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Linking the rotation of a rigid body 
to the Schrödinger equation: The 
quantum tennis racket effect and 
beyond
L. Van Damme3, D. Leiner2, P. Mardešić1, S. J. Glaser2 & D. Sugny3,4

The design of efficient and robust pulse sequences is a fundamental requirement in quantum control. 
Numerical methods can be used for this purpose, but with relatively little insight into the control 
mechanism. Here, we show that the free rotation of a classical rigid body plays a fundamental role in 
the control of two-level quantum systems by means of external electromagnetic pulses. For a state to 
state transfer, we derive a family of control fields depending upon two free parameters, which allow us 
to adjust the efficiency, the time and the robustness of the control process. As an illustrative example, 
we consider the quantum analog of the tennis racket effect, which is a geometric property of any 
classical rigid body. This effect is demonstrated experimentally for the control of a spin 1/2 particle by 
using techniques of Nuclear Magnetic Resonance. We also show that the dynamics of a rigid body can 
be used to implement one-qubit quantum gates. In particular, non-adiabatic geometric quantum phase 
gates can be realized based on the Montgomery phase of a rigid body. The robustness issue of the gates 
is discussed.

Quantum control is aimed at manipulating dynamical processes at microscopic scales by means of external elec-
tromagnetic fields1–6. Its successful experimental implementation requires robustness against parameter fluc-
tuations and uncertainties, but also high efficiency in a sufficiently short time to avoid parasitic phenomena 
such as relaxation. These objectives can be viewed as a crucial prerequisite for a wide range of applications of 
such techniques in the emerging domain of quantum technologies1. In this setting, numerical algorithms based 
on optimal control theory7 have been developed to realize a given task, while minimizing the control time and 
accounting for experimental constraints and imperfections8. In spite of its efficiency, this approach does not give 
a clear insight into the control mechanism, which makes it system-dependent and prevents its generalization. The 
physical understanding of a control process can be extracted from a geometric analysis of the dynamics9–13. The 
geometric properties of the corresponding physical effect will ensure its robustness against experimental errors 
and thus its usefulness14, 15. The richness of this geometric approach is illustrated by the Berry phase in quantum 
mechanics16, 17. The discovery of the Berry phase led to an impressive amount of studies both in quantum physics 
and chemistry. Geometric control protocols, resilient to certain types of experimental uncertainties, were devel-
oped in quantum computing from this effect18, 19. In this work, we propose to use the study of the free rotation of 
a rigid body to develop new geometric quantum control strategies. A geometric property, known as the Tennis 
Racket Effect (TRE)20, 21, will be used as an illustrative example to describe this method. This phenomenon occurs 
in the free rotation of any three-dimensional rigid body22–24. It can be easily observed with a tennis racket through 
the following experimental protocol. We first mark the different faces of the head of the racket. We then take the 
racket by the handle and throw it in the air so that the handle makes a 2π rotation. After catching the handle, we 
observe that the head of the tennis racket has made a flip of π. This effect can be reproduced for many different 
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rigid bodies and a large range of initial conditions, corresponding to the initial inclination and velocity of the 
head of the racket, showing thus its robustness, inherent to its geometric character. An illustration of TRE is given 
in Fig. 1. A complete mathematical description of TRE was given in a series of papers20, 21, 24. These analyses are 
based on the fact that the free rotation of a rigid body24 is an integrable system whose trajectories can be derived 
analytically by using Jacobi elliptic functions23. Here, we show that the TRE, and more generally the dynamics of 
a rigid body, find remarkable applications in the control of two-level quantum systems1, 2. We first obtain a family 
of control fields based on the TRE which allows us to manipulate the state of the system in a robust manner with 
respect to some experimental uncertainties. Such fields depend on two parameters that can be adjusted to change 
the time, the efficiency and the robustness of the control process. We introduce the concept of a quantum TRE, 
which is the analog of the classical motion at the quantum level and we point out its specific quantum properties. 
The TRE control strategy is demonstrated experimentally on a spin 1/2 particle by using techniques of Nuclear 
Magnetic Resonance25. We also show that the dynamics of a rigid body allows us to design control fields to realize 
one-qubit quantum gates. In particular, we focus on the Montgomery phase26, a geometric feature of the free rota-
tion of a rigid body, which leads to quantum geometric phase gates18 in the non-adiabatic regime.

