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Abstract: This paper presents the first measurement of the investigation of the health impacts of
indoor radon exposure and external dose from terrestrial radiation in Chiang Mai province during
the dry season burning between 2018 and 2020. Indoor radon activity concentrations were carried
out using a total of 220 RADUET detectors in 45 dwellings of Chiang Mai (7 districts) during burning
and non-burning seasons. Results show that indoor radon activity concentration during the burning
season (63 ± 33 Bq/m3) was significantly higher (p < 0.001) compared to the non-burning season
(46 ± 19 Bq/m3), with an average annual value of 55 ± 28 Bq/m3. All values of indoor radon
activity concentration were greater than the national (16 Bq/m3) and worldwide (39 Bq/m3) average
values. In addition, the external dose from terrestrial radiation was measured using a car-borne
survey during the burning season in 2018. The average absorbed rate in the air was 66 nGy/h, which
is higher than the worldwide average value of 59 nGy/h. This might be due to the high activity
concentrations of 238U and 323Th in the study area. With regards to the health risk assessment, the
effective dose due to indoor radon exposure, external (outdoor) effective dose, and total annual
effective dose were 1.6, 0.08, and 1.68 mSv/y, respectively. The total annual effective dose is higher
than the worldwide average of 1.15 mSv/y. The excess lifetime cancer risk and radon-induced lung
cancer risk during the burning season were 0.67% and 28.44 per million persons per year, respectively.
Our results substantiate that indoor radon and natural radioactive elements in the air during the
burning season are important contributors to the development of lung cancer.

Keywords: lung cancer; natural environmental radiation; indoor radon; external dose; burning season

1. Introduction

According to International Agency for Research on Cancer (IARC), lung cancer (LC) is
one of the leading causes of cancer mortality among both men and women worldwide [1,2].
In Thailand, LC is the second cause of incidence and mortality particularly in Upper
Northern Thailand (UNT) [3,4]. Chiang Mai is the largest city in UNT and LC is one of
the most common cancers for both genders as reported by World Health Organization
(WHO) [5]. Multiple risk factors can cause LC in Chiang Mai, such as cigarette smoking,
air pollution, and natural background radiation (e.g., radon and gamma) [3,4,6]. Cigarette
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smoking is the main cause of LC development, while radon (222Rn), the most stable isotope
of radon element is identified as the second leading cause of LC and the major risk factor
among non-smokers [7–9].

Radon (and its progeny) is the major contributor (more than 50%) of natural envi-
ronmental radiation on the surface of the earth reported by WHO [7,9] and have been
classified as a human carcinogen (group 1) that can cause LC by IARC [8]. It is a radioac-
tive gas (half-life of 3.82 days), invisible, odorless, and colorless. It naturally occurs as a
decay product of radium-226 (226Ra) and is ultimately a member of the uranium-238 (238U)
series, found in the soil, rocks, groundwater, and air [7,9]. Approximately, 8–33% of all
LC deaths worldwide are likely caused by indoor radon exposure [7,10–12]. Therefore,
chronic exposure to radon and its decay products can induce DNA damage through chro-
mosome alterations and double-strand breaks (DSBs), which subsequently increase the
risk of LC [11,13]. Moreover, it indicates that radon and their decay products may exist
in air pollutants including particulate matter (PM) with a diameter of less than 10 µm
(PM10), smoke haze, and small dust particles, and all these elements together lead to LC
development [14].

Lately, Chiang Mai has been annually facing adverse health impacts of airborne PM
including LC and respiratory diseases during the dry season burning for over 20 years.
This is because farmers burn biowaste materials from agricultural land and forest fires [15].
The highest levels of PM are seen between November and April every year and the peak
tends to occur around the middle of March. Our previous study [16] indicates that the
annual average indoor radon activity concentration (57 Bq/m3) in Chiang Mai is considered
to be higher than the worldwide average (39 Bq/m3) and national average (16 Bq/m3)
values [7,12,17]. An indoor and outdoor-radon activity concentration during the burning
season (Mid-March) were 5.5 and 4-fold higher than the worldwide average, respectively.
Therefore, it is important to elucidate the long-term measurements of indoor radon levels,
particularly during the dry season burning. This paper provides the first attempt that
investigates the indoor radon activity concentration and external dose from terrestrial
radiation conducted between 2018 to 2020, particularly during the burning season in the
Chiang Mai province. Additionally, we assessed the health risk for the potential impact of
human health outcomes based on natural environmental radiation.

