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Rational identification and 
characterisation of peptide ligands 
for targeting polysialic acid
Divya G. Shastry1,2 ✉, Flaviyan Jerome Irudayanathan3, Asher Williams4, Mattheos Koffas2,4, 
Robert J. Linhardt2,4,5,6, Shikha Nangia3 & Pankaj Karande2,4 ✉

The alpha-2,8-linked form of the polysaccharide polysialic acid (PSA) has widespread implications 
in physiological and pathological processes, ranging from neurological development to disease 
progression. Though the high electronegativity and excluded volume of PSA often promotes 
interference of biomolecular interactions, PSA-binding ligands have important implications for 
both biological processes and biotechnological applications. As such, the design, identification, and 
characterisation of novel ligands towards PSA is critical for expanding knowledge of PSA interactions 
and achieving selective glycan targeting. Here, we report on a rational approach for the identification 
of alpha-2,8-PSA-binding peptides, involving design from the endogenous ligand Siglec-11 and multi-
platform characterisation of peptide binding. Microarray-based examination of peptides revealed 
charge and sequence characteristics influencing peptide affinity to PSA, and carbohydrate–peptide 
binding was further quantified with a novel fluorescence anisotropy assay. PSA-binding peptides 
exhibited specific binding to polymeric SA, as well as different degrees of selective binding in various 
conditions, including competition with PSA of alternating 2,8/9-linkages and screening with PSA-
expressing cells. A computational study of Siglec-11 and Siglec-11-derived peptides offered synergistic 
insight into ligand binding. These results demonstrate the potential of PSA-binding peptides for 
selective targeting and highlight the importance of the approaches described herein for the study of 
carbohydrate interactions.

Polysialic acid (PSA) is a unique polysaccharide playing critical roles in a number of physiological and patholog-
ical processes. PSA occurs naturally in a variety of forms, comprising different sialic acid monomers and glyco-
sidic linkages1,2. Of the three homopolymeric forms of N-acetylneuraminic acid (the most common sialic acid in 
humans), only α-2,8-linked PSA is found in our species1–3. The roles of PSAs across biology are diverse; humans 
display highest PSA expression on neural stem and progenitor cells, where expression primarily guides neuro-
logical development, but in other systems and organisms, this biopolymer is implicated in bypassing immune 
surveillance, promoting tissue development, enabling cell migration, and even possibly serving as a molecular 
reservoir1–14. Changes in polysialylation on proteins and cell surfaces are often tied to functional states. For exam-
ple, change in PSA expression during human embryonic development influences neuronal growth and migration, 
while in adults, long-chain PSA is largely restricted to regions of the nervous system undergoing remodelling1–5. 
In pathological context, PSA is of great interest due to its occurrence on pathogenic bacteria (e.g., Neisseria men-
ingitidis groups B and C), where expression in the polysaccharide capsule enables evasion of the host immune sys-
tem1,2,9–12. Additionally, PSA has been found on tumour cells, and its expression has been correlated with poorer 
prognosis of certain cancers, possibly due to an increase in metastatic potential1,2,13. Despite the broad diagnostic 
and therapeutic application space available with the ability to understand, target, and detect PSA, in vitro or in 
vivo, few studies have sought to develop and characterise robust ligands against PSA.
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Several naturally occurring proteins have been identified to bind to PSA, including neurotrophins and poly-
sialyltransferases1,2. However, information (e.g., residue-level and structural) about direct interaction of PSA with 
endogenous ligands is limited14–23. Additionally, challenges in protein isolation and stability deter characterisation 
and applicability of such ligands for PSA targeting. The generation of anti-PSA antibodies, together with their 
biochemical characterisation (as of mAb735), has proved useful2,21,22. Yet, as with native ligands, factors including 
production, size, and stability may limit the versatility of antibodies in applications; these factors comparatively 
promote the versatility of low molecular weight ligands. Besides such advantages for the latter ligands (described 
elsewhere24), the identification of small targeting agents, like peptides, for PSA can add to basic knowledge of 
PSA molecular interactions, especially when rational design strategies are incorporated in ligand development. 
Furthermore, ligand design with a focus on elucidating binding characteristics can provide critical information 
for iterative design and future targeting efforts.

In this study, we report on the design and identification of α-2,8-PSA-binding peptides, with biochemical 
and thermodynamic characterisation of peptide binding and insight into PSA interaction with the endogenous 
ligand Siglec-1123. We have previously identified peptide ligands binding to α-2,8-PSA, demonstrating the success 
of a high-throughput peptide microarray platform for evaluating design strategies and supporting preliminary 
peptide characterisation25. Here, we examined amino acid sequences derived from a naturally occurring lectin to 
PSA in tandem with previously identified peptides, while simultaneously expanding on peptide characterisation 
using a synergistic experimental and computational approach.

