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Abstract: A recently developed valence-bond-based multireference density functional theory, named
λ-DFVB, is revisited in this paper. λ-DFVB remedies the double-counting error of electron correlation
by decomposing the electron–electron interactions into the wave function term and density functional
term with a variable parameter λ. The λ value is defined as a function of the free valence index
in our previous scheme, denoted as λ-DFVB(K) in this paper. Here we revisit the λ-DFVB method
and present a new scheme based on natural orbital occupation numbers (NOONs) for parameter λ,
named λ-DFVB(IS), to simplify the process of λ-DFVB calculation. In λ-DFVB(IS), the parameter λ is
defined as a function of NOONs, which are straightforwardly determined from the many-electron
wave function of the molecule. Furthermore, λ-DFVB(IS) does not involve further self-consistent
field calculation after performing the valence bond self-consistent field (VBSCF) calculation, and thus,
the computational effort in λ-DFVB(IS) is approximately the same as the VBSCF method, greatly
reduced from λ-DFVB(K). The performance of λ-DFVB(IS) was investigated on a broader range of
molecular properties, including equilibrium bond lengths and dissociation energies, atomization
energies, atomic excitation energies, and chemical reaction barriers. The computational results show
that λ-DFVB(IS) is more robust without losing accuracy and comparable in accuracy to high-level
multireference wave function methods, such as CASPT2.

Keywords: valence bond theory; density functional theory; electron correlation; multireference

1. Introduction

The electronic structure calculations of strongly correlated systems, which cannot
be well described by a single configuration space function, are still challenging in the
methodology development of electronic structure theory. Typical strongly correlated
problems occur in the excited states; transition states; open-shell molecules, especially the
radical species and systems that contain transition-metal atoms; and the bond dissociation
process, etc. Obtaining a proper description of such systems usually requires a method
capable of describing both static and dynamic electron correlations.

The complete active space self-consistent field (CASSCF) [1] is a widely used quantum
chemistry method able to capture static correlation. In valence bond (VB) theory, the valence
bond self-consistent field (VBSCF) [2,3], which is a multiconfigurational self-consistent field
(MCSCF) analog with atomic orbitals (AOs), covers the static correlation by expressing
the many-electron wave function of the molecule as a linear combination of VB structures.
To cover dynamic correlations within the CASSCF scheme, post-CASSCF methods are
required, such as the complete active space second-order perturbation theory (CASPT2) [4]
and multireference configuration interaction (MRCI) [5]. Their analogs are present in VB
theory, valence bond configuration interaction (VBCI) [6,7], and valence bond perturbation
theory (VBPT2) [8,9], respectively. However, the computational costs of both methods are
still expensive, compared to their MO analogs.
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Kohn−Sham density functional theory (KS-DFT) [10,11] has played a very important
role in electronic structure calculation in chemistry, biochemistry, and solid state due to
its affordable computational cost with satisfactory accuracy. Due to the fact that the exact
formula of the exchange–correlation functional is still unknown, KS-DFT currently suffers
from a difficulty in tackling molecular systems with a strong multireference character,
which cannot be described well by using a single Slater determinant. One of the straightfor-
ward schemes is to combine CASSCF with DFT, namely multireference density functional
theory (MRDFT), where CASSCF takes care of the static correlation, while DFT describes
the dynamic correlation. Various MRDFT schemes have been proposed to properly de-
scribe strongly correlated systems [12–29]. One of the problems that should be solved in
MRDFT is the double-counting error (DCE), which is due to the fact that static and dynamic
correlations cannot be separated strictly. By using on-top pair density, various DCE-free
MRDFT methods have been proposed over the last two decades [25,30–34]. Among them,
one of the representative MRDFT methods is multiconfiguration pair-density functional
theory (MC-PDFT), which avoids the DCE by calculating the kinetic and Coulomb contri-
butions of the wave function part, and the rest of the part is obtained from a pair-density
functional [25].

