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Abstract

Background

The National Lung Screening Trial (NLST) demonstrated that annual screening with low

dose CT in high-risk population was associated with reduction in lung cancer mortality.

Nonetheless, the leading cause of mortality in the study was from cardiovascular diseases.

Purpose

To determine whether the used machine learning automatic algorithms assessing coronary

calcium score (CCS), level of liver steatosis and emphysema percentage in the lungs are

good predictors of cardiovascular disease (CVD) mortality and incidence when applied on

low dose CT scans.

Materials and methods

Three fully automated machine learning algorithms were used to assess CCS, level of liver

steatosis and emphysema percentage in the lung. The algorithms were used on low-dose

computed tomography scans acquired from 12,332 participants in NLST.

Results

In a multivariate analysis, association between the three algorithm scores and CVD mortality

have shown an OR of 1.72 (p = 0.003), 2.62 (p < 0.0001) for CCS scores of 101–400 and

above 400 respectively, and an OR of 1.12 (p = 0.044) for level of liver steatosis. Similar

results were shown for the incidence of CVD, OR of 1.96 (p < 0.0001), 4.94 (p < 0.0001) for
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CCS scores of 101–400 and above 400 respectively. Also, emphysema percentage demon-

strated an OR of 0.89 (p < 0.0001). Similar results are shown for univariate analyses of the

algorithms.

Conclusion

The three automated machine learning algorithms could help physicians to assess the inci-

dence and risk of CVD mortality in this specific population. Application of these algorithms to

existing LDCT scans can provide valuable health care information and assist in future

research.

Introduction

The National Lung Screening Trial (NLST) was conducted to determine whether annual

screening with low-dose computed tomography (LDCT) scans could reduce mortality from

lung cancer in high-risk individuals [1]. In the NLST, more people died of cardiovascular dis-

ease (24.8%) than lung cancer (24.1%) (1). This result is consistent with the repeated observa-

tions that cardiovascular disease (CVD) is the leading cause of death in the 21st century [2]

and the leading cause of death of smokers [3].

Routine measurement of the Coronary Calcium Score (CCS), a well-established risk factor

for CVD quantified by the Agatston score [4–6], has been shown to detect CVD in LDCT

scans. This type of CVD screening has been shown to lead to finding 84 patients with a CCS

above 1000 out of 1000 patients screened, who could benefit from starting secondary preven-

tive medical treatment of CVD such as antihypertensive or lipid lowering drugs or both, that

they didn’t receive before [7]. In addition, LDCT could also identify fatty liver, which is inde-

pendently associated with increased CVD risk [8–10]. Finally, a specific diagnosis of emphy-

sema can also be made from the screening LDCT, which is by itself a risk factor for CVD [11],

this screening could also lead to other disease specific interventions for pulmonary disease as

well as CVD.

Although early diagnostics based on CT screening is very effective, the current approach,

which relies primarily on manual evaluation of medical imaging is limited due to varied inter-

observer reliability [12–14] and limited time for scan [15]. With recent advances in artificial

intelligence (AI) and machine learning algorithms, using automation to immediately and

accurately analyze each CT scan and create query-able, consistent interpretations is closer than

ever. Such algorithms, if implemented appropriately, could assist physicians and lead to early

diagnosis and improved patient care.

In this study, we aimed to apply three automated machine learning algorithms that provide

CCS, liver steatosis and emphysema percentage in the lungs to low-dose CT scans, in order to

assess the utility of these tools as predictors of CVD incidence and mortality.

Materials and methods

Data acquisition

The study was submitted to review by the NCI (National Cancer institute) and was approved

as NLST-246.

Data from 15,000 participants of the NLST trial were acquired. For each participant three

LDCT screenings (T0, T1, T2) were requested, each screening was made at 1-year intervals.
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These participants were 55–74 years old with a history of cigarette smoking of at least 30 pack

years, and, if former smokers, had quit within the previous 15 years [1]. Participants who met

the NLST exclusion criteria [1], were screened with an annual Chest X-ray rather than LDCT

or did not complete the NLST study, were not selected. A sample of 15,000 participants was

received from the NIH, representing a dataset enriched for subjects who had self-reported car-

diovascular events and those who died of cardiovascular disease during the NLST interval.