2. Materials and Methods
2.1. Study Area and Selection of Measurement Locations

Chiang Mai is the second-largest city in Thailand and the largest city in UNT. There are
divided into 25 districts with a population of approximately 1.19 million residents which
represents 6% of the total population in Thailand (Figure 1a). It is located on the Mae Ping
River and surrounded by mountains in particular granitic rock (high background radiation
area), such as Daen Lao and Thanon Thong Chai. Chiang Mai has lower humidity and a
tropical climate characterized by three seasons: the winter (November–February), summer
(March–May), and rainy (June–October).

This research was carried out in seven districts (high radon potential zone) located
in different areas in Chiang Mai (Figure 1b). This area is affected by a high number of
LC patients from 2009 to 2018 (Figure 1c). Between 2016 to 2018, indoor radon activity
concentration measurements were carried out in a total of 172 randomly selected dwellings
(1–5 dwellings in each subdistrict randomly depending on the district size). The districts
surveyed are Mueang, Hang Dong, Saraphi, and San Pa Tong. In addition, 45 randomly
selected dwellings (Mueang, Hang Dong, Saraphi, San Pa Tong, San Sai, San Kamphaeng,
and Doi Saket) were selected for the study of indoor radon during the dry season burning
in the period between 2018 to 2020. Most of the selected dwellings in the study area were
built of cement and wood along with concrete floors.
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The study encompassed fieldwork and data collection from participants by interviews
(questionnaire concerning information about dwelling characteristics, family histories of
LC, and lifestyle). All participants were informed of the study information about indoor
radon measurements, risks, or benefits that may occur from the study. Informed consent
was obtained from all participants prior to the enrollment.

2.2. Radon Activity Concentration Measurement

A passive type of radon-thoron discriminative monitor (RADUET) using an α track
type radon detector (CR-39) was used to measure indoor radon in the bedroom (ground
floor) of selected dwellings (172 RADUET detectors) for a period of six months between
2016 and 2018 [16]. The RADUET detectors were placed away from sunlight, windows,
doors, and electric devices, at a distance of 20 cm from the internal wall and a height of
100 to 200 cm from the floor as representative of human breathing inside the bedroom. At
the end of the measurement, all RADUET detectors were collected, wrapped in a plastic
bag, shipped, and measured at the Institute of Radiation Emergency Medicine, Hirosaki
University. Briefly, CR-39 was chemically etched using a solution of 6.25 M NaOH at 90 ◦C
for 6 h, then washed with distilled water and dried. Afterward, α particles in CR-39 were
taken by digital camera and counted with an automatic reading system to evaluate the
indoor radon activity concentration.

The radon activity concentration (C) is calculated using Equation (1):

C =
ρ

kt
(1)
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where ρ is α particles track density corrected by background track density(track/cm2), k is
the conversion factor from α particles track density to indoor radon activity concentration
[(tracks/cm2/h)/(Bq/m3)], t is exposure time (h). It should be noted that the contribution
of thoron and its progeny in this study is relatively small compared to radon and should be
negligible (data not shown) [16].

In order to study the effects of biomass burning on indoor radon levels (total of
220 RADUET detectors), the experiments were performed in two sets of 45 random
dwellings for periods of 12 months (replaced with a new RADUET detector every 2–3 months
to cover the burning season (November–April) and non-burning season (May–October)
in Chiang Mai); the first period in 2018–2019 (20 dwellings) and the second period in
2019–2020 (25 dwellings).

