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Abstract

The genetic expression of cloned fluorescent proteins coupled to time-lapse fluorescence microscopy has opened the door
to the direct visualization of a wide range of molecular interactions in living cells. In particular, the dynamic translocation of
proteins can now be explored in real time at the single-cell level. Here we propose a reliable, easy-to-implement,
quantitative image processing method to assess protein translocation in living cells based on the computation of spatial
variance maps of time-lapse images. The method is first illustrated and validated on simulated images of a fluorescently-
labeled protein translocating from mitochondria to cytoplasm, and then applied to experimental data obtained with
fluorescently-labeled hexokinase 2 in different cell types imaged by regular or confocal microscopy. The method was found
to be robust with respect to cell morphology changes and mitochondrial dynamics (fusion, fission, movement) during the
time-lapse imaging. Its ease of implementation should facilitate its application to a broad spectrum of time-lapse imaging
studies.
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Introduction

Proteins are often motile, shuttling between different subcellular

destinations to perform various functions. Visualization and

quantification of a protein’s subcellular location and movement

over time is therefore important for understanding how proteins

function inside cells. Traditional approaches for monitoring

protein translocation have relied on biochemical methods to

measure protein levels in various cellular compartments over time

(e.g. western blotting subcellular fractions at sequential time

points). While these approaches have produced seminal advances

in elucidating molecular mechanisms of protein function, they also

have limitations. For example, they are not suitable for tracking

protein translocation in single cells, limiting kinetic analysis to

populations of cells. They also have limited time resolution due to

tissue destruction required for biochemical assays at each time

point. In addition, protein localization may be sensitive to the

concentration of cytosolic ions and metabolites that are likely to be

lost during the fractionation procedure [1].

The development of techniques to label proteins with geneti-

cally-encoded fluorescent tags, combined with advances in live cell

fluorescent microscopy, has circumvented many of these limita-

tions. In particular, these new techniques permit direct visualiza-

tion of biochemical processes in living cells in real–time. A current

challenge is to couple image processing techniques with statistical

and computational tools to interpret and extract quantitative

information from the vast amounts of unstructured image data

generated by time-lapse imaging experiments.

Here we demonstrate a reliable and easy-to-implement quan-

titative image processing method to assess protein translocation

between subcellular compartments in living cells, based on the

computation of the spatial variance of time-lapse microscope

images, which minimizes user-introduced biases. To demonstrate

the usefulness and advantages, we first validated the method using

simulated images and then applied the technique to analyze the

translocation of fluorescently-labeled hexokinase (HK), a key

glycolytic enzyme which shuttles between the cytoplasm and

mitochondria. Currently, translocation of fluorescently-labeled

proteins between intracellular compartments is most commonly

quantified as ratio of fluorescence intensity between two user-

defined intracellular regions of interest (ROI) in microscopy

images. In the case of HK, an ROI with a high concentration of

mitochondria is compared to an adjacent ROI with few

mitochondria [2,3]. While this method of measurement is

generally useful, it suffers from three major drawbacks: (i) The

choice of the ROI is arbitrary and subject to investigator bias (ii)

Appropriate ROI can only be defined if the discrete organellar

compartments are easily identifiable and separable in the images,

as, for example, in Chinese Hamster Ovary (CHO) cells or

neonatal cardiac myocytes in which mitochondria are concentrat-

ed in the perinuclear zone and sparse elsewhere. However, the

method is problematic for cell types with a uniformly distributed
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organellar network, such as the mitochondrial network in adult

cardiac myocytes. (iii) The ROI is also sensitive to changes in cell

shape and migration of organelles throughout the cell during the

time course of the experiment, making readjustment of the ROI

necessary to avoid error. The spatial variance method described

herein minimizes all of these shortcomings.

Methods

Ethics statement
This study was approved by the UCLA Chancellor’s Animal

Research Committee (ARC 2003-063-23B) and performed in

accordance with the Guide for the Care and Use of Laboratory

Animals published by the United States National Institutes of

Health (NIH Publication No. 85-23, revised 1996) and with

UCLA Policy 990 on the Use of Laboratory Animal Subjects in

Research (revised 2010).