In a similar fashion, the strategy of hybrid VB theory with DFT has been implemented,
such as VBDFT(s) [35–38], VB-DFT [39], and DFVB [40–42]. Recently, a newly developed
MRDFT scheme based on the valence bond wave function, namely the λ-density functional
valence bond (λ-DFVB) method [42], was presented. This method is inspired by the
MC1H approximation proposed by Sharkas et al. [22]. The MC1H approach combines
the MCSCF with DFT by linear decomposition of the electron−electron interaction with a
single parameter λ, which is set to a fixed value of 0.25. Different from Sharkas’s scheme,
the λ value in λ-DFVB is variable and ranges from 0 to 1, depending on the multireference
character of the studied molecule. The stronger the multireference character, the larger
value taken in the calculation. To describe the extent of the multireference character,
the molecular free valence index K is used in λ-DFVB, and the functional form of λ is taken
tentatively as λ = K1/4. The molecular free valence index K is defined by the total atomic
free valences and the bond orders of the molecule, expressed in terms of the overlap and
spin density matrices [42].

Estimates of the multireference character have been explored by various approaches.
Among them, indices based on the natural orbital occupation numbers (NOONs) are
widely used, which are given by diagonalizing the density matrix of the molecule. Various
schemes have been proposed, such as von Neumann entropy S [43], correlation entropy
S2 [44], the M diagnostic [45], and the IND diagnostic [46]. The purpose of this paper is to
revisit the λ-DFVB method by employing the NOONs to determine the value of parameter
λ to simplify the procedure of λ-DFVB calculation. Different from the molecular free
valence index, which is defined by the total density matrix and spin density matrix as well
as orbital overlaps, NOONs are straightforwardly obtained from the density matrix of the
studied molecule. Moreover, the concept of bond order used in λ-DFVB(K) is somehow
ambiguous if one performs λ-DFVB calculation for atomic systems.

In this paper, we revisit the λ-DFVB method and present a new scheme based on
NOONs for parameter λ, named λ-DFVB(IS), instead of the molecular free valence index
K used in the previous λ-DFVB scheme, which is denoted as λ-DFVB(K). Furthermore,
to improve the practicality of the λ-DFVB method, some technical considerations are
investigated in this paper to further simplify the process of λ-DFVB calculation.

2. Methodology

In VB theory, a many-electron wave function is expanded as a linear combination of
Heitler−London−Slater−Pauling (HLSP) functions [47,48],

Ψ = ∑
K

CKΦK (1)
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where ΦK is a specific VB structure, and CK is the corresponding coefficient. The HLSP
function ΦK can be expressed as follows

ΦK = ÂΩ0ΘK (2)

where Â is the antisymmetrizing operator, and Ω0 is a direct product of orbitals {φi} as

Ω0 = φ1(1)φ2(2) · · · φN(N) (3)

and ΘK is a spin-paired spin eigenfunction [49], defined as

ΘK = ∏
(ij)

2−1/2[α(i)β(i)− β(i)α(j)]∏
k

α(k) (4)

where (ij) runs over all bonds and k over all unpaired electrons.
The total energy and structure coefficients can be obtained by solving the standard

secular equation
HC = EMC (5)

where H, M, and C are the VB Hamiltonian, overlap, and coefficient matrices, respectively.
The weight of a given VB structure, WK, can be evaluated by the Coulson–Chirgwin
formula [50],

WK = ∑
L

CKCL MKL (6)

As the wave function theory (WFT) of electronic structure, there are various levels in
ab initio classical VB methods, such as the valence bond self-consistent field (VBSCF) [2,3],
breathing orbital valence bond (BOVB) [51–53], valence bond configuration interaction
(VBCI) [6,7], and valence bond second-order perturbation theory (VBPT2) [8,9]. The VBSCF
method is the elementary method of ab initio classical VB theory, where both VB struc-
ture coefficients {CK} and VB orbitals {φi} are optimized simultaneously to minimize the
total energy.

The λ-DFVB method incorporates the dynamic energy into VB theory using KS-DFT
by expressing the total electronic energy of a molecule as

Eλ−DFVB = min
Ψ

{
〈Ψ|T + Vext + λWee |Ψ 〉+ Eλ−DFVB

HXC [ρ]
}

(7)

where T, Vext, and Wee are the kinetic energy, external potential, and electron–electron
interaction operators, respectively; Eλ−DFVB

HXC [ρ] is the complement λ-dependent Hartree–
exchange–correlation density functional for electronic density ρ; and λ is a coupling param-
eter. The first term in Equation (7) is computed by a normal VB route, while the second
term, Eλ−DFVB

HXC [ρ], is calculated by the KS-DFT method and includes four components

Eλ−DFVB
HXC [ρ] = (1− λ)(EH[ρ] + EX[ρ]) +

(
1− λ2

)
EC[ρ] + λ2EC[ρ

LD] (8)

where EH[ρ] is the Hartree energy, EX[ρ] is the exchange functional, and EC[ρ] is the corre-
lation functional. Different from the multiconfigurational one-parameter hybrid (MC1H)
approach [22], an extra term of the correlation energy, EC[ρ

LD], is included, which is the
correlation functional for the determinant that shares the largest coefficient in the VBSCF
wave function.

