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Abstract

Background: Several studies have reported the accuracy and reproducibility of HeartModel 

for automated determination of three-dimensional echocardiography (3DE)-derived left 

heart volumes and left ventricular (LV) ejection fraction (LVEF) in adult patients. However, 

it remains unclear whether this automated adaptive analytics algorithm, derived from a 

‘training’ population, can encompass adequate echo images in Chinese adolescents.

Objectives: The aim of our study was to explore the accuracy of HeartModel in adolescents 

compared with expert manual three-dimensional (3D) echocardiography.

Methods: Fifty-three Chinese adolescent subjects with or without heart disease underwent 

3D echocardiographic imaging with an EPIQ system (Philips). 3D cardiac volumes and 

LVEF obtained with the automated HeartModel program were compared with manual 3D 

echocardiographic measurements by an experienced echocardiographer.

Results: There was strong correlation between HeartModel and expert manual 3DE 

measurements (r = 0.875–0.965, all P < 0.001). Automated LV and left atrial (LA) volumes 

were slightly overestimated when compared to expert manual measurements, while 

LVEF showed no significant differences from the manual method. Importantly, the intra- 

and inter-observer variability of automated 3D echocardiographic model was relatively 

low (<1%), surpassing the manual approach (3.5–17.4%), yet requiring significantly less 

analyzing time (20 ± 7 vs 177 ± 30 s, P < 0.001).

Conclusion: Simultaneous quantification of left heart volumes and LVEF with the 

automated HeartModel program is rapid, accurate and reproducible in Chinese adolescent 

cohort. Therefore, it has a potential to bring 3D echocardiographic assessment of left heart 

chamber volumes and function into busy pediatric practice.
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Introduction

Precise and fast as well as reproducible measurements of 
left atrial (LA) and left ventricular (LV) volumes and systolic 
function are the most common and important tasks of 
transthoracic echocardiography (TTE), which is clinical 
relevant in the diagnosis, prognosis and risk stratification 
of various congenital and acquired heart diseases in the 
young. Conventional M-mode and two-dimensional 
echocardiography (2DE) are the most ubiquitous and 
non-invasive tools for chamber quantification and cardiac 
function, the aforementioned methods however are 
limited by geometric assumption, image foreshortening 
and inter/intra-observer variability, and thus compromise 
the accuracy and reproducibility in clinical decision 
making and research investigations (1, 2, 3). Recently, 
full-volume three-dimensional (3D) echocardiography 
(3DE) has been introduced to quantify LA or LV volumes, 
which overcomes disadvantages of conventional 
echocardiography. Previous studies have demonstrated 
the superiority in accuracy and reproducibility of 3DE 
over 2DE for the assessments of left heart volumes and left 
ventricular ejection fraction (LVEF) (4, 5, 6, 7, 8). However, 
widespread application of 3DE in clinical practice is 
hampered by the time-consuming workflow and need for 
3DE-specific expertise (9, 10, 11, 12).

Consequently, with evolvement in Anatomical 
Intelligence Ultrasound (AIUS), a novel automated 3DE 
software (HeartModel) emerged and offers an option of 
simultaneous quantification of LA and LV volumes and 
LVEF within seconds avoiding any human interaction. 
HeartModel is reliable to measure LA and LV volumes in 
adults (age >35 years), which has been validated with cardiac 
magnetic resonance (CMR) (13, 14, 15). Nevertheless, 
no data are available in the Chinese adolescents with or 
without congenital heart disease. Of note, this prototype 
program uses a unique adaptive analytics algorithm that 
relies on an affluent 3DE database with a wide range of 
morphologies derived from a ‘training’ population, which 
may not adequately encompass the Chinese adolescent 
cohort, who usually have smaller cardiac chamber size 
than their Western counterparts (16). Moreover, the 
smaller heart chamber size may increase the difficulty in 
delineating the endocardial border in the youth.

Thus, the aim of this study was to explore the 
accuracy and reproducibility of the HeartModel program 
for automated measurement of LA, LV volumes and LVEF 
from 3DE datasets in the adolescents, using expert manual 
3DE as reference.