2.3. Car-Borne Survey

A car-borne survey technique is an effective method to evaluate the external radia-
tion dose from terrestrial gamma radiation [uranium (238U) series, thorium (232Th) series,
and potassium (40K)] in the Saraphi district which is subdivided into twelve subdistricts
for a short period during the burning season from March 16–17 and 19 in 2018 using a
3-in × 3-in NaI(Tl) scintillation spectrometer (EMF-211, EMF Japan Co., Osaka, Japan) [18].
We selected the Saraphi district as one of the target areas because it is well documented
that this area has a higher number of LC patients and is one of the most polluted areas in
Chiang Mai [3]. The detector was installed inside a car at 1 m from the ground level and
gamma radiation counting was carried out every 30 s in a moving car along the survey
route with a global positioning system (the latitude and longitude for each measurement
point). During the survey (a total of 821 measurement points), the car was moving at a
speed of around 30–40 km/h depending on the road conditions, and the shielding factor of
the car body was calculated at 18 measurement points by measurements outside and inside
of the car. The methodology of the car-borne survey, the calculation of dose rates in air, and
the activity concentration of natural radionuclides (40K, 238U, and 232Th) to absorbed dose
rate in the air was followed as previously described by Hosoda et al. [19,20].

2.4. Health Risk Assessment
2.4.1. The Annual Effective Dose (H) of Inhalation Dose

H is the total exposure of indoor radon activity concentration (and its progeny) on
residents in the study area (in a year), which corresponds to the average indoor radon
calculated using Equation (2), based on the United Nations Scientific Committee on the
Effects of Atomic Radiation (UNSCEAR) report [21]:

H (mSv/y) = C × F × O × T × D (2)

where C is an annual average indoor radon activity concentration in the dwellings (in
Bq/m3), F is the equilibrium factor between indoor radon (and its progeny) (0.4), O is
the occupancy factor for the residential population (0.8), T is an average exposure period
(24 h × 365 days = 8760 h), and D is an inhalation dose conversion factor (9 × 10−6 mSv/h
per Bq/m3) [16].

2.4.2. The Annual Effective Dose to Lungs (HL)

HL was calculated using Equation (3):

HL (mSv/y) = H × WR × WT (3)

where WT (the radiation-weighting factor) is 20 for α particles and WT (the tissue weighting
factor for lungs) is 0.12, as recommended by the Internal Commission on Radiological
Protection (ICRP) [22].
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2.4.3. The External (Outdoor) Annual Effective Dose (He)

He was estimated using Equation (4) based on the measured absorbed dose rate in air
in the Saraphi district.

He (mSv/y) = Da × DCF × T × O × 10−3 (4)

where Da is an average outdoor absorbed dose rate in air (nGy/h), DCF is dose conversion
factor received by an adult (0.7 Sv/Gy), T is 8760 h and O is the occupancy factor for the
residential population (0.2) [21,23].

2.4.4. Excess Lifetime Cancer Risk (ELCR)

ELCR was estimated using Equation (5):

ELCR = H × DL × RF (5)

where DL is the mean of life estimated to 77 years in Thailand and RF is the risk of fatal
cancer per Sievert (0.055 Sv−1), as reported by ICRP [24,25].

2.4.5. The Number of LC Cases per Year per Million (LCC)

LCC was given according to Equation (6):

LCC= H × RFLC (6)

where RFLC is the risk factor for LC induction per million per person of 18 × 10−6 mSv−1 y
as recommended by ICRP [26,27].

2.5. Statistical Analysis

The software Sigma Plot10 (Sigma, St. Louis, MO, USA) and Microsoft Excel were
used to conduct all statistical analyses in this study. All data presented were determined
based on the mean ± standard deviation (SD), median, and geometric. The Wilcoxon
signed rake test was performed to test for the mean difference between two groups of data
and a p-value of 0.05 between groups was considered to be significant.

