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The scale of the international efforts to sequence SARS-CoV-2

genomes is unprecedented. Early availability of genomes

allowed rapid characterisation of the virus, thus kickstarting

many highly successful vaccine development programmes.

Worldwide genomic resources have provided a good

understanding of the pandemic, supported close monitoring of

the emergence of viral genomic diversity and pinpointed those

sites to prioritise for functional characterisation. Continued

genomic surveillance of global viral populations will be crucial

to inform the timing of vaccine updates so as to pre-empt the

spread of immune escape lineages. While genome sequencing

has provided us with an exceptionally powerful tool to monitor

the evolution of SARS-CoV-2, there is room for further

improvements in particular in the form of less heterogeneous

global surveillance and tools to rapidly identify concerning viral

lineages.
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Introduction
The COVID-19 pandemic has shone a spotlight on the

value of large-scale, open, and near real-time genomic

surveillance of pathogens. The first whole genome

sequences of Severe Acute Respiratory Coronavirus 2

(SARS-CoV-2) were available within ten days after a

cluster of cases of pneumonia in Wuhan, China was

reported to the World Health Organisation (WHO) on

the 31st December 2019. Eighteen months later, close to

two million SARS-CoV-2 genomes have been made

available. This resource offers unprecedented opportu-

nities to monitor the emergence of viral genomic diversity
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and to reconstruct transmission routes as SARS-CoV-2

continues to adapt to its human host.

COVID-19 is arguably the first post-genomic pandemic.

By the time the WHO officially declared the pandemic on

the 11th of March 2020 over 500 whole genome

sequences had been shared spanning 39 countries and

six continents. To place this in perspective, an analysis

published shortly after the declaration of the H1N1pdm

influenza pandemic in late April 2009, comprised only

11 partial hemagglutinin (HA) sequences [1]. More

recently, close to real time surveillance efforts have come

to the fore in the reconstruction of transmission of Zika

and Ebola, aided by portable sequencing devices [2,3],

though these remain relatively limited in the number of

genomes sequenced. Influenza genomic surveillance,

which represents a cornerstone of the biannual assess-

ment of the multivalent flu vaccines, has led to the

generation of close to a million genome sequences over

the last 30 years (Figure 1). Though, this number has

been overtaken by the ongoing sequencing effort for

SARS-CoV-2 within 18 months with 2 million genomes

available by the end of June 2021, and rising. Active

monitoring of viral evolution has become, and will likely

remain, a mainstay of pandemic response, both for

COVID-19 and for future epidemics.

Tracking the emergence of genomic diversity
Early observations

The rapid description of the first SARS-CoV-2 genome on

the 10th of January 2020 was vital to identify the previ-

ously unknown coronavirus SARS-CoV-2 and repre-

sented the first step towards vaccine development and

genome sequencing initiatives [4,5��]. Genomes

uploaded over the first few months of 2020 facilitated

initial assessments of the evolutionary rate of SARS-CoV-

2, of approximately �2 mutations per month. This rate is

suggestive of a most recent common ancestor of sampled

pandemic lineages to the latter portion of 2019 [6�,7,8],
and a rapid spread to Europe, as confirmed by SARS-CoV-

2 positive wastewater samples from Northern Italy dating

to December 2019 [9].

Lineage dynamics

Several studies early in the pandemic identified multiple

independent introductions into regions of the world dur-

ing early 2020 [10�,11–14]. For example, the first epi-

demic wave in the UK was seeded by well over 1000 inde-

pendent SARS-CoV-2 introductions [10�]. As a result of

this extensive global spread, the worldwide SARS-CoV-2
www.sciencedirect.com

mailto:lucy.dorp.12@ucl.ac.uk
http://https://www.sciencedirect.com/journal/current-opinion-in-virology/special-issue/10NHQ5RJR2T
https://doi.org/10.1016/j.coviro.2021.07.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2021.07.002&domain=pdf
http://www.sciencedirect.com/science/journal/18796257


Insights from pandemic-scale genomics van Dorp et al. 41

Figure 1

Year

Ye
ar

ly
 n

um
be

r 
of

 g
en

om
es

 (
lo

g1
0)

virus

Dengue

Ebola

Influenza A

MERS

SARS-CoV-2

Zika

6

4

2

0

1990 2000 2010 2020

Current Opinion in Virology

Cumulative number of genome submissions to NCBI virus for major human viral pathogens for which genomic surveillance has been deployed.