As discussed in the previous paper, the parameter λ in Equation (7) scales the hybrid
extent of the WFT and the KS-DFT method. Based on the fact that the VBSCF method
covers the static correlation, it is thus suitable for molecules with a multireference character,
while KS-DFT is a good tool for capturing the dynamic correlation. As such, it is more
reasonable to allow the value of λ to be different for molecules with different extents of
static and dynamic correlations.
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In λ-DFVB(K), parameter λ is defined as a function of the molecular free valence index K,

λ = K1/4 (9)

The molecular free valence index K is defined as

K =

∑
A

FA

∑
A

VA
(10)

FA = VA − ∑
B,B 6=A

OAB (11)

VA = ∑
µ∈A

2(DS)µµ − ∑
µ,ν∈A

(DS)µν(DS)νµ (12)

OAB = ∑
µ∈A

∑
ν∈B

[
(DS)µν(DS)νµ + (PsS)µν(P

sS)νµ

]
(13)

where FA and VA are the free valence and total valence of atom A [54], OAB is the bond
order between atoms A and B, S is the overlap matrix between the basis functions, and D
and Ps are the total and spin polarization density matrices, respectively. The value of K
ranges from 0 to 1, as FA is identical to VA in the dissociation limit.

Equation (7) can be implemented by a modified VBSCF route [42]. To this end,
the structure coefficients {CK} and orbitals {φi} are optimized by minimizing

ελ−DFVB = 〈Ψ|T + Vext + λWee +
∫

drvλ−DFVB
HXC [ρ]n(r)|Ψ〉 (14)

where n(r) is the density operator, and potential vλ−DFVB
HXC [ρ] is defined as

vλ−DFVB
HXC [ρ] =

δEλ−DFVB
HXC [ρ]

δρ
(15)

In implementation, the potential vλ−DFVB
HXC [ρ] is expressed in terms of one-electron

integrals and λ-scaled two-electron integrals of the basis functions. The total electronic
energy of the molecule is computed with the optimized {CK} and {φi}, which is expressed as

Eλ−DFVB = ελ−DFVB + Eλ−DFVB
HXC [ρ]− 〈Ψ|

∫
drvλ−DFVB

HXC [ρ]n(r)|Ψ〉 (16)

Before performing a modified VBSCF calculation, a normal VBSCF is done for de-
termining the value of parameter λ. Thus, the λ-DFVB(K) calculation is composed of the
following steps:

(1) Perform a normal VBSCF calculation to obtain the VBSCF density matrix;
(2) Determine the λ value with Equations (9)–(13);
(3) Compute the complement Hartree–exchange–correlation functional, Eλ−DFVB

HXC [ρ] with
Equation (8);

(4) Build potential vλ−DFVB
HXC [ρ] in terms of one-electron integrals with Equation (15);

(5) Optimize {CK} and {φi} by a modified VBSCF route, Equation (14);
(6) Compute the λ-DFVB energy by Equation (16) with the optimized {CK} and {φi}.

As can be seen above, the most time consuming occurs in Steps (1) and (5), which in-
volve SCF iterations. Thus, the computational effort for λ-DFVB(K) is approximately two
times that of VBSCF.

To determine the value of parameter λ in λ-DFVB(K), one should compute the free
valence FA and total valence VA, as well as the bond order OAB, for all atoms, which are
defined with the density and overlap matrices of the basis functions. It can be shown that
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for closed-shell molecules, the summation of free valence FA over all atoms actually equals
the number of effectively unpaired electrons (EUEs), ND,

∑
A

FA = ND = ∑
i

ni(2− ni) (17)

where ni is the natural orbital occupation numbers. It is worth noting that the number
of EUEs and their variants have been widely used for estimating the static correlation
character of a molecule [46,55–59]. To simplify the definition of parameter λ, the number of
EUEs is used in this paper, instead of K. To ensure that the value of the index lies between
0 and 1, a normalized index based on EUEs is defined as

Is =
ND

2n− n2/m
(18)

where n and m are the numbers of active electrons and active orbitals, respectively. The de-
tails of deduction for Equation (17) and the normalization factor in Equation (18) are
presented in Appendix A.