Methods

Study population

This study was a part of a community-based follow-up 
study for persistent masked hypertension in Hong 
Kong pediatric population in 2015/2016. The inclusion 
criteria were adolescents with persistent masked 
hypertension who had been initially screened from the 
Hong Kong community in 2011/2012 according to the 
local ambulatory blood pressure reference (17). The 
community controls were also recruited. Therefore, from 
November 2015 to July 2016, a total of 58 consecutive 
young subjects (age ranging from 13 to 22  years) with 
comprehensive 3DE images were selected, including 12 
patients with persistent masked hypertension, 2 patients 
with congenital heart disease (secundum atrial septal 
defect and mild pulmonary stenosis) and 44 normal 
subjects. After excluding five subjects with poor image 
quality, 53 individuals were studied, including 19 with 
excellent images (36%), 28 with good images (53%) 
and 6 with fair images (11%). The exclusion criterion 
was the presence of a poor acoustic window or patient 
unwillingness. This study protocol was approved by 
the Joint the Chinese University of Hong Kong and 
New Territories East Cluster Clinical Research Ethics 
Committee and the Ethics Committee of the Department 
of Health of the Hong Kong Government (CRE-2013.563). 
Written informed consent was obtained from the parents 
of participants aged below 18 years.

Echocardiographic image acquisition

Comprehensive transthoracic with standard 3D 
echocardiography was performed using an EPIQ 
ultrasound system with X5-1 matrix array transducer 
(Philips Healthcare). For 3DE section, imaging settings 
were optimized for endocardial visualization before each 
acquisition. A novel single-beat acquisition mode (HM 
ACQ key on EPIQ 7C) was utilized to obtain one-beat full-
volume 3DE datasets. Special care was taken to include the 
entire LA and LV cavity within the pyramidal 3D volume. 
At least three dynamic pyramidal datasets were acquired 
and stored for each individual, and the best single-beat 
3DE full-volume dataset was selected for offline analysis. 
All 3D images were respectively analyzed offline with 
both manual (3DQA, QLAB 10.5; Philips Healthcare) and 
prototype-automated software packages (HeartModel, 
QLAB 10.5; Philips Healthcare) by an experienced reader 
to calculate LV/LA volumes and LVEF.
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Automated 3DE measurements

Using an adaptive analytics algorithm, the HeartModel 
program automatically determines global cardiac shape 
orientation and detects LA and LV endocardial surfaces 
from a 3DE database, containing approximately 1000 
3D-TTE datasets of varying image quality in patients with 
a wide range of function and morphologies. The program 
matches relevant image features of the given LV volume to 
the database. This selected model is then locally adapted 
to the LV volume under study using a series of adaptations. 
LV end-diastolic volume (EDV) was selected using motion 
analysis near the peak of the electrocardiographic R-wave. 
LV end-systolic volume (ESV) was determined using 
motion analysis to identify the minimal volume (9, 14). 
The endocardial boundary recognition was set as 40% at 
end-diastole (ED) and 8% at end-systole (ES) in advance 
by our center, and then applied in all automatic analysis 
process. Although the ED and ES frames and endocardial 
contours could be modified, only three manual corrections 
were made for our primary analysis. Finally, a static 3D 
shell of the LV and LA cavity was reconstructed and 
parameters including LVEDV, LVESV, LVEF and LA volume 
(LAV) at LVES were automatically calculated (Fig. 1). The 
time required to complete the automatic volumetric 
analysis from 3DE datasets was recorded.

Manual 3DE measurements

Manual 3D quantification of LV volumes and LVEF as well as 
LAV at LVES was performed offline on a QLAB workstation 

(3DQA, QLAB 10.5; Philips Healthcare) by an experienced 
investigator blinded to the results of automated 3D 
model. Cardiac chamber quantification starts by aligning 
the extracted LV 4-chamber and orthogonal views to 
avoid foreshortening. Subsequently, the end-diastolic 
(largest LV volume) and end-systolic (smallest LV volume) 
frames are identified. On both ED and ES frames, 4 mitral 
annular and 1 apical points were then placed on the LV as 
landmarks in each of the views. LV endocardial contours 
were tracked in every slice semi-automatically frame by 
frame throughout the entire cardiac cycle. Unsatisfactory 
delineation of the endocardial border was manually 
edited, and the final LVEDV, LVESV and LVEF were then 
displayed. For the manual 3D measurement of LA volume, 
the long-axis of the LA was identified at LVES in the  
4- and 2-chamber cut-planes, and the blood–tissue interface 
was traced semi-automatically to obtain maximum LAV. 
The time required to manual measurements of LVEDV, 
LVESV, LVEF and LAV at LVES from 3DE datasets was 
also recorded.