Results
Library-level examination of peptide–PSA interaction.  Peptides (762 unique sequences) were 
screened for binding to α-2,8-PSA using a high-throughput microarray screening platform25. A library of pep-
tides was designed from linear epitope mapping of the protein Siglec-11 (all domains) with peptides 15 residues 
in length overlapping by 13 residues (329 peptides; 1 previously reported25). Siglec-11 is a member of the highly 
homologous Siglec family of sialic acid binding-proteins with 2,8-linkage specificity23,26–28. An additional 172 
peptides (1 previously reported25) were designed based on Siglec-derived sequences. Modifications to these pep-
tides included select rational mutations and sequence scrambling. Siglec-modified sequences designed with pre-
liminary binding hypotheses were synthesized alongside the parent library; other sequences based on screening 
of the original library were synthesized iteratively, where binding and non-binding peptides were modified to 
study variation in target affinity and selectivity. Random sequences from de novo design and from prior reports 
in literature29 (38 peptides), as well as PSA-binding and non-binding peptides previously designed from mAb735 
and phage display screening (223 peptides)25, were concurrently screened for intra-assay comparison to binding 
of Siglec-derived peptides.

Sequences of peptides exhibiting the highest (approximately top 5%) binding intensities from the complete 
peptide library are provided in Table 1. As expected, all sequences display a prevalence of positively charged resi-
dues. The charge dependence on binding at the library-level is apparent from Fig. 1, which displays an increase in 
microarray binding with higher peptide basicity and charge. However, a few neutral and negatively charged pep-
tides display measurable affinity towards PSA, and not all positively charged peptides interact with PSA; this sug-
gests that observed binding cannot be attributed to non-specific electrostatic interactions alone. Differentiating 
peptides based on binding, charge, and origin does not indicate that of the various peptide development strategies 
chosen, one provides a distinct advantage in increasing charge-based peptide affinity (Supplementary Fig. S1).

The relationship between basic residues and PSA binding is supported by compositional and positional anal-
yses of sequences of high affinity peptides. Figure 2 and Supplementary Fig. S2 display statistically significant 
increases in basic residues in the top 5% of binders. Several residues show agreement with our prior work on mAb 
and phage display-derived peptides (specifically, significant increases in the prevalence of arginine, lysine, and 
phenylalanine and decrease in that of serine)25. However, changes in the occurrence of asparagine and glycine 
were reversed; here, asparagine showed significant decrease and glycine showed significant increase. These differ-
ences are likely due to examination of a larger peptide library in this study, as well as inclusion of a larger number 
of non-phage peptides (lacking the inherent biases in residue propensity observed in phage-derived lead candi-
dates30) and restriction of analyses to the top 5% of binders (as compared to the top 10% reported previously).

Fluorescence anisotropy assay for assessment of peptide binding affinity.  A fluorescence aniso-
tropy (FA) assay was developed for the determination of peptide–PSA binding affinity. In FA assays, in-solution 
binding of an analyte to a smaller, fluorescently-labelled ligand is quantified through titrations with increasing 
concentrations of the analyte31. FA assays have been used to study various interactions of proteins, DNA, carbo-
hydrates, and small molecules31–34. However, use of these assays to study peptide–carbohydrate interactions has 
been limited. In the experiments described here, anisotropy should be interchangeable with polarization; anisot-
ropy is employed as it is normalized by total intensity31.

Nine peptides of different origins were selected for study with the FA assay, and binding affinities of fluo-
rescently labelled-peptides to PSA were determined (Fig. 3(a) and Table 2). Peptides were selected, in part, to 
represent a range of PSA-binding abilities in microarray studies. Binding analysis of I-P50, a peptide from the 
putative binding region of Siglec-11, could not be performed due to high insolubility of the peptide in aqueous 
media (peptides modified from I-P50 to increase hydrophilicity also displayed poor solubility). Under the con-
ditions used, peptides bound PSA in approximately 1:1 ratio. Given this stoichiometry, together with the high 
conformational flexibility of peptides and PSA35 (as compared to proteins or monosaccharides), the mid-to-high 
micromolar affinity values obtained are not unexpected.

KD determinations confirmed microarray-based classification of peptides as PSA-binding or non-binding. 
Peptide affinity from microarray studies represents intensity values and is not equivalent to affinity constants; 
hence, it is expected that microarray affinity does not correspond exactly with KD values. Microarray intensities 
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show strong correlation to anisotropy values (and not KD itself) at higher PSA concentrations, with r ≈ 0.8 at 
concentrations ⪆100 μM (at lower concentrations, higher relative error in anisotropy prevents accurate assess-
ment of correlation). I-P264 was used as a negative control25 and displays the weakest binding, with KD > 1.5 mM 
(binding does not approach saturation even at the solubility limit of PSA). Along with microarray screening, SPR 
spectroscopy25 and molecular dynamics (MD) simulations (see below) corroborated the non-binding property 
of this peptide.