In a similar fashion to λ-DFVB(K), parameter λ is defined by a function of Is, as

λ = Is
1/4 (19)

Obviously, the range of the λ value is from 0 to 1, the same as Is. Thus, the new scheme
of λ-DFVB is denoted as λ-DFVB(IS). Now index Is depends only on the NOONs, which are
given by diagonalizing the density matrix of the molecule. Clearly, λ-DFVB(IS) gets rid of
a set of intermediate quantities, such as free valence, total valence, and bond order, making
the scheme more concise.

Furthermore, the numerical investigation shows that the optimized orbitals given
from Step (1) in λ-DFVB(K) are virtually the same as the orbitals optimized in Step (5).
As such, in λ-DFVB(IS), Step (5) is skipped, and only one SCF iteration process, Step (1),
is required. That is to say, λ-DFVB(IS) is a post-VBSCF method, where VB orbitals and
the density matrix are given at the VBSCF level, and the Hartree–exchange–correlation
density functional is computed with the VBSCF density. Thus, the λ-DFVB(IS) energy is
expressed as

Eλ−DFVB = EVBSCF(λ) + Eλ−DFVB
HXC [ρ] (20)

where EVBSCF(λ) is VBSCF energy with the λ-dependent scaled two-electron integrals.
The implementation of λ-DFVB(IS) includes the following four steps:

(1) Perform a normal VBSCF calculation to obtain the VBSCF density matrix;
(2) Compute NOONs {ni} from the VBSCF wave function, and get the λ value using

Equation (19);
(3) Compute the complement Hartree–exchange–correlation functional, Eλ−DFVB

HXC [ρ] with
Equation (8);

(4) Compute the λ-DFVB(IS) energy by Equation (20).

It is obvious that the current scheme, λ-DFVB (IS), is much simpler than the old
scheme, λ-DFVB(K).

3. Computational Details

All the VB calculations were implemented in the Xiamen Valence Bond (XMVB)
package [60,61] using full VB structures and overlap-enhanced orbitals (OEOs), while the
KS-DFT calculation were performed by the Gaussian 16 program [62]. The BLYP [63,64]
functional was used for all λ-DFVB calculations. For comparison, CASPT2 calculations
were also performed using OpenMolcas [65], with a standard imaginary shift of 0.2 Hartrees
and the default IPEA shift of 0.25 Hartrees.

Test calculations can be classified into four sets: potential energy curves, atomization
energies, excitation energies, and reaction barrier heights. For the potential energy curves,
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some diatomic molecules were investigated, including H2, N2, C2, F2, and HF. To assess
the performance of atomization energies, the AE6 dataset [66] was used, which consists
of SiH4, S2, SiO, C3H4, C2H2O2, and C4H8. The excitation energies of several main group
atoms, Be, C, N, N+, O, and O+, were also investigated. Finally, a series of reaction barriers
in the DBH24 dataset [67] were studied, which contains 12 reactions with both forward
and reverse reaction barrier heights.

The basis set used for the potential energy curves, atomization energies, and excitation
energies was the cc-pVTZ basis set [68], while for the reaction barriers, the maug-cc-pVTZ
basis set [69] was used. The geometries for the molecules in the AE6 and DBH24 datasets
were taken from the Minnesota Database 2019 [70].

4. Results and Discussion
4.1. The Validity of the ND Index

In order to validate the use of ND in measuring the static correlation, Figure 1 shows
the plots of the correlation entropy S2 = −∑

i
(ni/2)ln(ni/2), which is widely used for

diagnosing the extent of the multireference character versus the free valence index K (a)
and the number of effectively unpaired electrons, the ND index, (b) for the transition states
in the DBH24 datasets computed by VBSCF. As can be seen from Figure 1, index ND shares
a stronger correlation with S2 than index K. The value of R2 for S2 vs. ND is 0.9399, and it
is 0.3233 for S2 vs. K. Figure 1 shows that it may be more reliable to use index ND for the
λ-DFVB method, instead of index K.