3. Results and Discussion
3.1. Indoor Radon Activity Concentration and Health Risk Assessment Due to Indoor
Radon Exposure

The indoor radon activity concentration and health risk assessment (H,HL, ELCR,
and LCC) in a total of 172 dwellings in four districts of Chiang Mai province (Mueang;
Hang Dong; Saraphi, and San Pa Tong) were measured between 2016 and 2018 as shown in
Table 1. The indoor radon activity concentration is found to be varied from 23 (Saraphi)
to 209 (San Pa Tong) Bq/m3 (an average value of 48 ± 20 Bq/m3) with a geometric mean
of 45 Bq/m3. The highest maximum value of indoor radon in the San Pa Tong district
was 209 Bq/m3 with approximately two times higher than the reference level (100 Bq/m3)
imposed by WHO but this value is below the ICRP reference level of 300 Bq/m3 [7,26]. This
might be due to the difference in radioactive elements in the soil (geological condition),
dwelling characteristics, and ventilation condition. The average value of indoor radon
in Chiang Mai is higher compared to the worldwide average of 39 Bq/m3 and national
average values of 16 Bq/m3 [7,12,17]. About 64% of dwellings in the study area exceeded
the worldwide average value of indoor radon. Our finding is in agreement with the
previous study (Table 2) reported that Chiang Mai has a higher radon activity concentration
than in average obtained by national and worldwide.
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Table 1. Indoor radon activity concentration and the potential risk of lung cancer to residents of
Chiang Mai, Thailand.

Mueang Hang Dong Saraphi San Pa Tong Total

No. of dwellings 48 25 83 16 172
Max (Bq/m3) 99 65 100 209 209
Min (Bq/m3) 24 33 23 31 23
Mean ± SD (Bq/m3) 47 ± 17 43 ± 10 49 ± 16 50 ± 43 48 ± 20
Geometric mean (Bq/m3) 45 42 46 43 45
No. of Dwellings >39 Bq/m3 28 15 60 7 110 (64%)
No. of Dwellings >100 Bq/m3 0 0 0 1 1 (0.6%)
H (mSv/y) 1.2 1.1 1.2 1.3 1.2
HL (mSv/y) 2.9 2.6 3.0 3.0 2.9
ELCR (%) 0.51 0.47 0.52 0.53 0.51
LCC (×10−6) 21.6 19.8 22.1 22.7 21.6

Abbreviations: SD, standard deviation; H, annual effective dose; HL, annual effective dose to lungs; ELCR, excess
lifetime cancer risk; LCC, the number of LC cases per year per million.

Table 2. Comparison of the average indoor radon activity concentration in Chiang Mai.

Study Areas (Districts) No. of
Detectors/Period

Indoor Radon
(Bq/m3) Ref.

Saraphi 50/99 days 21 [28]
Mueang, Hang Dong,
Saraphi and San Pa Tong 110/1 year 57 [16]

Doi Saket 30/4 months 53 [29]
Not available 46/3 months 110 [10]
Mueang, Hang Dong,
Saraphi and San Pa Tong 172/6 months 48 This study

As the risk of individual LC development increases with duration and exposure
to indoor radon, it is very pivotal to estimate the effect on human health from long-
term exposure to indoor radon exposure [6,11]. Table 1 shows the estimated health risk
assessment of indoor radon exposure to residents in the study area. The total values of H
were calculated between 0.6 to 5.3 mSv/y (data not shown) with an average of 1.2 mSv/y.
The average H is less than the action level limit of 3–10 mSv/y, as recommended by
ICRP [30]. However, the average H is found to be higher than the worldwide average of
1.15 mSv/y (inhalation dose), while the average HL is 2.9 mSv/y [21]. This value is higher
than the worldwide average due to the stressful effects of the α particle on the lungs [6].
To consider the risk of LC due to indoor radon exposure, ELCR is used to predict the
probability of cancer development by residential radon over a lifetime. The average ELCR
for indoor radon exposure in the study area was 0.51%, which is lower than the action level
of 1.3%, and due to indoor radon levels of 148 Bq/m3 as recommended by the United States
Environmental Protection Agency (USEPA) [31]. However, this value is higher than the
worldwide average of 0.145%, which may be related to the high radiation area in Chiang
Mai [10,32]. Therefore, LCC average value in Chiang Mai caused by radon exposure was
estimated to be 21.6 per million people per year. This value is lower than the limit range
between 170 to 230 per million persons per year as reported by ICRP [30]. Based on the
estimated values, our data show that the impact of health risk for LC development received
by residents in the study area is related to chronic exposure to indoor radon. To this end,
our future work will focus on the investigation of long-term indoor radon measurements
with a larger sample size.