A formal equivalence can be established between the free rotation of a rigid body and the dynamics of a spin 
1/2 particle, which are governed respectively by the Euler and the Bloch equations. The two systems of differential 
equations have a similar mathematical structure of the form =

��� ��
X H t X( )  where the matrix H(t) can be written as 

follows:
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The state of the system is described by the vector 
��
X t( ) and the Ω si  denote the angular velocities along the 

i-direction, i = 1, 2, 3. We refer the reader to Supp. Sec. I or to textbook references for technical details22, 23, 25. The 
vector 

��
X  can be identified with the angular momentum 

��
L  of the rigid body (in the frame attached to the racket) 

or with the Bloch vector 
���
M  of the spin (in a given rotating frame25). In the classical system, the components of 

=
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L L L L( , , )1 2 3  can be expressed in terms of the Ω si  through the principal moments of inertia Ii, = ΩL Ii i i (in the 
principal axis system of the inertia tensor), while in the quantum case, the angular velocities refer to external 
control fields applied along a given direction. The classical system admits two constants of motion making it 
Liouville integrable, namely the energy = + +E L
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2, which can be set to 1. If the control fields applied to the spin are exactly equal to the angular veloc-

ities of the rigid body then a one-to-one mapping can be defined between the trajectories of the classical and 
quantum objects. As shown below, the moments of inertia can be viewed as additional degrees of freedom used to 
design control fields with specific properties. In some experimental applications, only two external fields are 
available. In this limiting case, an ideal rigid body for which one of the moments of inertia goes to infinity can be 
considered. Note that the different geometric features of a rigid body are not modified in this limit. In the rest of 
the paper, we will assume that the three moments of inertia are equal to 1, 1/k2 with ∈k [0, 1], and +∞.

Figure 1.  The tennis racket effect. Illustration of the motion of the tennis racket. Note the flip of the head when 
the handle makes a 2π rotation.
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Classical and quantum tennis racket effects.  Returning back to the dynamical behavior of the tennis 
racket, two fundamental motions can be considered.

The first motion is associated with the angular momentum 
��
L  in the reference frame of the racket. During the 

rotation of the racket, the angular momentum is brought from its initial position to the diametrically opposite 
one. The different trajectories that can be followed by 

��
L  are displayed in Fig. 2. The classical phase space has a 

simple structure made of a separatrix which is the boundary between two families of trajectories: the rotating and 
the oscillating ones, each distributed around a stable fixed point23. In the example of Fig. 2 where Ω =t( ) 02 , I1 = 1 
and I3 = 1/k2, the north and the south poles are unstable equilibrium points. All the trajectories are periodic, 
except for the separatrix, which connects the two unstable points in an infinite time. In Fig. 2, a transfer from the 
north pole (e3) to the south pole (−e3) can be achieved on the Bloch sphere by following the separatrix. In the 
quantum mechanical setting, this control process requires an infinite time to be performed and corresponds to an 
Allen-Eberly type pulse sequence of the form ref. 27:

Ω =
±
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+ Ω =

±
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+t
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t t t k
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1
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tanh( ),

(2)
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where t0 is an arbitrary constant time.
The formal equivalence used in this work leads therefore to an insightful geometric interpretation of the 

Allen-Eberly solution as a singular trajectory, i.e. a separatrix, of a classical rigid body. In addition to this control 
strategy, two families of control fields can be derived from TRE. Such solutions, called TRE pulses, correspond to 
the oscillating or rotating trajectories close to the separatrix, which bring approximately the system from the 
north to the south pole of the Bloch sphere. Each element of the two sets can be characterized by the parameter k 
and a small positive constant , which describes the distance of the trajectory to the separatrix. The two parame-
ters can be chosen to adjust the efficiency, the robustness and the time of the control process. More generally, we 
show in Supp. Sec. II by considering the whole range of variations of  and k that a smooth transition can be 
established between π pulses of constant phase and Allen-Eberly solutions. In the case of Fig. 2, the rotation axis 
of the π pulse is associated with one of the two stable fixed points and the Allen-Eberly control with the separatrix. 
All the other trajectories, and in particular the TRE pulses, represent a compromise between the two solutions.