The ratio Bmax/KD shows strong correlation to microarray intensities (r = 0.77; Fig. 3(b)). Though n is low, 
this relationship demonstrates that the identification of PSA-binding peptides through selection of high inten-
sity binders on microarrays is likely to isolate peptides of moderate-to-high “binding potential,” i.e., peptides 
with high Bmax and/or low KD. Hence, quantification of binding potential effectively enables selection of a pep-
tide candidate pool which captures two potentially desired properties in peptide ligand applications. (The term 
binding potential is derived from PET imaging; use of the term here does not indicate any relationship to this 
technique36). Of the peptides characterised with FA, I-P24 and II-P336 notably display the highest Bmax/KD ratios 
and reproducibly high microarray affinity intensities (Fig. 3(b)). Since Bmax/KD is roughly equivalent to the initial 
slope of the binding curve, a higher ratio generally corresponds to a greater response with a smaller amount of 
target, which may be useful in assays where peptide ligand sensitivity is critical.

Assessment of peptide selective binding to α-2,8-PSA.  Competitive microarray screening with 
α-2,8/9-PSA was conducted in order to assess selective binding of peptides to α-2,8-PSA. The definition of per-
cent selectivity at 10% competing glycan was applied to enable selectivity comparisons amongst a larger set of 
peptides25 (nearly all peptides displayed minimal binding to α-2,8-PSA with equimolar α-2,8/9-PSA). In contrast 
to peptide affinity analysis, where higher positive charge and affinity generally correlated, selectivity analysis 
of high affinity peptides indicated that affinity is not sufficient to enable selective binding. We have previously 
demonstrated this for selective binding of peptides to PSA over chondroitin sulphate25. However, the use of an iso-
meric polymer is a more stringent assessment of selectivity; here, selective binding is guided by three-dimensional 
conformation and not additionally by differences in functional groups.

Of the high affinity peptides in Table 1, peptides with selectivity greater than 80% are I-P24, II-P214, 
and II-P336. (Selectivities of high affinity peptides and of peptides with selectivities >80% are provided in 
Supplementary Table S3.) These three peptides have different origins. I-P24 is derived from the N-terminal 
binding domain of Siglec-11. II-P214 was designed with a lysine point mutation to modify binding of a 

Peptide index Peptide sequence Peptide origin

I-P23 YWFKGRTSPKTGAPV Siglec-11

I-P24* FKGRTSPKTGAPVAT Siglec-11

I-P59 LSNAFFLKVTALTKK Siglec-11

I-P60 NAFFLKVTALTKKPD Siglec-11

I-P62 LKVTALTKKPDVYIP Siglec-11

I-P85 AALSPRRTRPSTSHF Siglec-11

I-P86 LSPRRTRPSTSHFSV Siglec-11

I-P102 VDFSRKGVSAQRTVR Siglec-11

I-P103 FSRKGVSAQRTVRLR Siglec-11

I-P104 RKGVSAQRTVRLRVA Siglec-11

I-P143 WGPRTLGLELRGVRA Siglec-11

I-P278 FRVKICRKEARKRAA Siglec-11

I-P279 VKICRKEARKRAAAE Siglec-11

I-P330 WFKGRTSPKTGAPVA Siglec-11

I-P333 WFKGKTSPKTGAPVA Siglec-11: R5K mutation

I-P378 KGKGKGKGKGKGKGK De novo

I-P379 KGGGKGGGKGGGKGG De novo

I-P380 GGKGGGKGGGKGGGK De novo

II-P35 GSGSGTDFTLKISRV mAb735

II-P50 VPYTFGGGTRLEIKG mAb735

II-P77 PGSGNTKYNEKFKGK mAb735

II-P79 NTKYNEKFKGKATLT mAb735

II-P213 AISSPLLRNPFRGGGS Phage display screening: W8R mutation

II-P214* AISSPLLKNPFRGGGS Phage display screening: W8K mutation

II-P336* NRTVLRNLGNGTSLP Siglec-11: E6R mutation

Table 1.  Sequences and origins of 25 high-binding peptides from microarray screening against α-2,8-polysialic 
acid. Peptides shown exhibit binding intensities in the top 5% in three independent screens, with triplicate 
measurements within each screen and inter-assay coefficients of variation <25% (peptides exhibiting intensities 
in the top 5% with higher inter-assay CVs excluded). Bolded residues represent mutations from parent peptides. 
* Peptides with selectivity >80%.
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Figure 1.  Binding of peptides to α-2,8-PSA based on (a) isoelectric point (pI) or (b) net charge at pH 7.4. (a) 
Peptide binding intensity with pI displays a very weak correlation (r = 0.45) due to a large number of high pI 
peptides demonstrating lack of interaction with PSA. All peptides plotted with a pI of 14 displayed the output 
“>14” with EMBOSS iep. (b) Charge-based binding for 10% intensity divisions of the peptide library are shown. 
The outlying point with net charge = 8 represents a de novo designed peptide with alternating Lys and Gly 
residues. Binding intensities represent the mean of three independent experiments, with triplicate intra-assay 
measurements (error bars excluded for clarity).