Data for SARS-CoV-2 is obtained from the GISAID data sharing repository. Y-axis provides the log10(cumulative number of genomes) and the x-

axis provides the date of sample collection spanning from 1982 until the time of writing (June 2021). Lines are smoothed based on observations

per year.
population first remained geographically largely unstruc-

tured with the same major cosmopolitan lineages found in

most regions of the world. The introduction of travel-bans

and regional restrictions in early 2020 led to the emer-

gence of more geographically associated lineages, though

not precluding the capacity for introduced lineages to

have marked impacts on local lineage frequencies [15].

Ongoing tracing of SARS-CoV-2 over the course of the

COVID-19 pandemic has highlighted striking dynamics

(Figure 2), with major clades changing markedly in fre-

quency through time.

At the finer-scale, identification of SARS-CoV-2 lineages

supports reconstruction of local chains of transmission

though can be complicated by factors such as inter-indi-

vidual variability in the SARS-CoV-2 incubation periods,

asymptomatic cases, and missing transmission nodes.

Reconstruction of transmission chains can be challenging

in the presence of high community infection levels and/or

multiple introduction events. Nonetheless, genomic anal-

ysis of SARS-CoV-2 outbreaks has helped to identify

unanticipated sources of transmission and to rule out

transmission events suspected on the basis of for
www.sciencedirect.com 
example, traditional contact tracing or movement data

[13,16,17].

Genomics infrastructure

GISAID [18,19] is an instrumental platform for SARS-

CoV-2 genome sharing, supporting appropriate accredita-

tion of data providers, a tenet central to the data sharing

model. This resource has supported several initiatives

allowing visualisation and mutation characterisation

including NextStrain [20], CoVizu [21], cov-lineages.

org [22��], outbreak.info (https://outbreak.info/) and CoV-

ariants (https://covariants.org). In addition, large-scale

assessment of phylogenies is greatly aided by the GISAID

Audacity workflow which provides readily updated phy-

logenies across high-quality genome submissions. How-

ever, there is a growing shortfall in methods that can

tractably keep pace with expanding datasets (Figure 1),

potentially posing a major bottleneck to continued efforts

to track diversity [23]. In part this is because standard

phylogenetic pipelines were not designed for datasets as

large, intensively sampled and with the low genetic

diversity characteristic of SARS-CoV-2 genomic studies.

One solution is dataset subsampling, which is a suitable
Current Opinion in Virology 2021, 50:40–48
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Figure 2
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(a) Daily counts of genome assemblies (y-axis) shared on GISAID (current to 5/7/2021) over the course of the pandemic for all NextStrain clades.

Note 20I (Alpha, V1) is broadly equivalent to PANGO lineage B.1.1.7, 20H (Beta, V2) to B.1.351, 20J (Gamma, V3) to P.1. and 21A (Delta) to

B.1.617.2. (b) Equivalent plots as (a) split on each SARS-CoV-2 clade providing the daily proportions (y-axis) of genome submissions. Colour

assignments for each clade are given as per the legend at bottom right.
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approach for certain questions, but not fully satisfactory

for mutation tracking efforts. In particular, recurrent

convergent mutations are an important feature of con-

cerning variants (Figure 3), hence considering all inde-

pendent emergences over large-scale phylogenies is vital

to assess the impact of mutations in different spatiotem-

poral contexts [24,25].