To evaluate the robust character of the TRE pulse, we consider the control of an ensemble of spins with differ-
ent offset frequencies δ and scaling factors α of the amplitude of the control field, the two parameters belonging 
to intervals fixed by the experimental setup. This description reproduces the standard experimental uncertainties 
due to the field inhomogeneities that can be encountered in NMR25 or in quantum information processing28. In 
the numerical simulations, we replace in Eq. (1) the three angular velocities by α+ Ω(1 ) 1, α+ Ω(1 ) 2 and δΩ +3 . 
We denote by tf and J3 = −M3(tf), the control time and the figure of merit of the process, respectively. The initial 
state is the north pole of the Bloch sphere. Figure 3 shows the efficiency of the TRE pulse. We observe that the 
robustness of the process changes with the parameter k. It can be verified that this property does not depend on , 
for  sufficiently small. The parameter  affects predominantly the fidelity and the control time of the process. The 
analytical computations reveal that this time has a logarithmic divergence when  goes to 0 (see Supp. Sec. II).

Figure 2.  Dynamics of the angular momentum of a three-dimensional rigid body. Trajectories of the angular 
momentum 

��
L  of a three-dimensional rigid body in the body-fixed frame   e e e( , , )1 2 3 . The blue (dark gray) and 

red (light gray) lines depict respectively the rotating and oscillating trajectories of the angular momentum. The 
dashed line represents the separatrix. The parameter k is set to 0.5. In the case of a corresponding two-level 
quantum system, the trajectories represent the dynamics of the Bloch vector in the rotating frame.
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A second relevant dynamical process is associated with the motion of the frame attached to the racket with 
respect to the laboratory frame (x, y, z). Denoting by ∈R t SO( ) (3), the corresponding rotation matrix at a time t, 
whose dynamics is ruled by the equation =R t H t R t( ) ( ) ( ), the final position of the racket is characterized in the 
ideal case by:

=
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This analogy can be interpreted as a first step towards the implementation of quantum gates, here a NOT gate. 
However, this transformation is less robust than the one of the angular momentum because the total time of the 
process has to be perfectly adjusted in order to realize the 2π rotation of the handle (see below). Note that the 
racket exactly goes back to its initial position after 2 TREs. This geometric phenomenon can be extended to a 
purely quantum property by using the standard mapping between SO(3) and SU(2). A quantum TRE is then 
defined from the solution of the Schrödinger equation =i U t t U t( ) ( ) ( )d

dt
  where ∈U t SU( ) (2) and  is the 

2 × 2-Hamiltonian matrix with complex entries corresponding to the Hamiltonian H(t) of Eq. (1), which is 
defined by:
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We observe that after one TRE, the rotation matrix is given by

= − ( )U i( ) 0 1
1 0 , (5)f

so that four TREs are needed for the quantum racket to come back to its initial state. A description of this quan-
tum motion is displayed in Fig. 4 by using the DROPS representation of the propagator U(t)29, illustrating the 
orientation of the effective rotation axis. While in the conventional experiment, this orientation is constant (along 
the x-axis), it follows in the TRE case a twisted trajectory from the y-via z- to the x-axes between t = 0 and t = TR.

Experimental implementation.  We now show by using NMR techniques the experimental performance 
of a TRE pulse to realize a state to state transfer from (0, 1, 0) to (0, −1, 0).