Subject data was excluded (Fig 1) if it contained only a single LDCT time point or in the event

that algorithmic assessment of either Coronary Calcium, Liver Density or Quantitative

Emphysema was technically unsuccessful. Median duration of follow up was 6.5 years with a

maximum duration of 7.4 years.

Fig 1. Data flow chart.

https://doi.org/10.1371/journal.pone.0236021.g001
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Algorithms used

In this study we used three automated machine learning algorithms which were designed to

assess biomarkers on non-contrast chest CT, specifically the percent emphysema (Emphy-

Alg), liver density (LD-Alg) and quantity of coronary calcium (CCS-Alg).

CCS-Alg is an algorithm designed to assist radiologists in evaluating coronary artery calcifi-

cation (CAC) by providing CCS and its quantification the Agatston score from CT scans as

was previously published [16]. CCS is measured as a continuous score while Agatston is

reported in categories.

The Emphy-Alg is an algorithm for analyzing images from CT thoracic scans. This applica-

tion performs automatic segmentation and volume calculation of the pulmonary tissue from

non-contrast thoracic CT scans and quantifies the volume of low-attenuation air in the lungs

(low-attenuation volume is defined as volume with attenuation lower than -950 Hounsfield

units (HU) [17]. The application provides the low-attenuation volume as a percentage of the

overall lung volume, this allows us to assess the percentage of emphysema.

LD-Alg is an algorithm which automatically analyzes pre-existing chest and abdomen CT

scans (with or without a contrast agent) that include part of the liver and assesses liver attenua-

tion. This algorithm accepts CT scans (DICOM files) and provides an averaged HU value of

the liver. Steatosis will cause a reduced HU value [18] and LD-Alg score. The LD-Alg score is

provided as a continuous score.

Statistical methods

Statistical analyses were performed in SAS v9.4 (SAS institute, Cary, NC, USA) and in R

v3.5.1.

The first valid measurement of each of the scores (CCS-Alg, Emphy-Alg, and LD-Alg) was

used in the analysis. Logistic regression was used to determine whether each of the 3 scores is

associated with the outcomes of interest. The 3 scores were modeled individually and in multi-

variate logistic regression models together with age, gender and pack years. The CCS-Alg

score was modeled both as a 5-level categorical variable similar to the Agatston score scale and

as a continuous score. The Emphy-Alg and LD-Alg scores were modeled as continuous scores

with odds ratios (OR) reported for 10% or 10-unit increments of each respectively. The area

under the ROC curve (AUC) was used as a measure of the discriminatory power of the models.

Nested models were compared by the difference between AUC as well as the correlated 95%

confidence interval [19]. Model parameters with level of significance are presented. ORs and

95% confidence intervals (CI) for both univariate and multivariate models are also presented.

A P value < 0.05 was considered statistically significant, nominal p-values are presented.

Results

Demographics

The final analysis included 12,332 participants (Fig 1). The majority of participants were male

(n = 7308, 59.3%) mean (SD) age was 61.9 (5.1), females (n = 5024, 40.7%) mean (SD) age was

61.5 (5), and overall, the mean (SD) age was 61.8 (5.1) years (range, 55–74 years) (Table 1). All

patients have a history of cigarette smoking (of at least 30 pack years or had stopped within 15

years before the initiation of the NLST study), with mean (SD) of cigarette packs per year of

56.3 (24.1) and range of 30–295 cigarette pack years (Table 1).

The clinical outcomes of interest in this population were CVD incidence (n = 2855, 23.2%)

and CVD mortality (n = 358, 2.9%) (Table 1). CCS-Alg Agatston categories stayed the same

throughout the 3 time points in 52.7% (n = 6505) of the participants. Of the remaining, 21%
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(n = 2592) changed 1 group over and 26.2% (n = 3235) changed more than one group. Among

those who had a change, the net movement from T0 to T2 was increased in 25.9% (n = 3196)

and decreased in 21.3% (n = 2631). The biggest shift in categories was between Agatston cate-

gory 3 in T1 to Agatston category 4 in T3, 5.8% (n = 724).

Data from 15,000 participants was gathered under NIH protocol NLST 246. 1856 (12%)

participants were excluded because data only existed for a single time point and thus could not

be analyzed for temporal dynamics. An additional 812 (5%) were excluded because of technical

algorithmic failure pertaining to any one of the three automatic assessments of Coronary Cal-

cium, Liver Density or Quantitative Emphysema.