Cell preparation
Animals were anesthetized with 2% isoflurane. Adequacy of

anesthesia was assessed by monitoring the respiratory rate as well

as the loss of response to toe pinch. Animals were then injected

with sodium pentobarbital (100 mg/kg, i.p.) and hearts were

rapidly removed to isolate ventricular myocytes. Neonatal rat

ventricular myocytes (NRVM) were enzymatically isolated by

standard methods [4]. Briefly, hearts harvested from 2- to 3-day-

old neonatal Sprague-Dawley rats were digested with collagenase

(0.02%; Worthington Biochemical Corp, Lakewood, NJ) and

pancreatin (0.06%; Sigma-Aldrich, St. Louis, MO). Myocytes

were isolated with the use of a Percoll (Pharmacia Biotech AB,

Uppsala, Sweden) gradient and plated on 35 mm glass bottom

culture dishes. Adult rat ventricular myocytes (ARVM) were

enzymatically isolated from the hearts of 3-to 4-month old male

Fisher rats as described previously [5]. Briefly, following anesthe-

sia, hearts were removed and perfused retrogradely at 37uC in

Langendorff fashion with nominally Ca2+-free Tyrode’s buffer

containing 1.2 mg/ml collagenase type II (catalog number 4176;

Worthington) and 0.12 mg/ml protease type XIV (catalog

number P5147; Sigma) for 25–28 min. After washing out the

enzyme solution, hearts were subsequently removed from the

perfusion apparatus and gently agitated to dissociate the myocytes.

The Ca2+ concentration was gradually increased to 1.8 mmol/L

over 30 min. This procedure typically yielded 40–60% of rod-

shaped, Ca2+-tolerant myocytes that were then plated on 35 mm

glass bottom culture dishes. NRVM and ARVM were cultured in

DMEM high (25 mM) glucose medium supplemented with 6% (v/

v) fetal bovine serum (FBS), penicillin (100 units/ml), streptomycin

(100 units/ml) and 2 mM glutamine.

Gene expression
Rat HKI and HKII were generously provided by Dr. J. Wilson.

Fusion of rat HKs to YFP was accomplished by inserting a Bam

H1 site at the last amino acid of the coding sequence and

subcloning into a modified pEYFPN-1vector (Clontech). The

modified pEYFPN-1 carried the mutations Q86K and A206K. All

constructs were subcloned into the mammalian expression vectors

utilizing the CMV promoter.

Overexpression of HKI and HKII in NRVM and ARVM was

achieved with engineered adenoviruses encoding the constructs.

Expression of the constructs was sufficiently high after 36–48 h

(NRVM) and 72–96 h (ARVM) to perform microscopy imaging.

Standard and confocal microscopy imaging
Standard microscopy images were acquired using an Olympus

IX70 inverted microscope (Olympus, America Inc.) fitted with an

Olympus plan apo 606, 1.4 N.A. oil immersion objective and a

cooled CCD camera (Model Quantix, Photometrics, Tucson, AZ).

Imaging Workbench software was used for data acquisition. YFP

(XF104-2) filter cube was purchased from Omega Optical Inc.

Confocal images were acquired using on a Zeiss Axiovert 100

LSM inverted microscope fitted with a 606 water immersion

objective (Zeiss C-Apochromat 63/1.2 W Corr). Zeiss Pascal 5

image software (Carl Zeiss, Inc., Thornwood, NY) was used for

data acquisition.

Solutions and experimental techniques
The bath solution for cell imaging consisted of (in mM) 140

NaCl, 5 KCl, 1.1 MgCl2, 2.5 CaCl2, 10 HEPES, Glucose, 10,

with the pH adjusted to 7.2 with KOH. For the anoxia/

reoxygenation experiments, the cells were perfused with the same

solution containing 5 mM of sodium dithionite (an oxygen-

depleting agent, [6–8]) for 15 min followed by 10 min superfusion

with the original solution. Solutions were perfused directly over the

cells using a gravity fed eight ways perfusion device (Warner

Instruments, Hamden, CT) with electrically controlled solenoids

(The Lee Company, Westbrook, CT). Input and output of solution

volumes to the recording chamber (35 mm glass bottomed culture

dish) were equilibrated to maintain constant flow rates and

pressures within the recording chamber. Experiments were carried

out at room temperature (25uC).

Numeric treatment and algorithm generation
Image analysis, algorithm generation, statistical analysis and

simulations were implemented in the Python programming

language [9], using the Numpy [10] and Scipy [11] packages that

provide support for array manipulation and general scientific

computation respectively [12].