Figure 2.  Compositional analysis of high affinity (a,b) and high selectivity (c,d) peptides. Occurrence of 
residue types (a,c) or specific residues (b,d) in the peptide library (n = 762) is compared to occurrence in 
approximately the top 5% affinity or selectivity peptides (n = 38 or 41, respectively). Acidic = D and E; basic = 
R and K; polar = H, C, N, Q, and S; aromatic = Y, F, and W; and nonpolar = G, A, V, I, L, M, and P. (Two-tailed 
z test for population proportions; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, two-tailed; p values 
provided in Supplementary Table 1). Statistical significance of frequency changes of the following residues 
was not determined as low residue occurrence in the sample population precluded the assumption of normal 
distribution: D, H, C, Q, Y, W, I, and M (b) and C, W, and M (d).
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previously discovered non-binding peptide from phage display screening. Similarly, II-P336 was designed from a 
non-binding Siglec-derived peptide through substitution of glutamic acid with arginine. In the second two cases 
(where poor binders were modified), distinctly separated positive charges were incorporated in peptide regions 
lacking positive charge; charge spacing was based on preliminary hypotheses from principles of lectin–carbo-
hydrate binding37–42. Of these three peptides, only I-P24 consistently displayed high affinity binding in the top 
2% of microarray intensities. Other than I-P24 and II-P336, peptides characterised with FA showed moderate to 
poor binding to α-2,8-PSA in the presence of different concentrations of α-2,8/9-PSA (Supplementary Fig. S2). 
Interestingly, I-P24 and II-P79 (from mAb735 and also assessed with FA) demonstrated markedly differing 
affinity and selectivity responses as compared to their respective overlapping peptide sequences (Supplementary 
Fig. S2), suggesting sequence-specific PSA binding by these peptides.

Peptides of higher selectivity have highly similar residue composition to peptides of higher affinity, except for 
a relatively lower propensity of lysine in selective sequences (Fig. 2). This similarity is expected as some degree of 
affinity is necessary for selective binding to occur, and hence, selective binding was assessed in peptides display-
ing binding above background level. However, positional occurrences of residues differ in high affinity and high 
selectivity sequences. In selective sequences, some positions display a reduction in positively charged residues, 

Figure 3.  (a) Interaction of PSA-binding and non-binding peptides with PSA as assessed by fluorescence 
anisotropy titrations (solubility limit of PSA ~1.5 mM). Anisotropy values were transformed by subtraction 
of minimum FA values for each curve (approximately equivalent to anisotropies of free peptides) to enable 
comparative analysis between peptides. Error bars are excluded for clarity; experimental errors (standard 
deviations) are provided in Supplementary Table S2 along with non-adjusted anisotropy values. (b) Relationship 
of microarray “affinity” (intensity values) to peptide Bmax/KD (from FA assay). Open circles represent peptides 
excluded from determination of Pearson correlation coefficient due to higher imprecision in Bmax and KD from 
anisotropy curve fits for these peptides (criteria for exclusion: fit standard error of Bmax or KD > fit value); values 
for these peptides are represented for comparison of microarray intensities to other peptides. Microarray 
intensities represent the mean of three independent experiments, with triplicate measurements within each 
screen. FA KD’s are from at least two independent experiments, with at least triplicate measurements within each 
assay. Error from the assay with greater inter-assay variability (i.e., microarray screening) is shown (inter-assay 
standard deviation).

Peptide index Peptide sequence Peptide origin KD (mM) SE (mM) R2

I-P2 KDPSYSLQVQRQVPV Siglec-11 0.405* 13.896 0.955

I-P24 FKGRTSPKTGAPVAT Siglec-11 0.521 0.077 1.00

I-P25 GRTSPKTGAPVATNN Siglec-11 0.536 0.174 0.977

I-P264 EHGGGLGLGAALGAG Siglec-11 9.85* 53.43 0.994

II-P76 IYPGSGNTKYNEKFK mAb735 1.29 0.70 0.998

II-P79 NTKYNEKFKGKATLT mAb735 1.20* 1.31 0.995

II-P104 HLSLKNPLRMDLGGGS Phage display screening 0.388 0.091 0.997

II-P336 NRTVLRNLGNGTSLP Siglec-11: E6R mutation 0.577 0.164 0.999

II-P341 NRTVLEKLGNGTSLP Siglec-11: N7K mutation 1.29 0.886 0.995

Table 2.  Binding affinity constants (KD’s) of peptides as determined by FA assays. SE = standard error of the fit 
(for KD) with 95% confidence bounds. R square values of curve fits are also provided. Bolded residues represent 
mutations from parent peptides. Accuracy of values marked * is likely poor due to high imprecision (SE > KD 
for II-P79 and SE >> KD for I-P2 and I-P264); corresponding peptides are excluded from correlation in 
Fig. 6(b).
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while others show an increase in small, hydrophobic residues (Supplementary Fig. S3 and Supplementary 
Table S4). This aligns with the observation that the highest affinity peptides do not necessarily bind selectively 
to PSA; such sequences contain numerous positively charged residues that may bind indiscriminately to any 
negatively charged target. Thus, increased net charge promotes peptide affinity to PSA, but may not enhance 
selective binding. In fact, de novo peptides composed of lysine and glycine residues display high affinities but 
mediocre selectivity (approximately 55–60%, e.g., I-P378–I-P380 in Table 1). With the additional consideration 
that selectivity quantification was performed with only 10% competing PSA, these highly basic peptides provide 
poor examples of applicable selectivity.