3.2. Indoor Radon Activity Concentration and Health Risk Assessment during Burning- and
Non-Burning Seasons

Long-term exposure to natural environmental radiation and outdoor air pollution may
be associated with an increased risk of LC development [33]. Lately, Chiang Mai is facing



Life 2022, 12, 853 7 of 13

the highest air pollution in the world, caused by the open burning of biomass during the
harvest season. Despite biomass burning being important; this condition causes Chiang
Mai to have a high level of radon in UNT and Thailand [10]. To our knowledge, there is
little understanding of the relationship between indoor radon exposure and air pollution
during the burning season in Chiang Mai, which can affect LC development and other
diseases [7]. In this study, indoor activity concentration and health risk assessment were
recorded in 45 dwellings in seven districts in the Chiang Mai province (Mueang (n = 6),
Hang Dong (n = 7), Saraphi (n = 21), San Pa Tong (n = 5), San Sai (n = 2), San Kamphaeng
(n = 2) and Doi Saket (n = 2)) during burning- and non-burning seasons between May 2018
and October 2020 are reported in Table 3.

Table 3. Indoor radon activity concentration and potential risk of lung cancer during burning and
non-burning seasons to Chiang Mai residents during 2018–2020.

Burning Season Non-Burning Season Total

No. of dwellings 45 45 45
Period (months) 6 6 12
Max (Bq/m3) 230 139 230
Min (Bq/m3) 28 19 19
Mean ± SD (Bq/m3) 63 ± 33 46 ± 19 55 ± 28
Median (IQR) (Bq/m3) 61 (35) 42 (16) 48 (27)
Geomean (Bq/m3) 57 44 50
No. of Dwellings >39 Bq/m3 34 24 19 (42.2%)
No. of Dwellings >100 Bq/m3 2 1 1 (2.2%)
H (mSv/y) 1.6 1.2 1.4 ± 0.3
HL (mSv/y) 3.8 2.8 3.3 ± 0.7
ELCR (%) 0.67 0.5 0.58 ± 0.12
LCC (×10−6) 28.44 21 24.72 ± 5.26

Abbreviations: SD, standard deviation; IQR, interquartile range; H, annual effective dose; HL, annual effective
dose to lungs; ELCR, excess lifetime cancer risk; LCC, the number of LC cases per year per million.

As can be seen in Table 3, the annual indoor radon activity concentration measurement
ranged from 19 to 230 Bq/m3 with an average value of 55 ± 28 Bq/m3 (geometric mean is
found to be 50 Bq/m3). The highest indoor radon activity concentration was observed in the
San Pa Tong district (data not shown). Overall, 42.2% of dwellings presented indoor radon
activity concentration comparatively higher than the world average value and 2.2% had a
value above 100 Bq/m3. This clearly suggests that the annual average value of indoor radon
in Chiang Mai is greater than the national and worldwide average value. Interestingly, a
comparison result (Table 3 and Figure 2), shows a significant statistical difference (p < 0.001)
between indoor radon activity concentration during burning-and non-burning seasons.
The average indoor radon level during the burning season (63 ± 33 Bq/m3 with a geomean
of 57 Bq/m3) was found to be higher than those measured in the non-burning season
(46 ± 19 Bq/m3 with a geomean of 44 Bq/m3). The difference in the radon level during
biomass burning season may be due to high levels of natural background radiation in
air pollution, high levels of radioactive elements in the soil, climatic parameters (such as
high concentrations of radon in the winter burning season), home ventilation and building
materials [34–36].