Statistical analysis
QQ-plot and Shapiro-Wilk tests were performed to assess the

normality of the samples under analysis. The conventional

percentile bootstrap-resampling approach with 10000 replications

was used for estimating 95% CI as well as examining the

significant difference between groups (effect size statistics) [13,14].

All analyses were performed by subroutines for bootstrapping

developed in the Python programming language, using the Numpy

and Scipy packages, based on the code we previously published

[13]. Effects were also analyzed with Mann-Whitney U tests. A P

value,0.05 was considered statistically significant.

Supplementary formulas

– Equation of a two-dimensional Gaussian function

f (x,y)~Ae
{(

(x{x0)2

2s2
x

{
(y{y0)2

2s2
y

)

with A, the amplitude of the Gaussian; x0 and y0, the center of

the Guassian in the plane (x, y); and sx and sy, the spreads of

the Gaussian in the x and y directions.

– Volume under a 2D Gaussian: v~A2psxsy
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Method overview
In cells, mitochondria form a network of discrete organelles,

observable in microscopy images in the form of globules and/or

filaments when labeled using mitochondria-specific dyes such as

TMRM, or expressing fluorescently-tagged proteins which localize

to mitochondria (figure 1B). In the latter case, if the protein

molecules translocate from mitochondria to cytoplasm, a con-

comitant decrease of the mitochondrial fluorescence and increase

of fluorescence inside the cytoplasm will be observed, resulting in

the dilution of the mitochondrial fluorescence and making the

interior of the cell more homogeneously fluorescent in the images.

Therefore, in addition to the commonly used ratio-based

measurement tracking the fluorescence intensity changes over

time between an ROI containing a high concentration of

mitochondria, and an ROI representing the adjacent cytosolic

area with spare mitochondria [2,3], assessment of fluorescent

protein translocation can be also handled as a features detection

problem, i.e. assessing the disappearance of the mitochondrial

objects.

Image derivative based approaches such as the Sobel [15] and

Canny [16] operators are among the most popular image

processing algorithms using edge detection for object detection

[17]. However, spatial variance mapping-based approaches [18–

20] have been shown to be superior for object detection under

conditions of blurred or low contrast images [18,20]. By

comparing the variation in pixel intensity from region to region

throughout the entire cell, spatial variance also provides a

quantitative measure of the overall spatial complexity inside a

cell. Since mitochondria are discrete organelles, the spatial

variance of grey scale values in a given window is large when

fluorescence from a protein arises predominantly from mitochon-

dria, and decreases as it is released and diffuses evenly throughout

the cytoplasm.

In the spatial variance algorithm, the variance operator is a local

neighborhood operation that calculates the sum of squares of the

brightness differences from the mean for the neighborhood

surrounding each pixel in the original image [17]. The variance

value is small in regions of the image with uniform brightness and

becomes large whenever sharp dark-bright transitions occur,

which allow easy detection of organelles such as mitochondria

(figure 1B and C). In our algorithm, for each pixel Px,y in the input

image (figure 1A), the variance was calculated for a given window

size using the formula below which allows local computations to be

performed simultaneously and efficiently within windows of many

sizes [21]:

s2
window~

P
n
i~1x2

i

n
{

(
P

n
i~1xi)

2

n2

where x and n are the intensity of each pixel and the number of

pixels within the window, respectively.

In practice, most windows are squared, providing uniform

weight to all points within the window area, and zero weight to

points outside this area. Computations performed within a squared

window, however, may be overly sensitive to image points near the

edge of the window, so that estimates of image properties change

abruptly as the window is moved across pixels that represent image

noise. This effect may be avoided by measuring properties within

Gaussian-like windows in which the greatest weight is given to the

pixels near the sample position and progressively less weight is

given to more distant pixels [21]. The Gaussian outputs a

‘weighted average’ of each pixel’s neighborhood, with the average

weighted more towards the value of the central pixels. This is in

contrast to the mean filter’s uniformly weighted average. Because

of this, a Gaussian filter provides gentler smoothing and preserves

edges better than a similarly sized mean filter (this is illustrated in

the figure S1).