CVD mortality

Univariate analyses. A statistically significant association between CCS-Alg categories

and CVD mortality was observed, with approximately 1.5-fold, 2-fold and 3.5-fold increased

risk of CVD mortality in categories 11–100 (n = 2742), 101–400 (n = 2374), and>400

(n = 2780) vs 0 (n = 3451), respectively, and when treated as a continuous variable CCS-Alg

demonstrated a 1.05-fold (P< 0.0001) increased risk for CVD mortality for every 100-unit

increase in score (Table 2). A statistically significant association was also found between

Emphy-Alg score and CVD mortality, with 1.14-fold (95% CI, 1.03–1.26) increased risk of

CVD mortality for each 10% increment in the Emphy-Alg score (P = .0146 S1 Table in S1

Appendix), and between LD-Alg score and CVD mortality, with 1.16-fold (95% CI, 1.04–1.29)

Table 2. Univariate analysis evaluating the association between CCS-Alg and CVD mortality and incidence.

Level OR estimate 95% confidence limits P-value

CVD mortality 1–10 vs 0 0.96 0.54 1.70 .8750

11–100 vs 0 1.48 1.03 2.12 .0361

101-400vs 0 2.01 1.42 2.86 <.0001

>400 vs 0 3.50 2.56 4.79 <.0001

As continuous (100-unit increments) 1.05 1.03 1.06 <.0001

CVD Incidence 1–10 vs 0 0.82 0.65 1.02 .0722

11–100 vs 0 1.11 0.96 1.29 .1460

101–400 vs 0 2.18 1.90 2.50 <.0001

>400 vs 0 5.91 5.22 6.68 <.0001

As continuous (100-unit increments) 1.12 1.11 1.13 <.0001

CVD = cardiovascular disease, OR = odds ratio.

https://doi.org/10.1371/journal.pone.0236021.t002

Table 1. Characteristics of the study population.

Survived n = 11322 CVD incidences n = 2855 CVD mortality n = 358 All participants n = 12332

Age 61.6(5) 62.9 (5.2) 63.8 (5.52) 61.8 (5.1)

Pack years 55.6 (23.7) 60.8 (26.7) 63.7 (26.7) 56.3 (24.1)

Females n (%) 42 29.1 32

CCS-Alg 291.4 (569.77) 664 (868.4) 607.11 (857.3) 313.2 (603.2)

Emphy-Alg 3.38 (7.31) 3.2 (6.8) 2.8 (6.6) 3.4 (7.4)

LD-Alg 44.6 (12.6) 42.6 (27.8) 29.5 (29.9) 43.4 (28)

Except where indicated, data are mean (SD).

https://doi.org/10.1371/journal.pone.0236021.t001
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increased risk of CVD mortality for each 10 HU reduction in the LD-Alg score (P = .0077 S1

Table in S1 Appendix).

Multivariate models. The relationship between CVD mortality and CCS-Alg, Emphy-

Alg, and LD-Alg was further explored via multivariate logistic regression together with age,

gender and pack years which are known risk factors (Table 3). The AUC for this model was

0.6724 (95% CI, 0.64–0.7), suggesting low-to-moderate discrimination ability (Fig 1). The

analysis demonstrated an increased CVD mortality risk of approximately 1.71-fold and

2.6-fold in CCS-Alg categories 101–400 and >400 vs 0, respectively. There was no increased

risk in the 1–10 or the 11–100 category vs 0. The analysis also demonstrated approximately

1.12-fold increased risk of CVD mortality per 10 HU units decrease in LD-Alg scores

(Table 3).

A multivariate logistic regression consisting of CCS-Alg, LD-Alg, Emphy-Alg was per-

formed and resulted in an AUC of 0.648 (95% CI, 0.62–0.68) (S1 Fig in S1 Appendix).

The relationship between CVD mortality and age, gender and pack years was also assessed

with a multivariate logistic regression, this model resulted in an AUC of 0.639 (95% CI, 0.61–

0.67. AUC difference between the combined model and this one is 0.032 (95% CI, 0.03–0.033),

AUC difference between the CCS-Alg, LD-Alg, Emphy-Alg model and this model is 0.009

(95% CI, 0.01–0.008)). this analysis demonstrated an increased CVD mortality risk of

1.94-fold (P< .0001) for every 10-year increase in age, and increased risk of 1.44-fold

(P = 0.0019) for males and an increased risk of 1.073-fold (P = 0.0001) for every 10-year

increase in pack years.