Methodological advances to circumvent these challenges

have included rapid maximum parsimony placement of

new genomes onto existing tree topologies [26] and

reconstruction of mutational history bypassing
Figure 3
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by the Centers for Disease Control and Prevention; S:L452R). B.1.526 (first 

detected in Brazil; S:E484K), P.3 (first detected in the Philippines; S:E484K 

del69/70, S:del144/145, S:E484K) and B.1.617.1 and B.1.617.3 (detected in

density distribution of the count of recurrent mutations, over a 200-nucleotid

the number of estimated emergences based on a curated phylogeny of 550
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phylogenetic reconstruction [8]. Additionally, there has

been a need to devise a nomenclature to characterise

emerging diversity, with the PANGO lineage assignment

tool having become a mainstay in genomic epidemiology

studies of SARS-CoV-2 [22��]. Other efforts have focused

on defining wider phylogenetic ‘clades’ with both

GISAID [18,19] and NextStrain [20] providing schemes

(Figure 2). The WHO have also established a nomencla-

ture system, based around letters of the Greek alphabet,

to aid public discussion of concerning variants (https://

www.who.int/en/activities/tracking-SARS-CoV-2-

variants/, Accessed 5/7/2021).
Current Opinion in Virology

rovide placement of mutations discussed in the text with the zoom box

hted for their carriage of major discussed mutations and deletions (*

Note Public Health England additionally classify Alpha + E484K as a

and B.1.429 (first detected in California and initially classified as VoCs

detected in New York; S:E484K + NSP6:del3675/3677), P.2 (first

+ S:N501Y), B.1.525 (detected in UK/Nigeria; NSP6:del3675/3677, S:

 India; S:452R, SE484Q, P681R). The bottom panel provides the

e sliding window, in the SARS-CoV-2 genome. The y-axis provides

,743 sequences dating to April 2021 [25].
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Box 1 Quantifying the impact of viral evolution on host

immunity

There is concern over the extent to which previously SARS-CoV-2

exposed, or vaccinated individuals could be (re-)infected by emer-

gent variants. High levels of humoral immunity (high antibody titres)

are associated with protection from reinfection in animal models and

studies of frequently re-exposed health-care workers [68,69]. Animal,

human challenge or natural evidence of reinfection [70] provide more

definitive answers on the ability of a lineage or clusters of mutations

to evade the total (cellular and innate) immune response of the host;

but these are slow, and may only provide useful data long after a new

lineage has spread. As SARS-CoV-2 diversity increases, there is a

need to rapidly test the putative immune escape phenotype of new

viral mutants.

Neutralisation assays provide an ex-vivo method of screening for

SARS-CoV-2 variants with the potential to escape humoral immune

responses and can be performed with live or spike-pseudotyped

virus, which have similar assay characteristics [71]. Following iden-

tification, new mutations within the spike protein can be engineered

into a pseudotyped viral vector system or SARS-CoV-2 backbone.

Pseudotyped spike mutants or viral isolates can then be incubated

with heat-inactivated human serum at a range of serum dilutions and

used to infect cells, with infectivity and viral dissemination quantified.

Any variant with an increased ID50 value (i.e. more concentrated

serum is required to neutralise the virus by at least 50%) can be said

to show a degree of escape from humoral immunity.

Mutations within the RBD (including L452 and E484) are seen in a

number of lineages associated with reduced vaccine-derived anti-

body neutralisation sensitivity [72]. For example, E484K on the Alpha

variant background led to a sixfold decrease in neutralisation by

serum from recipients of two BNT162b2 doses [73]. Similarly, neu-

tralisation of live Beta-lineage virus was estimated to be threefold

lower compared to wild-type in vaccinated individuals. Naturally

infected, convalescent individuals in this study did not show such a

pronounced drop in antibody neutralisation, which might reflect

antibody responses to a broader range of epitopes (non-spike neu-

tralising and non-neutralising) in the latter [74].
Adaptive changes
Initial adaptive mutations

Following a host jump into a new species, a viral pathogen

must adapt to the host cell machinery and avoid immune

defences to successfully persist and transmit. Over the first

nine months of the pandemic, the SARS-CoV-2 population

remained reasonably evolutionarily stable with the excep-

tionof the emergenceof spikeD614GinFebruary2020and

accompanying sites (nucleotides 241, 3037, 14408) [27].

Lineages carrying 614G now represent the majority of

sequence data (Figure 2), with this dominance likely also

aided by founder effects during the early pandemic spread

[28]. Further early described adaptive changes include

N439K, located in the spike Receptor Binding Domain

(RBD), which confers partial resistance to several neutral-

izing multiclonal antibodies and enhances binding to

human ACE2 receptors [29]. Spike mutation A222V,

largely associated with PANGO lineage B.1.177 (clade

20E EU1), also rose markedly in frequency over the North-

ern hemisphere summer of 2020. However its adaptive

potential is debated, with its rapid growth in Europe

suggested to be due to seeding by travel associated infec-

tions rather than the mutation conferring an intrinsic trans-

mission advantage [15] (Figure 2).