In contrast to the narrow definition of selectivity above, specificity of peptides to polymeric α-2,8-PSA was 
demonstrated through competitive microarray screening with N-acetylneuraminic acid (Neu5Ac or sialic acid 
monomer). Peptide library binding to PSA in the presence of either molar or mass equivalents of Neu5Ac showed 
strong or very strong correlations (Fig. 4). As proof-of-principle, the FA assay developed for peptide–PSA affinity 
assessment was applied for I-P24 and I-P264 with Neu5Ac, and the specific interaction of I-P24 with the polymer 
was confirmed (Supplementary Fig. S4).

Variation in binding between Neu5Ac conditions largely fell within assay error. However, a few peptides 
demonstrated higher binding to PSA with a mass equivalent of Neu5Ac, possibly due to effects of solution charge 
and ionic strength on binding. The microarray technique likely lacks the sensitivity needed for systematic eval-
uation of such effects (i.e., compared to techniques such as FA or isothermal calorimetry [ITC]43); however, pre-
liminary assessment of selective binding in differing buffer conditions is possible. Affinity screening of a sub-set 
of peptides with 100 mM NaCl (the standard buffer concentration) and with 200 mM NaCl did not reveal a clear 
trend for altered binding with higher ionic strength (r = 0.84). I-P2, I-P24, I-P25, and I-P264 (tested with FA) and 
I-P50 (discussed further below) were included in this sub-set, and these peptides did not display any change in 
binding (within error). In contrast, nearly all peptides showed minimal binding to PSA when the affinity screen 
was conducted without NaCl; I-P24 was one of the few peptides displaying detectable binding. It is possible that 
this large decrease in binding arises from elimination of a positive entropic contribution, similar to the energetic 
contribution previously described for binding of heparin to peptides, where sodium ion displacement entropi-
cally drives the carbohydrate–peptide interaction37,44.

Peptide selective binding to PSA at different pH values was also evaluated through microarray screening. 
Most peptides, including all FA-tested peptides, were largely insensitive to changes in pH in the range 6.0–8.0 
(Supplementary Fig. S5). Peptides exhibiting the most prominent differences between conditions contain histi-
dine residues, for which change in protonation at lower pH expectedly enhances PSA interaction (Supplementary 
Fig. S5).

Molecular dynamics simulations of PSA–peptide and PSA–Siglec-11 interactions.  MD sim-
ulations of PSA–peptide and PSA–Siglec-11 interactions were performed to investigate thermodynamic and 
structural aspects of peptide–PSA binding, as well as the relationship of this binding to protein–PSA binding 
(Fig. 5). Simulations of the five peptides I-P24, I-P50, I-P264, II-P336, and II-P341 (all derived from Siglec-11; 
Table 2) with α-2,8-PSA largely corroborated microarray and FA observations on PSA–peptide binding, the latter 
for all but I-P50 (for which poor solubility hindered experimental binding studies). For PSA-binding peptides, 
interactions were primarily guided by positively charged residues, which align with sialic acid carboxyl groups. 
Additionally, proximal residues appeared capable of forming hydrogen bonds and Van der Waals contacts with 
PSA. I-P264, the negative control peptide, showed minimal interaction with PSA.

Simulations of the N-terminal binding domain of Siglec-11 (homology model) with PSA demonstrated target 
interaction with CC′ and GG′ loops of the immunoglobulin domain, as well as with the F, G, and G′ strands; the 
arginine conserved amongst Siglecs projects into the binding pocket from the hydrophobic F strand (part of the 