Therefore, in our algorithm, the Gaussian-weighted variance

(s2) of all the pixels in a chosen window is computed, and the

value is attributed to the central pixel (Px,y) of this window

(figure 1A). The window is then moved by one pixel, and the

operation is repeated, and so forth for all the pixels in the input

image to obtain the variance map of the original image (figure 1B).

Results

Method validation
Simulated images of protein translocation. To test our

method, we first generated artificial images simulating transloca-

tion of a protein from mitochondria to cytoplasm over time

(figure 2). Mitochondrial protein-bound areas were modeled as

isotropic or anisotropic 2D Gaussians with added random noise,

and translocation was simulated through redistribution of the

volume under the Gaussians over the adjacent area in the image

(decrease in amplitude and increase in width, so that the volume is

kept constant) (figure 2). In our experimental images, the

mitochondria are approximately 5 pixels wide; therefore, in our

computational images (30630 pixels), we modeled mitochondria

with 3 to 7 pixel-wide 2D Gaussians (figure 2).

Computation of the spatial variance for the sequence of images

in figure 2C simulating protein dissociation from mitochondria is

presented in figure 3A. In our algorithm, the variance map

command computes a map of the input image, where the intensity

of a pixel in the output map represents the variance within the

pixels window centered at the corresponding pixel of the input

image. This operation is applied to all the pixels of the original

image through a local neighborhood operation. Since mitochon-

dria are discrete organelles, the spatial variance is large when

fluorescence arises predominantly from mitochondria (figure 3A,

first image). As the protein is released and diffuses evenly through

the cytoplasm, intensity of the variance image decreases and

objects become less and less detectable in the images (figure 3A,

subsequent images). Calculation of the mean of the variance values

for each image allows to quantify the decrease in variance signal as

protein translocates to the cytoplasm over time (figure 3B).

Figure 1. Gaussian weighted local variance computation
process. A) During the process, the source pixel is replaced with a
Gaussian weighted variance of all the pixels inside the chosen window
size. Each pixel integer value in the source image is multiplied by the
corresponding value in the overlying Gaussian kernel, and the variance
of all the resulting products is computed. The gray value of the source
pixel (Px,y) is then replaced by this Gaussian weighted local variance.
This operation is repeated for each pixel in the original image. B) Source
image and C) corresponding output image after application of the
algorithm.
doi:10.1371/journal.pone.0081988.g001

Image Variance Analysis of Protein Translocation
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Dissociation time constant can be then extracted from the data

(figure 3B).

To compensate for artifacts arising from bleaching of the

preparation, the variance obtained for each image is normalized to

the total amount of fluorescence in the image (figure S2). This is

justified because we are interested in measuring the relative

redistribution of a fluorophore between different cellular com-

partments, rather than the absolute changes in fluorescence

variance which include bleaching as well as redistribution.

Note that our method is more sensitive than the region-of-

interest (ROI) ratiometric method (ratio of fluorescence intensity

between two intracellular ROI, usually an ROI on cellular area

with high concentration of mitochondria, and an ROI represent-

ing the adjacent cytosolic area (Carrington et al., 1995)) (see figure

S3A and S3B).

As shown in figure 3C, plotting the values obtained by the

analysis against the function used to model the protein translo-

cation reveals that our analysis tends to be more sensitive to small

changes in variance when the variance is high. This property is an

Figure 2. Simulation of hexokinase (HK) translocation from mitochondria to cytoplasm. A) Area of high fluorescence arising from
mitochondrial HK-bound was simulated by a series of 2D Gaussians, whose redistribution of the fluorescence simulates the translocation from
mitochondria to cytoplasm. B) During this process, the height and the width of each 2D Gaussian are changed so the volume under the 2D Gaussian
is kept constant, to simulate a redistribution of the fluorescence over the entire cell. C) Top view of the simulation of the translocation of HK from
mitochondria to cytoplasm. A uniform random noise is added to generate the final simulation images.
doi:10.1371/journal.pone.0081988.g002

Figure 3. The local variance algorithm efficiently detects redistribution between compartments. A) Application of the weighted variance
map algorithm to the model illustrated in figure 2. As seen in the images, the spatial local variance is high in the regions of high fluorescence and
decreases over time as the fluorescence is redistributed over the whole image. B) From the time course of the change in variance, the time constant
of dissociation can be measured. Note that this time constant (6.93 a.u.) is very close to the time constant used to model the translocation (7 a.u.,
figure 2). C) The plot of the local variance mean obtained by the analysis against the true degree of simulated protein translocation, which reveals
that the analysis tends to be more sensitive to small changes in variance when the variance is high, whatever the kernel size used for the analysis. This
property is an advantage to detect early translocation.
doi:10.1371/journal.pone.0081988.g003