Insights into the early stages of adaptation following a host

switch were also provided by subsequentSARS-CoV-2host

jumps into farmed minks [30�]. Viral lineages circulating in

mink independently acquired a set of mutations including

spike Y453F [30�,31], which is rarely observed in humans

(Figure 3). The combination of Y453F, spike del69/70,

I692V and M1229I defined ‘cluster 5’, a mink associated

lineage of SARS-CoV-2 which exhibited reduced antibody

neutralization [32,33], and jumped back into humans

before going extinct. Though, the role of mink farms as

animal reservoirs potentially fuelling transmission in the

human population prompted authorities in Denmark to

proceed with mass culling of minks.

Emergence of variants of concern

In late 2020 three distinct SARS-CoV-2 lineages emerged

almost concurrently in different continents. All have

spike mutation N501Y and came to attention due to their

unusual combination and number of mutations, together

with their detection coinciding with rapidly increasing

cases in regions where they were first linked to (Figure 3).

These include Alpha (B.1.1.7, clade 20I/501Y.v1) first

detected in the UK [34��], Beta (B.1.351, 20H/501Y.v2)

in South Africa [35��], and Gamma (P.1, 20J/501Y.v3) first

identified in cases linked to Brazil [36��]. Each lineage

was elevated to the status of a Variant of Concern (VoC), a

term employed by public health agencies to define a

lineage with concerning epidemiological, immunological,

or pathogenic properties. These VoCs (henceforth 501Y

VoCs) were demonstrated to show enhanced receptor

binding [37–39] and increased transmissibility to varying

degrees [36��,40] with B.1.1.7 the most transmissible
Current Opinion in Virology 2021, 50:40–48 
501Y VoC in circulation [25]. Beta and Gamma addition-

ally demonstrated some ability to bypass immunity eli-

cited by prior infection or vaccination [33,41–45] (Box 1).

In addition, both Alpha and Gamma have been associated

with more virulent infections in some settings [46–48].

Around the same time period, two lineages were identi-

fied in California (B.1.427 and B.1.429; CAL.20C) coin-

ciding with a period of rapid pandemic growth [49]. These

lineages carry another RBD mutation L452R which is also

a hallmark of Delta (B.1.617.2) [50], ascribed as a VOC in

May 2021, which was linked to the epidemics in India

during the first half of 2021 and then rapidly rose to

dominance in the UK in May 2021 and subsequently

in many countries throughout the world (Figure 3).

Candidates and mechanisms

The appearance of similar mutations in diverse lineage

backbones provides an indication of convergent evolution

[6�], with studies of 501Y VoCs supporting a marked

selective shift in the fitness of SARS-CoV-2 [25,51] (Fig-

ure 3). N501Y is a highly recurrent mutation which exhibits

increased binding affinity to human ACE2 receptors [38].
www.sciencedirect.com
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Modelling of protein dynamics suggest this mutation leads

to a conformation shift in the spike to favour an open state

[52], aiding viral entry into human cells. Other major

recurrent changes in the RBD include E484K which has

also been suggested to increase receptor binding, particu-

larly when in combination with N501Y [37]. E484K has

raised additional concern as it may significantly reduce both

convalescent and virus neutralisation by sera obtained from

convalescent and vaccinated individuals [53–55] (Box 1).

Similarly L452R confers resistance to monoclonal antibo-

dies [56] and partial escape of HLA-A24-mediated cellular

immunity, coupled with increased receptor binding rela-

tive to wildtype [57]. Of note, similar antigenic effects have

been suggested for changes at codon 417 (417N and 417T)

[55,58], though these mutations have conversely been

associated to a decrease in ACE2 binding [29,38]. Thus,

the relationship between receptor binding affinity and

transmissibility, including the effects when mutations

occur in combination, is likely to be complex.