Figure 1. Plots of the correlation entropy S2 versus K (a) and ND (b) for the transition states in the
DBH24 datasets.

4.2. Dissociation of Diatomic Molecules

The results of the equilibrium bond lengths and bond dissociation energies calculated
by various methods are presented in Tables 1 and 2, respectively. For comparison, the devi-
ation values from the reference values are listed. The mean unsigned error (MUE) is also
listed in the bottom row.

Table 1. Deviation values of the equilibrium bond lengths (Re, in Å) of diatomic molecules.

Active Space CASPT2 VBSCF
λ-DFVB

BLYP B3LYP Ref. 1
K IS

H2 (2, 2) 0.004 0.014 0.003 0.003 0.005 0.002 0.741
F2 (2, 2) 0.007 0.055 −0.040 −0.035 0.020 −0.015 1.412
HF (2, 2) −0.001 −0.001 −0.009 −0.008 0.016 0.005 0.917
N2 (6, 6) 0.005 0.005 0.000 −0.003 0.005 −0.007 1.098
C2 (8, 8) 0.007 0.012 0.008 0.008 0.013 0.004 1.243

MUE 0.005 0.017 0.012 0.011 0.012 0.007
1 The reference values are taken from [71].
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Table 2. Deviation values of the bond dissociation energies (De, in kcal/mol) of diatomic molecules.

Active Space CASPT2 VBSCF
λ-DFVB

BLYP B3LYP Ref. 1
K IS

H2 (2, 2) −3.6 −14.2 −1.0 −1.1 0.0 0.7 109.5
F2 (2, 2) −3.2 −21.4 1.0 0.2 12.4 −0.1 38.2
HF (2, 2) −4.1 −27.7 1.6 −0.1 −4.0 −4.2 141.3
N2 (6, 6) −11.7 −24.4 −3.1 −6.5 11.3 0.5 228.5
C2 (8, 8) −1.9 −5.4 −15.9 −1.6 −12.7 −28.5 148.0

MUE 4.9 18.6 4.5 1.9 8.1 6.8
1 The reference values of H2, F2, HF, and N2 are taken from [72], and that of C2 is from [73].

It can be seen in Table 1 that among all the computational methods, CASPT2 performs
the best, followed by B3LYP. The equilibrium bond lengths predicted by the two schemes
of the λ-DFVB method show a good agreement, with a MUE value of 0.012 Å for λ-
DFVB(K) and 0.011 Å for λ-DFVB(IS), both of which improved from the value of 0.017 Å of
VBSCF. Both λ-DFVB(K) and λ-DFVB(IS) predicted shorter equilibrium bond lengths for
all molecules, compared to VBSCF. This makes sense as VBSCF usually provides a slightly
longer bond length due to the lack of a dynamic correlation. For all methods, the largest
deviation comes from the F2 molecule. For example, the deviation of Re predicted by
VBSCF is ca 0.055 Å, whereas the corresponding deviations are −0.040 Å for λ-DFVB(K)
and −0.035 Å for λ-DFVB(IS).

It can be seen from Table 2 that as expected, the largest MUE for bond dissociation
energy (BDE), 18.6 kcal/mol, comes from VBSCF. The MUE of λ-DFVB(K), 4.5 kcal/mol,
is much improved from VBSCF, while the MUE of 1.9 kcal/mol of λ-DFVB(IS) is even
better, which is the best over all the methods. For molecules with a single bond, H2, F2,
and HF, the deviations of De of the two λ-DFVB methods are smaller than 2 kcal/mol.
For molecules with multiple bonds, N2 and C2, the deviations are a little larger for λ-
DFVB(K), −3.1 kcal/mol for N2 and −15.9 kcal/mol for C2. For λ-DFVB(IS), the BDE
value of N2 is somewhat lower than λ-DFVB(K), while the best MUE of C2 comes from
λ-DFVB(IS). From the potential energy curves, shown in the Supplementary Materials,
we can find that the two schemes both give correct dissociation behavior, while the curves
of λ-DFVB(IS) locate more closely to the high-level CASPT2 than λ-DFVB(K).