CVD incidence

Univariate analyses. A statistically significant association between CCS-Alg categories

and CVD incidence was found, with approximately 2.2-fold, and 5.9-fold increased risk of

CVD incidence in categories 101–400, and>400 vs 0, respectively. When treating CCS-Alg as

a continuous variable an increased 1.12-fold risk for CVD incidence was found for every 100

increment in the CCS-Alg score (Table 2). No statistically significant association was observed

between Emphy-Alg score and CVD incidence (P = .176 S1 Table in S1 Appendix). However,

a statistically significant inverse association was found with the LD-Alg score (1.1-fold differ-

ence [95% CI, 1.05–1.15] for each 10 HU decrements in the LD-Alg score; P< .0001 S1

Table in S1 Appendix).

Table 3. Multivariate analysis evaluating the association between CCS-Alg categories, Emphy-Alg, LD-Alg, age,

gender, pack years and CVD mortality.

Level OR estimate 95% confidence limits P-value

CCS-Alg 1–10 vs 0 0.99 0.53 1.72 .9845

CCS-Alg 11–100 vs 0 1.37 0.95 1.98 .0887

CCS-Alg 101–400 vs 0 1.72 1.2 2.46 .003

CCS-Alg >400 vs 0 2.62 1.9 3.68 <.0001

Emphy-Alg 1.07 1.96 1.2 .2006

LD-Alg 1.12 1.002 1.26 .0443

Gender (Male) 1.15 0.9 1.47 0.24

Age 1.6 1.3 1.97 <.0001

Pack years 1.06 1.03 1.1 0.0006

OR = odds ratio.

https://doi.org/10.1371/journal.pone.0236021.t003
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Multivariate models. The relationship between CVD incidence and CCS-Alg, Emphy-

Alg, and LD-Alg was explored via a multivariate logistic regression (Table 4). The AUC for the

overall model was 0.7159 (95% CI, 0.71–0.73), suggested moderate discrimination ability (Fig

2B). The analysis demonstrated an increased CVD incidence risk of approximately 1.96-fold,

and 4.9-fold in CCS-Alg categories 101–400 and>400 vs 0. There was no increased risk in the

1–10 or 11–100 category vs 0. The analysis also demonstrated reduction of CVD incidence risk

(0.89-fold difference) per 10% increments in Emphy-Alg score (Table 4).

A multivariate logistic regression consisting of CCS-Alg, LD-Alg, Emphy-Alg was per-

formed and resulted in an AUC of 0.699 (95% CI, 0.68–0.7) (S2 Fig in S1 Appendix).

The relationship between CVD incidence and age, gender and pack years was also assessed

with a multivariate logistic regression, this model resulted in an AUC of 0.6288 (95% CI, 0.62–

0.64, AUC difference between the combined model and this one is 0.08 (95% CI, 0.086–0.087),

AUC difference between the CCS-Alg, LD-Alg, Emphy-Alg model and this model is 0.071

(95% CI, 0.07–0.071)). This analysis demonstrated an increased CVD incidence risk of

1.67-fold (P< .0001) for every 10-year increase in age, and increased risk of 1.81-fold (P <

.0001) for males and an increased risk of 1.06-fold (P = 0.0001) for every 10-year increase in

pack years.

Discussion

The current analysis demonstrated that the automatic CT scan evaluation tools CCS-Alg,

Emphy-Alg, and LD-Alg are statistically significant predictors for CVD mortality, with

CCS-Alg providing the highest predictive value of these 3 tools. As for CVD incidence, our

findings suggest that CCS-Alg and LD-Alg (but not Emphy-Alg) are statistically significant

predictors.

Our findings show that CCS-Alg, Emphy-Alg, and LD-Alg are statistically significantly bet-

ter predictors for CVD incidence than age, gender or pack year, which are by themselves well

known predictors of both CVD mortality and or CVD incidence [20–23]. It can be seen that

when adding all of the above predictors into one multivariate model we achieve an improved

model with a statistically significant and higher AUC both for CVD mortality and for CVD

incidence.

Our results with the CCS-Alg are similar in their prediction trend to results obtained using

manual Agatston score categories. For example, Oudkerk et al. [24] have shown a rise in

Table 4. Multivariate analysis evaluating the association between CCS-Alg categories, Emphy-Alg, LD-Alg, age,

gender, pack years and CVD incidence.