The experiments were performed on a Bruker Avance 600 MHz spectrometer. We used the 1H spins of HDO 
with D2O (99.9%) as a solvent in a Shigemi tube. The offset of the irradiation frequency was set to 2824 Hz and the 
maximum amplitude to 1115.6 Hz. At room temperature (298 K), the spin-lattice relaxation time is T1 = 1.82 s and 

Figure 3.  Efficiency and robustness of the Tennis Racket Effect pulses. The figure of merit J3 is plotted as a 
function of the α and δ parameters. In the panels (a–d), k is respectively fixed to 0.2, 0.6, 0.9 and 0.99. The 
parameter  is set to 0.01 (see Supplementary Sec. II for details).
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thus negligible since orders of magnitude larger than the pulse duration. The trajectory measurements were made 
by interrupting the control pulse at different times t. The x- and y-components of the Bloch vector were directly 
acquired. For the z-coordinate, the experiments were repeated with an additional π

2
 pulse along the x-direction 

before the acquisition in order to flip the z-component of the magnetization vector to the transverse plane. The 
TRE pulse duration was set to 1.5965 ms and the parameters k and E to 0.7 and 0.2457, respectively. The π pulse is 
defined as a rectangular shaped pulse with the same amplitude and with 1000 intervals to be consistent with the 
digitization of the TRE pulse.

The evolution of the Bloch vector and the robustness of the shaped pulse with respect to the scaling factor 
α are displayed in Fig. 5. For the robustness experiments, we scaled the amplitude with factors ranging from 
α = −0.5 to α = 0.5 in 11 steps. The figure of merit J2 is here defined by J2 = −M2(tf). In the experimentally meas-
ured trajectories, each data point corresponds to the average of 16 scans in order to increase the signal-to-noise 
ratio of the experimental spectra. Small but finite sources of systematic errors30, in the NMR experiments are (a) 
relaxation losses during the pulses, (b) B0 inhomogeneity, (c) non-linear effects due to radiation damping31, (d) 
pulse shape distortions due to the amplifiers and the finite bandwidth of the resonator32 and (e) partial saturation 

Figure 4.  Drops representation of the propagators. Trajectories of the propagators U(t) for standard rectangular 
pulses of constant amplitude and phase (A) and by TRE pulses (B) as a function of time. In panels (A,B), T180 
and TR are pulse durations corresponding to a 180°-rotation around the x-axis. In the DROPS representation29, 
operators are depicted by complex spherical functions θ φ θ φ= ηf f e( , ) ( , ) i , where for given azimuthal and 
polar angles θ and φ, the absolute value θ φf ( , )  is represented by the distance from the origin and the phase 
angle is color coded (η = 0: red, η = π

2
: yellow, η π= : green, η = π3

2
: blue). At t = 0, the propagator is the 

identity operator 1 (represented by red spheres), while at (A) t = T360° = 2T180° and (B) t = 2TR the propagator is 
−1 (represented by green spheres). In panels (A,B), the identity operator is created again at t = 4T180° = T720° and 
t = 4TR, respectively.

Figure 5.  Experimental implementation of the TRE pulse. The panels (a,b) represent respectively the 
trajectories of the components of the Bloch vector (2: red or dark gray, 3: blue or black, 1: green or light 
gray) and the robustness of J2 with respect to the α- parameter. A rectangular π pulse is used in panel (b) 
for comparison (red or dark gray). The experimentally measured points and the simulated trajectories are 
represented by crosses and solid lines, respectively. Experimental details can be found in the main text.
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of the signal due to finite relaxation period between scans. Each of these sources of errors was minimized within 
the limits of the experimental setting and a reasonable match was found between the experimental results and 
simulations.