Figure 4.  Selective binding of peptides to polymeric sialic acid over sialic acid monomer. Mean microarray 
intensities are compared between peptide binding to (a) 10 μM PSA and 10 μM PSA with equimolar (10 μM) 
Neu5Ac, (b) 10 μM PSA and 10 μM PSA with equivalent mass (970 μM) of Neu5Ac, and (c) 10 μM PSA with 
equimolar Neu5Ac and 10 μM with equivalent mass Neu5Ac. Given that PSA contains an average of 100 sialic 
acid units, competition of a mass equivalent of Neu5Ac represents a more stringent condition than equimolar 
competition. Binding intensities represent the mean of two independent experiments, with triplicate intra-assay 
measurements (error bars excluded for clarity).
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Figure 5.  Interactions of peptides and Siglec-11 with α-2,8-PSA as assessed by MD simulations. Simulation 
snapshots from the time point of greatest interaction (with a cut-off distance for interaction set at 3.0 Å) for (a) 
I-P24, (b) I-P50, and (c) II-P336 with α-2,8-PSA (decasialic acid) (1:1) are shown on the left. Polar contacts at 
the time point of the snapshots are shown as black dashes, and residues for which highest interaction occurs 
over the course of the complete simulation trajectory are labelled. The carbohydrate is shown in yellow, and 
peptides I-P24, I-P50, and II-P336 are shown in magenta, blue, and green, respectively. Corresponding residue 
interaction maps (right) show the normalized number of contacts (3.0 Å cut-off distance) from 0 (purple) to 
1 (red) observed over the complete time course of simulation between each peptide and decasialic acid. II-
P341, a moderate to weak binder in microarray and FA assays, did not show PSA binding in 1:1 simulation, but 
demonstrated binding in other simulations (see Supplementary Information). (d) Siglec-11 N-terminal domain 
(homology model) with α-2,8-PSA (decasialic acid) (1:1; overlay of three frames with highest interaction). The 
carbohydrate is shown in yellow in rod model, and the protein is shown in grey in ribbon model with the CC′ 
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domain core) to interact with sialic acid carboxyl groups. I-P24 and I-P50 comprise the CC′ loop and F strand/FG 
loop, respectively. Attempts at experimental quantification of PSA–Siglec-11 binding through SPR spectroscopy 
and ELISAs failed due to low affinity; previous studies have successfully identified but not quantified binding23,26. 
Also, high protein concentrations required for low affinity quantification limited analysis through other tech-
niques, such as FA, that were optimized for the study of peptide binding. However, potential of mean force (PMF) 
curves of Siglec-11 Domain 1 with PSA suggest a micromolar binding affinity, based on comparison to PMF 
curves of peptides (Fig. 5(c)) and experimental peptide characterisation. Results from MD simulations of the five 
peptides and Siglec-11 with α-2,8/9-PSA are provided in Supplementary Information (Supplementary Fig. S6).

Targeting of human neural progenitor cells with Siglec-11-derived peptides.  The relative bind-
ing of Siglec-11-derived peptides to a PSA-expressing cell line was determined through microarray screening to 
assess cell-targeting capabilities of PSA-binding peptides. The sub-set of peptides I-P1–I-P59 (from Siglec-11 
Domain 1 linear mapping) was selected for cell binding analysis to supplement and elucidate experimental 
and computational binding data for I-P24. Relative binding of these peptides to human neural progenitor cells 
(NPCs) is shown in Fig. 6, along with peptide microarray binding and a corresponding residue interaction map 
or “epitope map” from simulations. There is a significant association between binding ranks for two cell numbers 
(Spearman correlation coefficient (ρ) = 0.83; p = 0.257, α = 0.05, two-tailed), indicating selective binding of cells 
to PSA-binding peptides. Importantly, peptides derived from or near i) the CC′ loop and ii) the FG loop and 
G/G′ strand have prominently lower rank values in comparison to other peptides. The corresponding regions 
of Siglec-11 contact the PSA ligand in simulations, and some peptides from the FG/G region demonstrated 
moderate-to-high microarray affinity and moderate selectivity in microarray 2,8/9-PSA competition studies.

Discussion
The identification of PSA-binding peptides may be pursued using a number of design strategies, random or 
rational, and residue-level information related to PSA-interactions may be gained through any strategy. However, 
design from and comparison to the PSA-binding protein Siglec-11 enabled a complementary study of peptide 
and protein structure and function, wherein i) peptide design and characterisation provided biochemical under-
standing on PSA-binding, ii) peptide study led to molecular insight into Siglec-11 interaction, and iii) protein and 
peptide simulations validated experimental peptide characterisation. Simultaneously, the concurrent analysis of 
peptides of different origin enabled insight into comparative binding characteristics of Siglec-11-derived peptides.

Assessment of peptide affinity with microarray screening enabled characterisation of residue-based bind-
ing properties alongside identification of PSA-binding and non-binding peptides. In comparison, subsequent 
FA titrations enhanced characterisation through direct quantification of peptide–PSA interaction; KD and Bmax 
determinations allowed for property-based discrimination of peptides, and assessment of binding potential sup-
ported peptide selection strategy from microarrays. Such subsequent characterisation validates conclusions from 
high-throughput screening and, furthermore, promotes informed selection of peptide candidates for desired 
applications.