In estimating human health risk due to indoor radon exposure (and its progeny) during
burning- and non-burning seasons (Table 3), H values in the study area during burning-and
non-burning seasons were found to be 1.6 and 1.2, respectively, (with varies from 0.5 to
5.8 mSv/y, data not shown), with an average of 1.4 mSv/y. The estimated average H during
burning- and non-burning seasons and average annual H are higher when compared with
a worldwide average value of 1.15 mSv/y [21]. The calculated HL due to indoor radon
exposure during burning-and non-burning seasons were 3.8 and 2.8, respectively, with an
average of 3.3 mSv/y. These results are higher than the action level by ICRP [30]. The ECLR
attributable to residential radon during burning-and non-burning seasons were 0.67 and
0.5%, respectively, with an average value of 0.58%. All estimated values in the present data
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were lower than the action level reported by USEPA [31]. However, these values are higher
than average worldwide [32]. The radon-induced LC during burning-and non-burning
seasons were 28.44 and 21 per million people per year, respectively. While the LCC average
of 24.84 per million people per year is lower than the range recommended by ICRP [30].
All together, these findings also show a significant difference (p < 0.05, data not shown)
in all human health risk assessments on residential radon exposure (H, HL, ECLR, and
LCC) between burning-and non-burning seasons. Therefore, this comparison indicates the
potential risk of natural background radiation during the burning season to human health;
hence it can be a major public health problem for the UNT of Thailand due to chronic
exposures to radon (and its progeny) along their lifetime.
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To the best of our knowledge, our study is the first attempt in dealing with long-
term indoor radon measurements within a human health risk assessment in the Chiang
Mai province during the burning season. However, the lack of measurement of natural
radioactivity concentrations such as 40K, 232Th, and 238U present in dust particles in the
air, and outdoor radon activity concentration in the ambient air during burning- and non-
burning seasons is the limitation in this study. Additional research is needed to obtain
more detailed results.

3.3. External Radiation Dose and External Annual Effective Dose Estimation from Natural
Environmental Radiation during burning Season

For a further understanding of the health effects of natural environmental radiation
during the burning season in Chiang Mai, an external dose of terrestrial radiation for
residents living in the Saraphi area was obtained by car-borne measurement during the
peak of the dry season burning in 2018 (16, 17 and 19 March). The survey route consists of
twelve subdistricts of Saraphi and variations of external radiation dose in the air (outdoor
absorbed gamma dose rates) are shown in Figure 3c. The shielding factor (Figure 3a) and
dose conversion factor (Figure 3b) were determined as 2.44 and 0.0018 nGy/h, respectively.
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A total of 821 measurement points were collected in the study areas. Figure 3c shows
the outdoor gamma dose rates range from 47 to 171 nGy/h with an average value of
66 nGy/h (median value of 65 nGy/h). This average value was found to be higher than the
world average value of 59 nGy/h as reported by UNSCEAR [21]. This study shows that
a high outdoor gamma dose rate in air is an important contribution to external radiation
dose in Chiang Mai during the dry season burning. In addition, the average gamma
dose rate in air in Chiang Mai, UNT was higher than in other parts of Thailand Western
(44 nGy/h), Eastern (35 nGy/h), and Southern (42 nGy/h), which may be related to high
activity radioactivity area on the UNT of Thailand [37].

Furthermore, airborne gamma-ray spectrometry measurement was carried out to
determine the radionuclides activity concentration contributing to natural environmental
radiation during the burning season. Table 4 represents the activity concentration of 40K,
238U, and 232Th in soil, and the absorbed dose rate in the air 1 m above the ground was
measured at 24 points in the Saraphi district. The contribution to absorbed dose rate in
the air of 40K, 238U, and 232Th ranged from 13% to 27%, 30% to 41%, and 34% to 48% with
an average value of 22%, 36%, and 42%, respectively (data not shown). As displayed in
Table 4, the average activity concentration of 40K, 238U, and 232Th were 346 ± 90, 56 ± 16
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and 43 ± 14 Bq/kg, respectively. Based on this result, the activity concentration of 238U and
232Th were higher than the worldwide average values of 35 and 30 Bq/kg, respectively [21].