Image Variance Analysis of Protein Translocation

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e81988



advantage to detect early translocation of the protein from

mitochondria. Moreover, the window size used to compute the

spatial variance of the images does not strongly affect the output of

the analysis, as shown by the similar results obtained using

windows from size 3-by-3 to 27-by-27.

Influence of mitochondrial motility. We then tested the

robustness of our analysis to mitochondrial motility, phenomenon

Figure 4. Robustness of the method when simulated mitochondria change position over time without otherwise redistributing
their fluorescence. A) Example of a sequence of simulated images recapitulating mitochondrial motility by random assignment of the location of
the 2D Gaussians, while the size and width of the 2D Gaussians are kept unchanged over time (mitochondrial motility but no protein translocation).
B) The corresponding computed spatial local variance for the images remains almost constant. C) The robustness of the method was tested on
images simulating 1,000 different patterns of mitochondrial motility over time. Overall, the spatial local variance measured for all the simulations
remains constant.
doi:10.1371/journal.pone.0081988.g004

Figure 5. Hexokinase 2 translocation in living cells exposed to anoxia/reoxygenation. A) Snapshot of fluorescence in CHO cells were
subjected to 15 min chemical anoxia using the oxygen scavenger dithionite (1 mM), followed by 10 min of reoxygenation. B) Corresponding spatial
variance images. C & D) Plot of the average spatial variance at the various time points, showing the time course of the dissociation (C) and re-
association (D) of HK2 with mitochondria during the anoxia/reoxygenation episode. Note that the measurement time points on differents cells varied,
explaining the different number of measurements for each time point.
doi:10.1371/journal.pone.0081988.g005

Image Variance Analysis of Protein Translocation
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commonly observed in time-lapse microscope imaging [22]. In this

aim, we generated simulated images in which the location of the

2D Gaussians has been randomly assigned, without simulating

protein translocation (size and width of the 2D Gaussians

unchanged over time). An example of sequence of images

recapitulating the movement of mitochondria over time that

could be observed in experimental images is presented in figure 4A.

Unlike the ratiometric method, which performs poorly when the

objects in the images are motile (see figure S3C), our algorithm is

insensitive to mitochondrial movement and a similar variance is

calculated over time for this sequence of images (figure 4B).

Figure 4C, in which the similar analysis has been extended to 1000

simulations with different degrees of mitochondrial motility, shows

that our method is robust toward mitochondrial motility as similar

spatial variance is observed for all the images.

To compare a Gaussian kernel over a unity kernel to compute

the variance in our method, we did a statistical pair-wise

comparison using the Bland-Altman framework [23] of the results

obtained with the two kernels for different sequences of images

simulating protein dissociation from mitochondria, without or with

mitochondrial motility. As seen in the figure S4A, when the data

obtained from the analysis of 1000 sequences of images simulating

protein dissociation from nonmotile mitochondria using the

Gaussian kernel are plotted against the data obtained with a unity

kernel, all the points lie on the equality line. Moreover, the

graphical depiction of differences between paired observations

from the two methods versus their average (figure S4B) shows that,

even if the unity kernel tends to give slightly higher values, the

calculated mean difference between measurements (orange square

in the figure) is not significantly different from zero, and the slope

of the linear fit of the differences is horizontal. These results

suggest that there is a very high degree of agreement between the

two methods when only protein dissociation is modeled in the

images. However, when the same analysis is done on sequences of

images simulating dissociation of protein from motile mitochon-

dria, the plot of the pair of measurements obtained from the two

methods deviate from the equality line (figure S5A). Moreover,

both the average in differences, indicator of the constant bias, and

the slope of the regression of differences on means, which is a

satisfactory method for detecting proportional bias [24], are

statistically different from zero (figure S5). This over-estimation of

the variance values when using the unity kernel compared to the

Gaussian kernel to analyze images simulating protein translocation

coupled to mitochondrial motility might be the consequence of the

excessive sensitivity of the unity kernel to image points near the

edge of the unity window giving very high values when the

simulated moving mitochondria suddenly enter the window.