4.3. Atomization Energies of Six Molecules

Table 3 collects the atomization energies of six molecules in the AE6 dataset, which are
divided by the number of bonds, and the MUE values are calculated using the converted
values, similar to [74]. As expected, VBSCF has the largest MUE value of 14.9 kcal/mol due
to the lack of dynamic correlation energy. The MUE errors of the two schemes of λ-DFVB
are 3.1 kcal/mol and 3.7 kcal/mol, respectively, in good agreement with that of CASPT2
(MUE = 3.2 kcal/mol), compared to the MUE value of MC-PDFT, about 2.3 kcal/mol [74].
KS-DFT provides better MUE values, 1.2 kcal/mol and 2.0 kcal/mol, for BLYP and
B3LYP, respectively. The largest deviation comes from the S2 molecule, 10.3 kcal/mol
and 9.3 kcal/mol, respectively, for λ-DFVB(K) and λ-DFVB(IS), and CASPT2 also has
an error of about 5 kcal/mol. This may be due to its triplet character, which requires a
balanced treatment of static and dynamic correlation. This can also be confirmed by the
results shown in Table S2. All the indexes and λ share the largest values for this molecule.
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Table 3. Atomization energies per bond (in kcal/mol) of the six molecules in the AE6 dataset.

Active Space CASPT2 VBSCF
λ-DFVB

BLYP B3LYP Ref. 1
K IS

SiH4 (8, 8) 79.3 73.4 79.7 79.1 79.1 80.5 81.1
S2 (8, 6) 98.0 76.0 92.8 93.8 104.8 100.7 103.1

SiO (6, 6) 184.6 190.3 193.3 190.1 192.7 184.8 192.4
C3H4 (8, 8) 116.4 101.5 115.0 114.5 116.9 117.0 117.5

C2H2O2 (10, 10) 124.7 108.0 125.3 123.9 128.2 126.1 126.7
C4H8 (8, 8) 94.4 77.7 93.2 92.8 94.3 95.2 95.8

MUE 3.2 14.9 3.1 3.7 1.2 2.0
1 The reference values are taken from [75].

4.4. Atomic Excitation Energies

The excitation energies between different spins of several atoms in the second row are
collected in Table 4. It can be found that CASPT2 predicts the excitation energies fairly well
with respect to the reference values, with a MUE of only 0.05 eV, followed by λ-DFVB(IS),
with a MUE of 0.2 eV. As expected, the excitation energies calculated by KS-DFT share
larger MUE values, 1.2 eV for BLYP and 1.14 eV for B3LYP. On the contrary, VBSCF tends to
overestimate the excitation energies, with an average error of 0.27 eV, but much better than
the KS-DFT results. It is interesting that for all atoms, λ-DFVB(IS) markedly improves the
atomic excitation energy compared to the results of λ-DFVB(K), giving an improvement in
the MUE of 0.12 eV.

Table 4. The excitation energies (in eV) of several atoms in the second row.

Excitation Active Space CASPT2 VBSCF
λ-DFVB

BLYP B3LYP Ref. 1
K IS

Be 1S→3P (2, 4) 2.78 2.81 3.66 3.08 2.48 2.46 2.73
C 3P→1D (4, 4) 1.26 1.53 1.14 1.19 0.33 0.38 1.26

N+ 3P→1D (4, 4) 1.87 2.12 1.72 1.79 0.56 0.62 1.89
N 4S→2D (5, 4) 2.47 2.79 2.13 2.14 0.94 1.04 2.38
O+ 4S→2D (5, 4) 3.40 3.70 3.03 3.03 1.4 1.53 3.32
O 3P→1D (6, 4) 1.91 2.18 1.78 1.81 0.65 0.70 1.96

MUE 0.05 0.27 0.32 0.20 1.20 1.14
1 The reference values of C, N+, N, and O are taken from [76], and those of Be and O+ are from [77,78], respectively.

As mentioned above, the concept of bond order is ambiguous when dealing with
atomic systems. From Table S3, we can find that all the values of index K are equal to one
for all the atomic systems because the calculation of free valences involves bond orders,
which has been shown in Equation (11). This may account for the slightly worse result
obtained by λ-DFVB(K) compared to VBSCF. However, the new index Is based on NOONs
overcomes this problem. It can distinguish the extent of the multireference character well
for each atomic system and state, which leads to the consistent improvement over all
atomic excitation energies.