Reproducibility analysis

To determine the reproducibility of 3D volumetric 
quantification by each imaging modality, HeartModel 
and manual 3DE analysis were repeated in a randomly 
selected group of 30 study subjects by another investigator 
(novice) as well as by the same primary reader (expert) 
at least 10  days later. Inter-observer and intra-observer 
variability were calculated as the mean percentage error, 
defined as the absolute difference of the corresponding 

Figure 1
A case showed how the manual corrections were performed to improve the automated endocardial tracing. Yellow arrows showed the region that 
required contour editing after initial fully automated detection of left ventricular (LV) and left atrial (LA) endocardial surfaces (left). The optional 
corrections were respectively done in the non-foreshortened 2D cut-planes that automatically extracted from the 3D datasets at end-diastole 
(center, top) and end-systole (center, bottom), and then the final 3D shell of the cardiac chambers were reconstructed (right). #, number of chambers; 
AP, apical view; ED, end-systole; ES, end-systole.
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pair of repeated measurements as a percentage of their 
mean in each patient and then averaged over the 
study group.

In addition, test–retest reproducibility was assessed 
in 30 separate subjects. After obtaining the initial 3DE 
dataset, the sonographer stopped echo scanning for 5 min, 
and then repositioned the subject and the transducer to 
obtain a second dataset. LV/LA volumes and LVEF were 
measured in a fully automated manner as described 
here. During all repeated analyses, the investigators were 
blinded to the results of all previous measurements.

Statistical analysis

Statistical analysis was performed with the IBM SPSS 
Statistics, version 21 (IBM) software. Continuous variables 
are expressed as mean ± s.d. and nominal variables as 
percentages. The agreement of HeartModel program with 
the expert manual 3DE reference values for LVEDV, LVESV, 
LVEF and LAV was evaluated using Bland–Altman analysis 
to assess the bias (mean difference) and the limits of 
agreement (LOA, 1.96 s.d.s around the mean difference). 
To verify the significance of the biases, paired t-test with 
a two-tailed distribution was performed. The relationship 
between HeartModel and the manual measurements was 
evaluated using linear regression with Pearson correlation 
coefficients. The paired t-test was also used to compare 
chamber volumes and LVEF between the two analyzing 
programs. Two-tailed P values <0.05 were considered 
statistically significant.

Results

Patient characteristics are presented in Table 1. 3D cardiac 
quantification by HeartModel software was feasible 
in 53 out of 58 (91%) subjects (17 ± 3  years, 31 males). 
Five patients were excluded due to poor image quality. 
Automated analysis with contour adjustment was only 
performed in three subjects (6%). The average 3DE frame 
rate was 21 ± 1 Hz (ranged from 18 to 23 Hz).

HeartModel vs expert manual 3DE measurements

3DE measurements assessed by HeartModel and expert 
manual method are depicted in Table 2. Overall, there was 
a good correlation between HeartModel and expert manual 
3DE measurements for estimation of LVEDV, LVESV, LVEF 

and LAV at LVES in all studies subjects (r = 0.875–0.965, 
all P < 0.001) (Fig.  2A, B, C and D). The HeartModel-
derived LV volumes and LA volume were slightly larger 
than the expert manual 3DE measurements (all P < 0.001) 
(Table  2). However, LVEF determined by the automated 
3DE model was similar to the manual values (P = 0.38) 
(Fig. 2G and Table 2). Mean difference as performed with 
Bland–Altman was 10.2 ± 6.1 mL (LOA: −1.8 to 22.3 mL) 
for LVEDV, 4.1 ± 3.2 mL (LOA: −2.1 to 10.3 mL) for LVESV, 
−0.3 ± 2.3% (LOA: −4.9 to 4.3%) for LVEF and 2.4 ± 3.8 mL 
(LOA: −5.0 to 9.9 mL) for LAV at LVES (Fig. 2E, F, G and H).