Application to experimental data
We validated our method on images obtained from CHO cells,

NVRM and ARVM expressing hexokinase 2 (HK2) linked to YFP

[25]. CHO cells were subjected to anoxia/reoxygenation to

induce HK2 dissociation/reassociation from mitochondria

(figure 5). The anoxia/reoxygenation episode was mimicked by

exposing the cells for 15 min to a solution containing the oxygen

scavenger dithionite (1 mM), followed by 10 min superfusion with

Figure 6. Anoxic preconditioning (APC) prevents HKII dissociation from mitochondria during anoxia in NRVM. A & B) Snapshots of
fluoresence in NRVM during anoxia, illustrating rapid translocation of HKII-YFP from mitochondria to cytosol (A), which is prevented if NVRM are
exposed to 3 short anoxic preconditioning exposures (1 min each) before the prolonged anoxia episode (B). C & D) Time course of changes in spatial
variance (C) versus the ratiometric ROI method (D). For the ratiometric ROI methods, a ROI with a high concentration of mitochondria (1) was
compared to a ROI placed into a region with few mitochondria (2) as illustrated in the series of images in A & B. Note that the measurement time
points on differents cells varied, explaining the different number of measurements for each time point.
doi:10.1371/journal.pone.0081988.g006
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the control solution (figure 5). At the beginning of the experiment,

a large fraction of HK2 was bound to mitochondria, and upon

exposure to anoxia, HK2 rapidly translocated to the cytosol

(figure 5A). This effect was reversible as HK2 re-associated with

mitochondria after reoxygenation (figure 5A). Application of our

spatial variance analysis algorithm to the images (figure 5B)

allowed us to quantify HK2 dissociation (figure 5C) and re-

association (figure 5D) with mitochondria during the anoxia/

reoxygenation episode, data from which useful information can be

obtained, such as the half-time constant of dissociation/re-

association.

Similar findings were obtained in NRVM (Fig. 6C, control

trace). In this case, the ROI method also performed reasonably

well (Fig. 6D, control trace) even if the sensitivity of dissociation

detection was lower (0.401, 95% CIs [0.37, 0.43], for the variance

method versus 0.29, 95% CIs [0.25, 0.34], for the ratiometric

method, p,0.05) (ROI #1 and #2 noted in the images were used

respectively as area of high mitochondrial density and cytoplasmic

area to perform the ratiometric method). To show that the

measured dissociation was not an artifact of the method, we

repeated the experiments of HK2 dissociation in NRVM after

exposing the cells to anoxic preconditioning, which prevents HK2

dissociation from mitochondria [26]. In this case, no HK2

dissociation was observed in the images (Fig. 6B) or detected by

our image analysis method (Fig. 6C, APC trace) and the ROI

ratiometric method (Fig. 6D, APC trace).

AVRM, on the other hand, represent a more challenging

setting, since the dense uniformly dispersed mitochondrial network

makes defining appropriate ROI complicated, requiring a small

spatial scale which becomes sensitive to changes in cell position,

cell morphology and mitochondrial migration. HK2-YFP was

overexpressed in ARVM and the cells were submitted to anoxia

(Fig. 7A, lower series of images). In those experiments, the spatial

variance method (Fig. 7B) clearly identified translocation of HK2

from mitochondria to cytoplasm during anoxia (Fig. 7C), and

allows accurate quantification of the half-time for dissociation/

reassociation. In contrast to HK2, HK1 is known to remain bound

to mitochondria during metabolic stresses [3,25] and does not

translocate to the cytoplasm upon anoxia/reoxygenation. When

HK1-YFP was overexpressed in AVRM and anoxia/reoxygena-

tion was applied (Fig. 7A, upper series of images), the spatial

variance measurement did not change (Fig. 7B and 7C).