4.5. Chemical Reaction Barriers

Chemical reaction barriers are challenging for electronic structure methods. A bal-
anced description of both static and dynamic correlations is required. Quantitatively
predicting the reaction barrier height generally requires predicting not only the forward
reaction barrier but also the reverse reaction barrier accurately. The proper description of
transition states is very critical because there sometimes exist near-degeneracy effects in
the transition states, and multireference methods are usually needed.

Table 5 gives the forward and reverse barriers computed by CASPT2, VBSCF,
λ-DFVB(K), and λ-DFVB(IS), alongside the results of BLYP and B3LYP. As shown in Table 5,
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VBSCF fails to provide satisfactory performance in predicting the reaction barriers with
a slightly larger MUE value of 10.6 kcal/mol, and for most reactions, VBSCF predicts
much higher barrier heights compared to the reference values. The CASTP2 results are in
good agreement with the reference data, with the lowest MUE of 1.4 kcal/mol, which in-
dicates the importance of introducing dynamic correlation. It is encouraging to note
that λ-DFVB(K) predicts the correct sign for all the forward or reverse barriers, with an
accuracy very similar to CASPT2, about 2.6 kcal/mol, similar to the MC-PDFT result,
3.2 kcal/mol [74]. λ-DFVB(IS) also obtains the correct sign for most of the reactions, except
for the forward barrier of Reaction 9, which is overestimated by 3.6 kcal/mol. As for BLYP
and B3LYP, both are inclined to underestimate the reaction barriers. The average error
of BLYP is the highest (7.7 kcal/mol) of all methods, and by using the hybrid functional
B3LYP, the MUE error can be reduced to about 4.2 kcal/mol, showing that the inclusion of
exact exchange energy in functional is helpful for describing chemical reaction barriers to
some extent.

Table 5. Forward and reverse barrier heights (in kcal/mol) of the twelve reactions in the DBH24 dataset.

Active Space CASPT2 VBSCF
λ-DFVB

BLYP B3LYP Ref. 1
K IS

OH + CH4 → CH3 + H2O
(3, 3)

5.9 23.9 3.8 2.2 −2.3 2.3 6.3
reverse 19.6 29.6 23.1 25.8 10.4 13.8 19.5

H + OH→ O + H2 (4, 4)
11.7 17.9 11.0 11.4 1.3 3.9 10.9

reverse 14.2 29.4 14.8 15.4 1.5 6.3 13.2
H + H2S→ HS + H2 (3, 3)

5.1 11.8 4.2 3.1 −2.3 −0.7 3.9
reverse 18.3 26.1 21.3 24.2 14.7 16.2 17.2

H + N2O→ N2 + OH
(11, 9)

19.7 30.8 18.7 18.8 8.7 11.5 17.7
reverse 81.2 108.7 78.7 75.9 62.4 73.5 82.6

H + ClH→ HCl + H
(3, 3)

19.7 29.6 18.2 16.8 10.5 13.1 17.8
reverse 19.7 29.6 18.2 16.8 10.5 13.1 17.8

CH3 + FCl→ CH3F + Cl
(3, 3)

6.5 15.0 8.5 14.5 −7.1 −1.6 7.1
reverse 63.7 71.4 76.3 73.9 42.4 51.6 59.8

Cl− ··· CH3Cl→ ClCH3 ··· Cl−
(4, 3)

10.0 19.3 10.3 12.7 5.2 8.7 13.5
reverse 10.0 19.3 10.3 12.7 5.2 8.7 13.5

F− ··· CH3Cl→ FCH3 ··· Cl−
(4, 3)

4.2 5.6 1.5 2.4 −1.8 0.2 3.5
reverse 28.2 47.9 31.2 34.6 20.6 26.3 29.6

OH− + CH3F→ HOCH3 + F−
(4, 3)

−0.6 8.9 −3.5 0.9 −7.9 −4.5 −2.7
reverse 19.9 28.6 18.5 20.3 11.5 15.9 17.6

H + N2 → HN2 (7, 7)
17.4 29.0 16.6 16.5 5.4 7.7 14.6

reverse 11.2 −2.0 7.3 6.9 8.5 10.9 10.9
H + C2H4 → CH3CH2 (3, 3)