Reproducibility

The results of the reproducibility analysis were 
summarized in Table 3. Even performed by two observers 
in different levels of experience, the reproducibility of 
cardiac volumes and LVEF with automated 3DE model 
even with minor contour adjustment was excellent, as the 
intra- (0.07–0.72%) or inter-observer (0–0.48%) variability 
was minimal. On the other hand, both intra-observer 
(3.5–8.3%) and inter-observer (10.5–17.4%) variability for 
manual 3DE measurements were significantly higher than 
the automated values.

Test–retest variability (2.5–5.9%) of the automated 
program by using a different dataset was higher than the 
inter-observer variability. The LVEDV, ESV, LVEF and LAV 
at LVES for the first and second measurements were as 
follows: 104 ± 22 mL vs 105 ± 22 mL (P = 0.14), 39 ± 11 mL 
vs 40 ± 11 mL (P = 0.20), 63 ± 5% vs 63 ± 5% (P = 0.66), and 
38 ± 9 mL vs 38 ± 10 mL (P = 0.69). The corresponding 
Pearson r values were 0.97, 0.97, 0.92 and 0.95 (all 
P < 0.001), respectively. Bland–Altman analysis showed 
minimal bias between the two measurements with 
excellent agreement (Fig. 3).

Table 1  Clinical and demographic characteristics of the study 

population.

Parameters  

Ages (years) 17 ± 3
Male, n (%) 31 (58)
Body surface area (m2) 1.61 ± 0.21
Body mass index (kg/m2) 21 ± 3
Heart rate (bpm) 77 ± 11
Systolic blood pressure (mmHg) 112 ± 10
Diastolic blood pressure (mmHg) 64 ± 8
Left ventricular ejection fraction (%) 62 ± 4

Data expressed as mean ± s.d. or number (percentage).
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Examination duration

The average time needed for volumetric analysis was 
significantly shorter using HeartModel compared to 
manual 3DE method (20 ± 7 vs 177 ± 30 s, P < 0.001), 
approximately a tenth of the time using manual method 
(Fig. 4). If HeartModel program was carried out without 
contour adjustment, the analysis time was reduced even 
more (19 ± 2 s, P < 0.001).

Discussion

This is the first study to investigate the utility of the 
automated HeartModel program in simultaneous 
quantification of cardiac volumes and function in the 
adolescent cohort.

Automated LV analysis

The determination of cardiac chamber size and function 
is of utmost importance for both diagnostic and 
prognostic considerations in the young with various 
cardiac abnormalities (18, 19). To date, evaluation of 
cardiac volume and function by manually corrected 3D 
echocardiography, without foreshortening the true LV 
apex, has been validated against radionuclide angiography 
and CMR in both children and adults (8, 20, 21, 22, 23). 
Moreover, the American Society of Echocardiography 
jointly with European Association of Cardiovascular 
Imaging have currently recommended the use of 3DE 
quantification of left heart chambers when possible 
(4). In spite of all the advantages associated with 3DE 
image display, the 3DE technology with semi-automated 
algorithm is not so appealing to the busy pediatric and 

Table 2  HeartModel comparison vs expert manual 3DE measurements.

 HeartModel Expert manual 3DE method P Bias LOA (1.96 s.d.s) Correlation

LVEDV (mL) 106.9 ± 21.2 96.6 ± 17.9 <0.001 10.2 12.0 0.965
LVESV (mL) 40.9 ± 10.8 36.7 ± 9.3 <0.001 4.1 6.2 0.962
LVEF (%) 62.2 ± 4.8 62.4 ± 4.4 0.381 −0.3 4.6 0.875
LAV at LVES (mL) 38.9 ± 8.8 36.5 ± 9.0 <0.001 2.4 7.4 0.908

*Paired t-test comparing HeartModel and expert manual measurements.
3DE, three-dimensional echocardiography; LAV, left atrial volume; LOA, limits of agreement; LVEDV, left ventricular end-diastolic volume; LVEF, left 
ventricular ejection fraction; LVES, left ventricular end-systole; LVESV, left ventricular end-systolic volume.