Level OR estimate 95% confidence limits P-value

CCS-Alg 1–10 vs 0 0.85 0.68 1.06 .149

CCS-Alg 11–100 vs 0 1.06 0.92 1.23 .426

CCS-Alg 101–400 vs 0 1.96 1.71 2.26 <.0001

CCS-Alg >400 vs 0 4.94 4.33 5.63 <.0001

Emphy-Alg 0.89 0.84 0.94 <.0001

LD-Alg 1.03 0.98 1.09 .181

Gender (Male) 1.32 1.2 1.46 <.0001

Age 1.24 1.14 1.36 <.0001

Pack years 1.05 1.03 1.07 <.0001

OR = odds ratio.

https://doi.org/10.1371/journal.pone.0236021.t004
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relative risk (RR) of 1.9 in the 1–100 category to 7.2 RR in 400–1000 while we show a rise in

OR from 1.1 to 5.9 respectively. A study of the American College of Radiology Imaging Net-

work (ACRIN) arm of the NLST which randomly selected 1575 cases and manually assessed

CCS, showing that for Agatston scores of 1–100, 101–1000 and >1000 the hazard ratios were

1.27, 3.57 and 6.63, respectively. Our results show similar numbers while increasing the popu-

lation and automating the process [25].

The advantage of CCS-Alg over manual processing of scans for quantifying calcifications in

the coronary arteries is that this post-processing tool is fully automated utilizing machine

learning and AI approaches. Multiple studies have shown the benefits of machine learning and

AI to the medical field with respect to prediction of diagnosis [26], time saving [27] and better

results in finding a certain pathology [28]. Furthermore, using automated tools such as

CCS-Alg could help address a wider range of predictors of various diseases, even in cases

where these diseases are not the focus/motivation of the screening. For example, in the case of

NLST, patients were screened for lung cancer; however, the scans could also be used for identi-

fying CVD risk. The automated process also enables the addition of these scores into a data-

base in a reliable and efficient way. This will essentially help encode radiology reports into data

that will allow a researcher or clinician to query the desired information that today is only

available through manually looking at each report and hand picking the wanted data.

Our finding that LD-Alg and Emphy-Alg are statistically significant predictors of CVD

mortality is consistent with prior studies showing that emphysema [29] and fatty liver [8–10]

(on which Emphy-Alg and LD-Alg are based, respectively) are predictors of CVD mortality.

However, surprisingly, for each 10% increment in the Emphy-Alg score, we observed reduced

risk of CVD incidence.

Fig 2. ROC curves with AUC for CCS-Alg, Emphy-Alg, LD-Alg univariate analyses and a multivariate model consisting of all the above together with age,

gender and pack years depicting the discriminatory power of the scores for CVD mortality (A) and incidence (B). AUC difference comparing the Model

AUC and CCS-Alg is 0.036 (95% CI, 0.037–0.035) for mortality (A) and 0.025 (95% CI, 0.024–0.026) for incidence (B).

https://doi.org/10.1371/journal.pone.0236021.g002
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All three of our algorithms are fully automated and provide additional and critical informa-

tion to the physician. They all provide continuous exact measurements about the severity of

the disease, as opposed to simply a category. This information can support the physician in

better assessing CVD severity and consequently in better treatment decisions. For example, a

CCS-Alg score of 401 is in the same Agatston category as a score of 802; however the probabil-

ity of having a CVD incidence with a CCS of 802 is higher by approximately 25% during a

median follow-up period of 3.8 years than that of a CCS of 401 [4].

Our study is limited by the lack of manual Agatston score on the NLST data. Therefore, the

automatic tools could not be directly compared to the manual Agatston score procedure.

However, we were able to show that the algorithms (particularly CCS-Alg) can predict CVD

incidence and mortality even without a manual Agatston score. Our approach has a few limita-

tions as well, by automating the process we increase the risk of overdiagnosis. While is still

isn’t clear that the added information will influence management. However, it might also give

the opportunity to approach a patient not by a single disease at a time but identify multiple

risk factors with a single test.

In conclusion, our study demonstrated that automatic algorithms such as CCS-Alg, on its

own or in combination with Emphy-Alg, LD-Alg, age, gender and pack years can be used in

clinical practice as predictors of CVD incidence and mortality.
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