2.7 7.6 3.3 1.7 −0.7 −0.2 2.0
reverse 41.4 37.7 43.6 44.3 38.2 41.8 42.0

HCN→ HNC
(10, 9)

48.2 56.3 46.8 44.4 46.8 47.4 48.1
reverse 32.6 36.9 37.0 38.3 31.9 33.5 33.0
MUE 1.4 10.6 2.6 3.5 7.7 4.2

1 The reference values are taken from [75].

5. Conclusions

In this paper, we have revisited a valence-bond-based multiconfigurational density
functional theory, called λ-DFVB, which applies a single variable, parameter λ, to the
decomposition of the electron repulsion operator. Different from the previous work,
λ-DFVB(K), where parameter λ was determined by the free valence of a molecule, in this
paper, we present a simplified definition for parameter λ. The value of parameter λ is
given by the natural orbital occupation numbers, which are straightforwardly computed
by diagonalizing the density matrix, and the new scheme is called λ-DFVB(IS). Moreover,
the new DFVB method simplifies the computing process by omitting the iterative VBSCF
calculation with the exchange–correlation functional potential, which sometimes results in
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the convergence problem. Thus, the computational effort in λ-DFVB(IS) is approximately
the same as the VBSCF method, greatly reduced from λ-DFVB(K).

λ-DFVB(IS) is validated with the various physical and chemical properties of molecules,
potential energy curves, atomization energies, excitation energies, and reaction barrier
heights. The test results show that the performance of λ-DFVB(IS) is similar to λ-DFVB(K),
and both of them share approximately the same accuracy as CASPT2. λ-DFVB(IS) is im-
proved to some extent by λ-DFVB(K) in the dissociation energies and excitation energies.
Owing to the simplification of the computational process, the CPU time used in λ-DFVB(IS)
is much reduced, less than half of λ-DFVB(K).

In conclusion, λ-DFVB(IS) provides a simpler and cheaper hybrid method of valence
bond theory and density functional theory, compared to λ-DFVB(K). The tests performed
in this paper validate that λ-DFVB can serve as an electronic structure tool for strongly
correlated systems, where current KS-DFT functionals are not able to provide satisfactory
performance.

Supplementary Materials: The following are available online, Figure S1: Potential energy curves for
H2, Figure S2: Potential energy curves for F2, Figure S3: Potential energy curves for HF, Figure S4:
Potential energy curves for N2, Figure S5: Potential energy curves for C2, Table S1: Comparison of
different indexes and λ values of diatomic molecules in equilibrium distances, Table S2: Comparison
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indexes and λ values of the transition states in the DBH24 dataset.
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Appendix A

The definition of the free valence FA in Equation (11) can be rewritten as

FA = VA −∑
B

OAB + OAA (A1)

where
∑
B

OAB = ∑
µ∈A

[
(PS)2

µµ + (PsS)2
µµ

]
(A2)

OAA = ∑
µ,ν∈A

[
(PS)µν(PS)νµ + (PsS)µν(P

sS)νµ

]
(A3)

By substituting Equations (12), (A2), and (A3) into Equation (A1), one can obtain

FA = ∑
µ∈A

2(PS)µµ − ∑
µ∈A

[
(PS)2

µµ + (PsS)2
µµ

]
+ ∑

µ,ν∈A
(PsS)µν(P

sS)νµ (A4)

For the closed-shell systems, Ps = 0, so that Equation (A4) can be reduced to

FA = ∑
µ∈A

[
2(PS)µµ − (PS)2

µµ

]
(A5)
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After summing all the atoms, we have

∑
A

FA = tr
(

2PS− (PS)2
)

(A6)

The right-hand side in Equation (A6) is defined as the number of effectively unpaired
electrons, which can be expressed in terms of the natural orbital occupation numbers

ND = ∑
i

ni(2− ni) (A7)

By using the inequation

a2
1 + a2

2 + · · ·+ a2
n ≥

1
n
(a1 + a2 + · · ·+ an)

2 (A8)

one can obtain the maximum value of ND

∑
i

ni(2− ni) ≤ 2n− n2/m (A9)

The maximum value is taken when all eigenvalues ni are equal to n/m. Based on
Equation (A9), the normalization factor in Equation (18) is 2n − n2/m.
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