Despite limited literature on the use of FA assays for the study of carbohydrate interactions34, these assays are 
an attractive platform for in-solution binding analysis of carbohydrate–peptide interactions, which generally 
demonstrate low 1:1 affinity24,37–40,43,45–47. In general, there are few reports on thermodynamic and/or kinetic char-
acterisation of polysaccharide–peptide binding, especially for interactions with high micromolar affinities34,48–50. 
In many binding analysis techniques, low affinities complicate or prevent accurate KD determination, as micro-
molar and millimolar interactions pose detection challenges43,46. Additionally, in some techniques, such as SPR 
spectroscopy, the viscosity of carbohydrate solutions may result in artifacts. Though PSA–peptide binding was 
detected in prior work with SPR25, accurate affinity quantification with this technique was limited by a combina-
tion of factors, including the high viscosity of PSA, the affinity detection limit of the system, and the small size 
of peptides relative to PSA. In contrast, despite limitations with PSA solubility (upper limit of approximately 
1.5 mM) and relatively low anisotropy changes, PSA–peptide binding analysis with FA successfully identified and 
characterised two PSA-binding peptides (I-P24 and II-P336) which performed well in all other experimental and 
computational assessments. The entropic penalty of binding associated with a low molecular weight peptide inter-
acting with a conformationally flexible, high molecular weight polysaccharide is likely high; hence, the design and 
characterisation of PSA-binding peptides with KD’s comparable to those of Siglec–ligand interactions51 is notable.

Select peptides, including I-P24 and II-P336, were shown to display some degree of selective binding to PSA of 
2,8-linkages. However, specificity to PSA of these linkages was absent, with binding outcompeted by α-2,8/9-PSA 
to various degrees. The difference in peptide binding between these isomers, suggested by the selectivity–speci-
ficity contrast and supported by MD simulations, may be manipulated to alter selectivity. For example, numerous 
studies have demonstrated the importance of ligand density in affinity of carbohydrate interactions37–40,43,52–55, 
and there is evidence for altered selectivity with alteration in carbohydrate density56; a similar approach could be 
undertaken wherein ligand density of peptide candidates displaying promising selectivity (with 10% competitor) 
is modulated to influence selectivity. Furthermore, though peptides with selectivity for α-2,8-PSA were of focus 
here, peptides binding to α-2,8/9-PSA—absent in humans—may be refined for targeting of pathogenic bacterial 

loop in magenta and F/G strands in teal. Upper right, Snapshot of the CC′ loop alone in rod model in contact 
with PSA, with polar contacts shown as black dashes. General loop structure and contact residues are highly 
similar to those of I-P24. Simulation snapshots for (a–d) are provided as Supplementary PDB files. (e) Potential 
of mean force (PMF) curves of the five peptides and Siglec-11 binding to α-2,8-PSA (distance along reaction 
coordinate).

https://doi.org/10.1038/s41598-020-64088-z


9Scientific Reports |         (2020) 10:7697  | https://doi.org/10.1038/s41598-020-64088-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

species expressing this PSA1,2. Similarly, given the ubiquity of sialic acid in mammalian systems57, the demon-
strated specificity of PSA-binding peptides to polymeric sialic acid over the monomer can provide considerable 
advantages in in vitro or in vivo applications.

The pH insensitivity in binding of high affinity and high selectivity PSA-binding peptides, such as I-P24, may 
be considered another example of selective binding. This selectivity allows for peptide utilization in environ-
ments with variable pH values (e.g., physiological systems). In contrast, pH sensitive peptides demonstrate that 
selectivity of peptides to PSA may be engineered to switch, which may be useful in “bind and elute” contexts. For 
example, PSA-binding peptides may be used to target or purify therapeutic proteins with sialic acid modifications 
of different degrees of polymerization (DPs).

The differing molecular bases25,58,59 of the thus demonstrated PSA–peptide affinity and selectivity was sug-
gested by experimental techniques (employed for peptide identification and characterisation) and supported 
by computational approaches (used to validate and further characterise binding). For example, compositional 

Figure 6.  (a) Binding to peptides derived from Domain 1 of Siglec-11 (I-P1–I-P59, including residues from 
linker regions) to NPCs. Binding rank represents ranking of binding intensities of peptides (with a rank of 1 
corresponding to the peptide showing highest binding amongst 59 peptides). Intensity data (means) are derived 
from triplicate measurements for each peptide in screening against 1 or 2.5 million NPCs per microarray 
(error bars excluded for clarity). ρ = 0.83; p = 0.257, α = 0.05, two-tailed. Screening with 5 million cells could 
not be accurately quantified due to high microarray background. Peptides derived from the Siglec-11 CC′ 
loop (residues 74–88) and FG/G region (residues 128–152) demonstrate higher relative binding to NPCs as 
compared to other peptides, with low rank values for NPC binding (Siglec-11 residue numbering is provided 
in (c)). While a few other peptides display low binding ranks, the specified regions display low ranks for 
contiguous peptides. (b) Microarray binding of I-P1–I-P59 to PSA. Binding intensities represent the mean of 
three independent experiments, with triplicate intra-assay measurements (error bars show inter-assay standard 
deviations). (c) Interaction map showing the normalized number of contacts (3.0 Å cut-off distance) from 0 
(purple) to 1 (red) observed in the MD simulation between Siglec-11 Domain 1 and decasialic acid. Residues 
correspond to Siglec-11 numbering, and peptide identifiers mark the start of each 15-residue peptide sequence. 
A similar interaction map for octasialic acid is provided in Fig. S7.
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and positional analyses of peptides suggested that PSA selectivity requires binding of positively charged residues 
(preferably Arg, as in protein–carbohydrate interactions41,42) appropriately spaced by small, hydrophobic resi-
dues; simulations likewise demonstrated that electrostatic interactions guide peptide–PSA binding. The apparent 
lack of a strict consensus motif may be due to conformational flexibility of both the peptide ligand and carbohy-
drate target. It is possible that DP of PSA affects peptide/protein binding through, for example, conformational 
differences, entropic effects, stability of species, or multivalency14,22,35,60,61. While experimental studies used a 
polydisperse polymer (with an average DP of 100) and MD simulations assessed binding with decasialic acid, 
results from the two methodologies showed overall good agreement—especially for I-P24.