Table 4. The measured activity concentration of 40K, 238U, and 232Th and absorbed dose rate in air in
Saraphi district during the dry season burning.

Point No.
Location Activity Concentration (Bq/kg) Absorbed Dose Rate in

Air (nGy/h)Latitude (◦) Longitude (◦) 40K 238U 232Th

1 18.6659 98.9742 234 30 21 42
2 18.633 98.9637 306 43 30 52
3 18.6514 98.9698 372 42 37 59
4 18.686 98.9954 404 44 40 63
5 18.6521 99.0001 298 35 28 48
6 18.6754 99.0043 398 46 46 69
7 18.6969 98.9956 437 69 38 70
8 18.7048 98.9969 416 70 51 80
9 18.6894 99.0134 439 65 51 80

10 18.6932 99.0274 451 76 62 89
11 18.6862 99.0573 330 46 36 63
12 18.6821 99.0387 147 30 26 41
13 18.7054 99.0384 413 77 68 93
14 18.7169 99.0263 173 34 30 44
15 18.72 99.0633 297 88 72 96
16 18.6986 99.0591 294 69 61 81
17 18.745 99.0405 338 59 37 66
18 18.7416 99.0568 396 65 38 74
19 18.7367 99.0661 335 72 54 84
20 18.7203 99.0136 173 49 29 49
21 18.739 99.0214 409 59 44 71
22 18.7288 98.9943 438 66 55 80
23 18.7499 98.9997 427 54 41 70
24 18.7158 99.004 376 47 37 63

Average 346 ± 90 56 ± 16 43 ± 14 68 ± 16

These findings suggest that 238U and 232 Th-series elements are the main sources of
external natural radiation exposure during the burning season in the study area. High
activity concentrations of 238 U and 232 Th can be explained by the geometrical environment
(such as granites) and the mechanisms of soil information [19,20,38,39]. However, it should
be noted that 38% of measurement points (n = 9) have an activity concentration of 40K above
the worldwide average value of 400 Bq/kg and were found to be a minor contribution to
the total absorbed dose rate in the air [21]. Further investigation of radionuclides activity
concentration in this study area is needed to confirm these results.

With regards to the health risk assessment, the mean, minimum and maximum values
of external (outdoor) annual effective dose (He) were estimated to be 0.08, 0.06, and
0.21 mSv/y, respectively (data not shown). The average He value of this study area was
higher than the worldwide average value of 0.07 mSv/y, as reported by UNSCEAR [21].
Therefore, the outcome of radiation dose assessment indicates the relevant effects of natural
environmental radiation during the dry burning season on human health.

4. Conclusions

We have presented our first study that provides an understanding of the impacts of
biomass burning on natural environmental radiation in the Chiang Mai province, particu-
larly indoor radon exposure and external dose from terrestrial radiation. The findings show
indoor radon activity concentration (63 ± 33 Bq/m3) and external dose from terrestrial ra-
diation (66 nGy/h) during the burning season was higher than the national and worldwide
average value. The activity concentration of 238U and 232Th found in the soil of area studies
during the burning season was higher than the worldwide average value. The estimated
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value of effective dose due to exposure to indoor radon (and its progeny), external (outdoor)
effective dose, and the total annual effective dose received by Chiang Mai residents were
1.6, 0.08, and 1.68 mSv/y, respectively. The total annual effective dose is higher than the
worldwide representative value of 1.15 mSv/y. The excess lifetime cancer risk was found
to be 0.67%, which is higher than the worldwide average. The radon-induced LC risk
during the burning season presents a value of 28.44 per million persons per year. With
all results obtained from the fieldwork, indoor radon (and its progeny) and terrestrial
radiation represent the major contributions of human exposure to natural radiation during
the dry season burning and may increase the possibility of LC developing in their lifetime.
Future research related to natural environmental radiation and air pollution during the
burning season is required to confirm these findings.
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