Implementation of one-qubit gates.  The correspondence between the free rotation of a rigid body and 
the dynamics of a spin 1/2 particle also provides novel control strategies in quantum computing28. In Supp. Sec. V, 
we show how to implement the Hadamard gate, and more generally any one-qubit quantum gate. Here, we focus 
on the case of the geometric quantum phase gates33, that can be realized by using a geometric feature of the free 
rotation of a rigid body, namely the Montgomery phase26. This phase can be defined by considering one period of 
the time evolution of the angular momentum 

��
L  in the body-fixed frame. During this motion, the laboratory 

frame rotates about 
��
L  by an angle, the Montgomery phase. This phase, Δψ can be expressed as the sum of a 

dynamical and a geometric contribution16:

ψ∆ = −
ET
M

S2 , (6)

where M is the norm of the angular momentum, T the period of the motion of 
���
M  and S the solid angle swept out 

by 
���
M . One of the main difficulties to realize geometric phase gates is to find a way to cancel the dynamical contri-

bution of the phase in order to obtain a robust control protocol. Different techniques have been proposed up to 
date18, 33. Geometric phase gates can be implemented in the adiabatic regime18, but it is possible to generalize this 
process to consider non-adiabatic cyclic evolution34, 35, which is crucial to avoid decoherence effects. Only very 
simple motions, such as a circle on the Bloch sphere, were proposed. Using the Montgomery phase and the 
dynamics of a rigid body, this idea can be considerably extended. The method can be described as follows. To 
simplify the discussion, we assume here that the system follows trajectories along the separatrices. We first make 
a transfer from the point (0, 1, 0) to the point (0, −1, 0) with a finite time Ta and a fixed parameter ka. The system 
is brought in a second step from (0, −1, 0) to (0, 1, 0) with a different value of the parameter ≠k kb a. We choose 
the time Tb of the second process so that the two dynamical phases cancel each other. The global process is dis-
played in Fig. 6. A straightforward computation derived in Supp. Sec. V shows that:

=
−

−
T

k k

k k
T

1

1
,

(7)
b

a b

b a
a

2

2

which leads to a purely geometric phase given by:

ψ∆ = − − − .k k2[arcsin( 1 ) arcsin( 1 )] (8)a b
2 2

Using this approach, any geometric phase gate can be implemented in the non-adiabatic regime. More generally, 
the dynamical phase is also at the origin of the relatively low robustness of the one-qubit quantum gates based on 
the dynamics of a rigid body. This property can be greatly improved by considering a generalization of the BIR- 
pulses used in NMR36, 37. This control strategy consists in the concatenation of two (or more) pulses chosen so that 

Figure 6.  Quantum gate based on the Montgomery phase. Cyclic process on the Bloch sphere for implementing 
a π/2 phase gate. The loop is the concatenation of the trajectories (a,b) which are defined by different values of k 
(see the main text). The brown (gray) surface is the total geometric phase at the end of the process i.e. Stot = π/2.
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the global dynamical phase is cancelled. As an illustrative example, we consider here a NOT gate (see also Supp. 
Sec. V for technical details). The trajectory used to realized a robust NOT-gate is depicted in Fig. 7. We first follow 
a separatrix from the north pole to the equatorial plane of the sphere. The system is then brought to another sep-
aratrix followed in the opposite direction. The two separatrices are connected with a constant pulse Δ about e3 so 
that the global phase is cancelled. It can be shown that Δ = 2 arccos k.

Conclusion
By using the formal analogy between the free rotation of a rigid body and the dynamics of a spin 1/2 particle, we 
have derived a new family of control fields able to realize either a state to state transfer or a specific unitary trans-
formation in a two-level quantum system. As demonstrated in this paper, the derived pulses have an explicit and 
relatively simple form, which is therefore easily implementable experimentally. Note that a Matlab code comput-
ing the trajectories of a rigid body and of the corresponding Bloch vector is provided in Supp. Sec. VI.

The results of this work pave the way to other analyses using the same kind of equivalence. The applicability of 
this analogy beyond simple two-level quantum systems, such as in a chain of three coupled spins38, 39, shows the 
general interest of this approach. Following the method proposed in ref. 38, the control fields derived from the 
dynamics of a rigid body could also be used as a building block to realize a CNOT gate in this system. Another 
possible direction is the generalization of this study to SO(n), with n > 3, for instance in the integrable case of the 
Manakov top40.
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