Finally, we also demonstrate that the spatial variance method

works equally well for fluorescent probes which are loaded into

Figure 7. A) Fluorescence snapshots of AVRM expressing HKI-YFP (upper) or HKII-YFP under control conditions and after different periods of anoxia.
Note that the mitochondrial network is very dense and uniformly dispersed, making difficult to define appropriate ROI if we wanted to apply the
ratiometric ROI method. B) Corresponding spatial variance images. C) Average changes in spatial variance during anoxia, confirming that HK2, but
not HK1, translocates to the cytoplasm during anoxia. Note that the measurement time points on differents cells varied, explaining the different
number of measurements for each time point.
doi:10.1371/journal.pone.0081988.g007

Image Variance Analysis of Protein Translocation
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mitochondria by other means than genetic encoding. Fig. 8 shows

an example of an ARVM in which mitochondria were selectively

loaded with the fluorescent dyes TMRM (30 nM) and calcein-

AM. When exposed to Phenylarsine Oxide (PAO) to induce the

mitochondria permeability transition (MTP), mitochondria depo-

larize causing loss of TMRM fluorescence from the mitochondrial

matrix, with little change in cytoplasmic fluorescence (Fig. 8A,

lower panel) (Due to its negative charge, TRMR is concentrated

more than a thousand-fold in the matrix of polarized mitochon-

dria, but when released is rapidly diluted). When calcein leaves the

matrix, however, cytoplasmic fluorescence increases as mitochon-

drial fluorescence decreases (Fig. 8A, upper panel). Despite these

differences in the pattern of fluorescence changes, both spatial

variance measurements yielded comparable half-times of dissoci-

ation (5.76 min vs 5.83 min for the variance calculated from the

calcein and TMRM data respectively), indicating the robustness of

the technique (Fig. 8B).

Discussion

Obtaining accurate quantitative data from live cell images is key

for testing mechanistic hypotheses about molecular and cellular

processes. For example, cell-based protein translocation assays can

be used to probe cellular signaling pathways that are otherwise

difficult to study using traditional biochemical assays. When

tagged with fluorescent molecules, translocation of proteins of

interest can be appreciated by visual inspection of images from

fluorescence microscopy. However, these subjective impressions

can be challenging to quantify. Here we developed a reliable and

easy-to-implement image processing method to assess protein

translocation between organelles and cytoplasm in living cells,

using mitochondria as a test organellar system, based on the

computation of the spatial variance of time-lapse images. We have

demonstrated that the method is robust with respect to

mitochondrial dynamics (fusion, fission, movement) and changes

in cell morphology during the time-lapse imaging. We validated

the method by quantifying HK2 dissociation and re-association

from mitochondria during anoxia/reoxygenation as well as

mitochondria transition pore opening in living cells, demonstrating

its usefulness for both genetically-encoded and standard fluores-

cent probes.

The spatial variance method has the following advantages. (i)

The method minimizes user bias by eliminating the need to choose

and adjust ROI inside the cells as required by the ratiometric

method. Indeed, spatial variance provides a global measure of

spatial fluorescence heterogeneity which is relatively insensitive to

changes in organellar and cellular morphology. (ii) The method

can be applied to individual single cells. Single cell imaging

techniques overcome the averaging effects inherent in ensemble

measurements and enable characterization of the biological

variability between individual cells. (iii) The method is capable

of giving high detection responses in the setting of low contrast

edges, as illustrated in detecting the mitochondrial network in low

contrast regions of images. This is because edge detection is

implemented on the basis of local variances rather than on the

local gradients. As a result, ramp edges with low variation can be

detected efficiently; [iv] The method is readily applied to the

whole cell, providing a global measure of shifts in fluorescence

compared to the ROI method or calculation of the variance along

a single line drawn through the cell (see fig. 5 of [27]).

