
factors and denitrifier communities, respectively. Partial Mantel test analysis between the nirK-type and
nirS-type denitrifier communities and environmental factors was also performed to further identify the
main factors shaping the denitrifier communities along the elevation gradient. In addition, the patterns of cooc-
currence between nirk-type and nirS-type denitrifiers plus environmental factors were determined to further esti-
mate the main factors shaping the denitrifier communities in the molecular ecological network analyses pipeline
(MENAP) (http://ieg2.ou.edu/MENA/main.cgi) with random matrix theory (RMT)-based algorithms at the OTU level
(76). Cytoscape 3.7.0 software was used to visualize the network graphs.

Data availability. The raw sequence data were stored in the European Nucleotide Archive under
the accession number PRJEB30869 (http://www.ebi.ac.uk/ena/data/view/PRJEB30869).
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