Figure 2
Correlation (top) and Bland–Altman analysis (bottom) of comparison between automated HeartModel program and expert manual 3D method for (A, E) 
left ventricular end-diastolic volume (LVEDV), (B, F) left ventricular end-systolic volume (LVESV), (C, G) left ventricular ejection fraction (LVEF), and (D, H) 
left atrial volume (LAV) at left ventricular end-systole (LVES). Solid lines indicate bias and dashed lines indicate limits of agreement (LOA).
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adult cardiologists due to the cumbersome workflow. Thus, 
the fully automated HeartModel program for 3D cardiac 
volume determination and LVEF calculation may close the 
gap between clinical practice and 3D echocardiography.

To date, several recent publications indicated that 
HeartModel had strong correlations with the expert manual 
3DE and CMR (r = 0.84–0.97), high reproducibility and 
shorter analysis time in adult patient group (14, 15). Using 
the initial version of HeartModel, Tsang and coworkers 
reported that LVEF was underestimated and automated 
LVEDV, LVESV and LAV at LVES were overestimated 
in HeartModel when compared with manual 3DE 
measurements (14). Still, using the improved version of 
HeartModel with a default setting of 50% for the global LV 
boundary for automatic contouring, Spitzer and coworkers 
demonstrated that only LVEDV were underestimated by 
HeartModel compared to manual 3DE measurements, with 
no significant differences in LVESV, LVEF and LAV at LVES 
(15). Nevertheless, these studies were executed in adults 
with age ranging from 35 to 86 years, and there were no 
available data for the application of HeartModel in the 
adolescent population with or without congenital heart 
disease. Actually, the automated software adopts a unique 
adaptive analytics algorithm that derived from extensive 
trainings using approximately one thousand 3DE datasets 
of varying image quality in patients with a wide range of 
function and morphologies (14), which may not encompass 
adequate echo images from Chinese adolescents. Of note, 

Kishi and coworkers observed ethnic differences in LV 
structure and LV function in young adults (24). Thus, it 
is essential to investigate the feasibility and accuracy of 
HeartModel in the Chinese adolescent counterparts, 
whose cardiac chamber size was usually smaller than 
Western patients. In our adolescent group, we observed 
an excellent correlation between HeartModel and expert 
manual 3DE method for estimation of LVEDV, LVESV, 
LVEF and LAV at LVES (r = 0.875–0.965, all P < 0.001), using 
endocardial contouring settings at 40% at end-diastole 
and 8% at end-systole set by our center. The automated 
LVEF measurement using HeartModel was accurate and 
similar to the expert manual measurements, whereas LV 
volume measurements using this automated program 
were slightly overestimated. Hence, we can infer that 
HeartModel represents an accurate and rapid method in 
pediatric clinic to quantify cardiac volumes and LVEF from 
3DE datasets when endocardial boundary recognition is 
properly setting.

Automated LAV analysis

Importantly, HeartModel is the first automated technique 
designed to quantify LAV from 3DE datasets. It has 
been well established that increased LA volume is an 
independent marker of adverse cardiovascular outcomes 
(20, 25, 26), and the latest guidelines have highlighted the 
importance of LA volume in the context of the evaluation 

Table 3  Reproducibility.

 HeartModel Manual 3DE method

Variable Intra-observer Inter-observer Test–retest Intra-observer Inter-observer

LVEDV (%) 0.15 ± 0.57 0.16 ± 0.86 3.4 ± 3.7 4.9 ± 3.6 10.5 ± 6.9
LVESV (%) 0.72 ± 2.92 0.48 ± 2.61 5.1 ± 5.1 8.3 ± 5.9 13.1 ± 11.4
LVEF (%) 0.69 ± 2.82 0.20 ± 1.09 2.5 ± 2.1 3.5 ± 3.2 10.8 ± 9.3
LAV at LVES (%) 0.07 ± 0.40 0 ± 0 5.9 ± 6.3 4.8 ± 5.0 17.4 ± 20.1

Values are mean ± s.d.
Abbreviations as in Table 2.