In their recent report, Venable and al. (2013) showed the pitfalls

of using spatial averaged mean fluorescence imaging for detecting

subcellular behavior of fluorescent probes, in particular because

averaged spatial fluorescence cannot readily assess the degree of

dye redistribution if the images are not resolved enough to detail

all the compartments [28]. While our method is also based on the

measure of a change in an average, using the variance instead of

the raw fluorescence still permits detection of a change in

compartment even if the total amount of fluorophore/dye remains

unchanged (Figure 2B), as the variance images highlight the

changes in distribution of the content in fluorescence between

different compartments. In addition, the advantage of using the

variance is that it can detect either a redistribution of the

fluorophore from one compartment to another, or a loss of the

fluorophore. This is demonstrated in the Figure 8, where the

variance method performs equally well for both scenarios

simultaneously, detecting the redistribution of Calcein and the

Figure 8. Calcein-based assessment of the mitochondrial permeability transition (MPT) in live adult cardiac myocytes. A) The
mitochondrial network in AVRM was pre-loaded with Calcein-AM and then superfused with TMRM to record mitochondrial membrane potential.
Upon exposure to 0.1 mM Phenylarsine Oxide (PAO) to induce MTP, calcein fluorescence redistributes within 10 min to the cytoplasm indicating MPT
(upper series of images), and TMRM fluorescence concomitantly decreases dramatically indicating mitochondrial depolarization. Under each image,
the corresponding spatial variance image is reported. B). Despite the differences in total fluorescence for the calcein and TMRM images, the
corresponding spatial variance images predict similar times course of redistribution.
doi:10.1371/journal.pone.0081988.g008
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loss of TMRM during the induction of PTP opening in adult

cardiac myocytes.

In summary, the ease of implementation of this method should

enable its application to a broad spectrum of time-lapse imaging

studies. Although to date we have only validated the method for

the mitochondrial network, we expect that it will prove valuable

for measuring translocation between other organellar compart-

ments as well.

Supporting Information

Figure S1 Implementation of a Gaussian window
(weighted kernel) preserves edges better compared to
a uniformly weighted windows (unity kernel), especially
for large window sizes. Window sizes from (363 pixels) to

(29629 pixels) were tested.

(TIF)

Figure S2 Fluorescence bleaching correction. A) Linear

bleaching over time was simulated on our model by dividing the

reference image with increasing factors (y = 0.25x+1). B, D)

Without normalizing to the total fluorescence of the image, the

intensity of the variance map images decreases over time (B), with

the values reported in D. C, E) Normalizing to the total

fluorescence of the image allows to correct for bleaching in the

variance map images (C), as seen in the values (E).

(TIF)

Figure S3 Comparison spatial variance and ratiometric
ROI methods. A) ROI chosen for the cytoplasmic (1) and

mitochondrial (2) area. B) Detection of hexokinase (HK)

dissociation with the variance (black) and ratiometric ROI (blue)

image processing methods. C) The spatial variance method is

insensitive to mitochondrial movement whereas the ratiometric

ROI method is strongly distorted by mitochondrial movement.

(TIF)

Figure S4 Pair-wise comparison of the variance mean
computed with a Gaussian-weigthed (G) and a unity (U)
kernel from images simulating translocation of a
protein from fixed mitochondria to the cytosol. A) The

dashed red line is the line of equality on which all points would lie

if the two kernels gave exactly the same variance mean for each

image. As shown by data, the unity and Gaussian kernel give

similar results in this scenario where the mitochondria are fixed. B)

Graphical depiction of differences between paired observations

from the two methods versus their average (left) and histogram of

those differences (right). The mean of the differences (orange

square and orange dashed line) is not statistically different from

zero (red dashed line), revealing that there is no constant bias when

using the unity kernel to calculate the variance compared to the

Gaussian kernel. The slope of the regression of differences on

means (gray line) is also non different from zero, indicating an

absence of proportional biais. These results suggest that there is a

very high degree of agreement between the unity and the Gaussian

kernel variance computation when measuring the translocation of

fluorophore/dyes from non motile compartments.

(TIF)

Figure S5 Pair-wise comparison of the variance mean
computed with a Gaussian-weigthed (G) and a unity (U)
kernel from images simulating translocation of a
protein from motile mitochondria to the cytosol. A) The

dashed red line is the line of equality on which all points would lie

if the two kernels gave exactly the same variance mean for each

image. As shown by data, the unity kernel tends to overestimate

the variance compared to the Gaussian kernel especially for high

values of variance. B) Graphical depiction of differences between

paired observations from the two methods versus their average

(left) and histogram of those differences (right). As shown by the

slope of the regression line (gray) that differs significantly from zero

(p,0.05), using a unity kernel instead of a gaussian-weighted

kernel gives a proportional bias on the measure of the variance

when compartments are motiles. In addition, the mean value for

the differences (orange square and dashed line) also differs

significantly from 0 (p,0.05), revealing a fixed (or ‘relative’) bias.

Those biases might be the consequence of the excessive sensitivity

of the unity kernel to image points near the edge of the unity

window giving very high values when the simulated moving

mitochondria suddenly enter the window.

(TIF)
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