Spike mutations falling outside of the RBD are also be of

adaptive importance. Indeed, changes at codon 681 are

suggested to enhance the efficiency of the furin cleavage

separating the S1 and S2 subunits [59]. Additionally, the

S1 N-terminal domain (NTD) shows a propensity for

recurrent deletions [60�], some of which are found in

current VoCs (Alpha:del69/70,D144, Beta:del241/243;

Delta:del157/158). Deletions in the NTD may contribute

to altered antibody recognition [61,62] with genetic vari-

ation in this region also suggested as supporting confor-

mational changes in the spike protein [63,64], either

permitting or compensating for other changes in the

RBD, with which they are often associated.

While changes in the spike protein remain major candi-

dates in host adaptation, not least because of immuno-

dominance and the role in cell entry, the genome-wide

propensity for recurrent mutations in SARS-CoV-2 calls

for a broader perspective (Figure 3). For instance, all

aforementioned 501Y VoCs carry the same deletions at

amino acid positions 106–108 of NSP6, a region thought

to play an important role in innate immunity [65]. Other

major shared changes are observed in the nucleocapsid

protein, including widespread adjacent changes at codons

203�205. Also within the nucleocapsid, the D3L ‘triple

mutation’ (deriving from 28280:GAT > CTA) has been

demonstrated to enhance subgenomic RNA expression in

Alpha [66] and computationally scored as enhancing

transmissibility [25]. Outside of the structural proteins,

deletions in ORF8 have also been implicated in altered

pathogenicity [67], with a truncated ORF8 observed in

Alpha and deletions identified in Delta (Figure 3).

Surveillance for future adaptive changes
Early detection

Early detection of concerning lineages is critical for

timely monitoring of viral transmission and deployment
www.sciencedirect.com 
of appropriate interventions. This largely relies on the

completeness of the picture of the SARS-CoV-2 popula-

tion provided by genome sequencing. While some coun-

tries implemented close to real-time monitoring of SARS-

CoV-2 in their surveillance protocols, this is not feasible in

all settings. Alternatives to systematic patient-based sam-

pling, for instance environmental monitoring of waste-

water or sewage, may provide cost-effectiveness and a

wider picture of the circulating genomic diversity in one

given area [75]. Another possible strategy to circumvent

the challenge of achieving representative surveillance is

to focus on sequencing of incoming travellers and travel-

associated infections in high resource settings, as exem-

plified by Gamma which was identified in Japan in

individuals with a history of travel to Brazil [76].

Early detection of concerning lineages further relies on the

ability to identify them from their genomic make-up. This

is aided by flagging of mutations or combinations of muta-

tions that have been demonstrated to have a phenotypic

impact via functional studies (e.g. Box 1) or are suggested to

be relevant using more unsupervised methods (e.g. scans of

modified binding affinity [38] and/or mapping of escape

mutations [53]). However, not all mutations have been

assessed and such an approach ignores the possibility of

epistatic (i.e. non-linear) effects. Because of this phenom-

enon, mutations that are neutral or even deleterious in

isolation could provide a viral strain with a fitness increase

when combined in the same background. Strong epistatic

effects can lead to rugged adaptive landscapes, where

lineages can get stuck on local fitness peaks, unable to

cross the valleys towards higher ones. The emergence of

Alpha might have originated in the context of long-term

chronic infection, through a burst of mutations that allowed

it to reach a higherfitness peak, that may have been difficult

to attain through sequential accumulation of mutations in

immunocompetent hosts [34��].

The epidemiological success of some lineages can also be

assessed more directly through growth rate estimates [28],

aided by independent observations in different epidemi-

ological settings, notwithstanding the challenging of

adjusting for highly unequal sampling. Growth rate esti-

mates must be carefully tested for confounders as initial

increases due to an adaptive advantage may be difficult to

disentangle from neutral processes which can also give

rise to marked lineage dynamics (Figure 2). Finally,

selection screens based on patterns of non-synonymous

and synonymous mutations [51] and homoplasy-based

metrics [25] may hold scope to predict the adaptive

potential of a variant based on its constituent mutations.