Figure 3
Test–retest reproducibility of HeartModel program, using Bland–Altman plot for LVEDV, LVESV, LVEF and LAV at LVES in 30 adolescent subjects. 
Abbreviations as in Fig. 2.
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of LV diastolic function (4). In the young adults, we found 
that the automated LAV values at LVES from the automated 
3DE model were slightly larger than the expert manual 3DE 
measurements, which was in line with the results by Tsang 
and coworkers (14). Furthermore, the reproducibility of 
automated LAV measurements was better than previously 
published inter-observer variability using manual 3DE 
software (14). This finding is of particular importance, as 
poor reproducibility would contribute to misclassification 
of patients with LV diastolic dysfunction (21).

Reproducibility

In previous semi-automated 3DE studies, the inter-
observer variability has ranged from 5% to 15% for LVEDV, 
6% to 18% for LVESV, 5% to 21% for LVEF and 5% to 17% 
for LAV (5, 14, 20, 27, 28, 29, 30, 31, 32). Interestingly, 
in our study with automated workflow, reproducibility 
of cardiac volumes and LVEF was excellent and the 
intra-/inter-observer variability was quite low (<1%), 
even performed by two observers with different levels of 
experience (novice and expert). In contrast, the manual 
3DE measurements resulted in higher inter-observer and 
intra-observer variability (3.5–17.4%), which is similar to 
the previous publications (5, 14, 20, 27, 28, 29, 30, 31, 32), 
implying that manual 3DE contouring may not be ideal 
for clinical application (33). Furthermore, the automated 
technique had excellent test–retest reproducibility. All 
these findings have presented clinical significance, as 
observer variability is always an important issue in the 
echocardiographic laboratories with multiple readers, and 
the automated workflow with great reproducibility could 
potentially reduce reader measurement variability and 
further improve the efficiency in longitudinal assessment 

during the clinical course. Thus, this automated 3DE 
program is a significant step forward in promoting wider 
clinical adoption of 3DE for quantifying cardiac function 
in a variety of heart diseases.

Automated program efficiency

Likewise, our study found that the automated 3DE model 
is significantly faster than expert manual 3DE analysis, 
approximately a tenth of the time using manual method. 
Specifically, an operator with minimal experience in 
3D volumetric quantification needs only 20–40 s to 
perform automated cardiac measurements, thus, can help 
overcome the time-consuming nature of the conventional 
3DE analysis that currently limits its use. Moreover, 
the significant reduction in time has the potential to 
allow routine use of 3D echo technology in busy echo 
laboratories.

Study limitations

The main limitation in the present study is lack of a ‘gold 
standard’ like CMR to validate the automated technique. 
However, the prototype-automated software has been 
validated against CMR in a large group of adult patients 
at The University of Chicago (14). Second, the study 
subjects did not include the patients with complex cardiac 
structural anomaly; thus, future studies in varied types of 
congenital heart disease are needed. Third, although few 
patients required endocardial contour correction in this 
study, it still affects the automated nature of the program. 
Fourth, patients with poor endocardial visualization 
were excluded in our study, which results in selection 
bias. However, the real-world challenge of suboptimal 
acoustic windows is a physical reality for both 2D and 
3D echocardiography. Finally, our study only covered a 
small number of adolescent subjects in a single-center 
study, thus a larger study is required to further confirm 
our results.

Conclusions

Automated simultaneous quantification of LA and LV 
volumes and LVEF with HeartModel is feasible, accurate 
and reproducible in Chinese adolescents. Given the 
simplicity and efficiency of the automated workflow, 
this promising program has the potential to enable the 
integration of 3DE volumetric LV and LA measurements 
into routine pediatric clinical workflows.

Figure 4
3DE volumetric analysis time of left heart chambers. With manual 3DE 
analysis as the actual reference, a decrease in analysis time of 89% for 
automated HeartModel program was noted.
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