Ongoing evolution of SARS-CoV-2

The limited evidence for early adaptation detected in

SARS-CoV-2 suggests some degree of pre-existing adap-

tation to human infection, either through existing gener-

alist mechanisms of host evasion or because the earliest
Current Opinion in Virology 2021, 50:40–48
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lineages of SARS-CoV-2 had already acquired some key

mutations favouring transmissibility in humans by the

time the first sequences were generated. Nevertheless,

the emergence of VoCs with clearly higher transmissibil-

ity (Alpha, Delta) are obvious signatures of adaptation of

SARS-CoV-2 to its human host. The exact mechanisms

underlying increased transmissibility still remain poorly

quantified and many of the characteristic mutations

deemed as concerning (Figure 3) are also observed in

other lineage backgrounds, often well predating the

emergence of VoCs, and without apparent fitness effects.

Besides epistatic interactions between mutations, a fur-

ther complicating factor stems from the increasing rates of

immunisation due to vaccination and natural infection

which alters the immunological environment of the virus

as the pandemic progresses, thereby possibly modifying

the fitness effect of immune-escape mutations.

Virulence, defined as the disease-induced mortality rate for

infected hosts, is even more challenging to predict. While it

is sometimes assumed that viral pathogens systematically

become attenuated following a host jump, this is only

necessarily true for vertically (i.e. mother to child) inherited

pathogens. In the latter situation the fitness of the patho-

gens and the host are intimately correlated so that high

virulence would entail a fitness cost. Under horizontal

(epidemic) transmission, a pathogen can become more or

less lethal depending on the correlation between transmis-

sibility and virulence. For example, higher viral replication

rates can be favoured as long as they allow a lineage to

spread more easily, even if this entails a cost to the host.

Given the moderate host mortality and �50% of transmis-

sion being pre-symptomatic, the selective pressure on

SARS-CoV-2 to evolve towards intrinsic lower virulence

is expected to be weak. This being said, morbidity and

mortality are predicted to eventually plumet as an increas-

ing fraction of the population acquires some immunity

through vaccination and prior infection.

Likely the most significant aspect to pandemic manage-

ment is the degree of evolution of SARS-CoV-2 towards

altered antigenicity, the timescales and consistency of

which can be difficult to predict even for richly studied

viruses such as seasonal influenza. Concerns surrounding

waning immunity and escape variants have in part been

driven by studies of reinfection by other human seasonal

coronaviruses. Two major hypotheses could explain fre-

quent reinfections: rapidly waning host immunity; or path-

ogen antigenic evolution leading to immune escape. Neu-

tralisation assays (Box 1) provide support for the latter

hypothesis in alphacoronavirus 229E. Using serum col-

lected between 1985 and 1990, and a series of 229E spike

sequences sampled at eight-year intervals, Eguia et al.
showed that antigenic evolution over the course of a decade

led to almost complete escape from antibody neutralisation

after 8–17 years. This suggests that vaccines to SARS-CoV-

2 may need to be reformulated periodically, as circulating
Current Opinion in Virology 2021, 50:40–48 
SARS-CoV-2 lineages evolve in response to host immunity

[77��]. Vaccine escape, however, is rarely a binary pheno-

type and a gradual loss of antibody recognition through the

evolution of new viral strains is to be expected rather than

an instantaneous loss of efficacy. Moreover, cellular immu-

nity is still predicted to provide some protection against

most severe symptoms in many re-infections. Thus, while

updated vaccinations will be required at least for the most

at-risk, this should be a largely manageable challenge aided

by genomic surveillance and the capability to readily

update modern vaccines.

Conclusions
GenomictrackingofSARS-CoV-2hasbeen instrumental in

monitoring the course of the COVID-19 pandemic and will

become a vital component supporting ongoing public

health, in particular informing on the vaccine update

schedule. There is little doubt that SARS-CoV-2 will

become an endemic circulating pathogen which will con-

tinue to undergo adaptation to human cellular and immune

defences. However, early identification of new variants,

coupled with a richer understanding of the mutational

forces underlying changing patterns of transmissibility,

virulence and antigenicity could reduce global morbidity

and mortality to a fraction of that experienced during the

pandemic phase of COVID-19. Additionally, the tremen-

dous progress and lessons learnt from fighting SARS-CoV-2

hold promise to reduce future threats to global health and

support preparedness for future epidemics.
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