Of the peptides evaluated with simulations, I-P24 and I-P50 originated from the N-terminal binding domain 
(Domain 1) of Siglec-11. The other peptides were derived directly or modified from non-binding regions of the 
protein, and one of these peptides (II-P336) displayed good affinity and selectivity to PSA. The experimental 
performance of Domain 1 peptides, specifically high affinity and selectivity of I-P24 and weak binding of I-P50, 
can be explained by their origins. I-P24 forms the CC′ loop in Siglec-1127. This loop, which is highly variable 
amongst Siglecs and bordered by conserved beta strands, has been shown to contain specificity determinants in 
other Siglecs27,62. In Siglec-11, the orientation of the CC′ loop is such that it points inwards into the ligand binding 
pocket as for Siglec-2, -4, -5, and -862. Interestingly, simulations demonstrate that I-P24 also adopts a highly sim-
ilar omega loop structure on binding PSA. Additionally, the residues of the Siglec-11 loop interacting with PSA 
are the same residues of I-P24 that orient towards the ligand, with positively charged residues and polar groups 
contacting the ligand and hydrophobic side chains largely stabilizing the loop’s interior. A central Pro (as with 
Siglec-4, -5, and -8) results in turning of the loop. In both the Siglec-11 CC′ loop and I-P24, it is possible that this 
structural feature, combined with smaller residues maintaining loop flexibility, enable proper orientation of Arg 
and Lys residues for specific ligand binding. Combined with microarray and FA data on I-P24 selective binding 
to α-2,8-PSA, the Siglec-11 CC′ loop simulations agree with the prevailing view that this loop confers ligand 
specificity to Siglecs.

Peptides from the Siglec-11 region containing the Arg conserved in Siglecs27 (I-P50 and similar) did not 
experimentally demonstrate high binding, with binding only evident with increased exposure times in microar-
ray imaging. It is possible that microarray binding is partially affected by high peptide hydrophobicity; due to 
peptide presentation from a partly hydrophobic surface into aqueous media, hydrophilic peptides may be more 
accessible for target binding. In fact, a few peptides modified from this region to have higher hydrophilicity 
demonstrated binding in the top 5% of intensities in affinity screening, but also displayed high inter-assay var-
iability. Furthermore, simulations of I-P50 binding to PSA indicate that the interaction, though weak, occurs 
through guiding electrostatic interactions of Arg residues (corresponding to the conserved Arg from strand F and 
other Arg residues from the FG loop/G strand in Siglec-11). It is possible that the hydrophobicity of contiguous 
residues promotes Arg residue binding to PSA when displayed from deeper within an otherwise hydrophilic 
protein binding site (though, of note, the conserved Arg is thought to be less critical for Siglec-11 binding than for 
other Siglecs23). However, in isolation (i.e., in peptide form), the residues composing I-P50 likely lack topological 
context and hence target specificity. This contrasts directly with the structure of the CC′ loop, which supported 
the engineering and comparative study of I-P24.

Unlike in microarray affinity screens with PSA, cell screening exclusively identified binding site-derived pep-
tides. Linearly mapped peptides demonstrating affinity to PSA alone did not show consistently greater binding 
to NPCs, unlike CC′ loop and F/G strand-derived peptides, which is expected as linear epitope mapping is not a 
surrogate for binding site determination. Thus, as compared to binding and competition assays with few species, 
cell screening served as a peptide selectivity challenge of greater stringency. Both Siglec-11 simulations and cell 
binding data suggest that along with the CC′ loop, the F/G strand may play a role in ligand specificity. However, 
the higher performance of I-P24 over F/G strand-derived peptides in various affinity and selectivity assessments 
makes this peptide exemplary for characterisation and application. The remarkable difference in binding of I-P24 
and other select peptides to NPCs demonstrates the potential for these peptides to be used in cell targeting5,63–65, 
especially considering only a sub-population of these cells expressed PSA. For example, PSA-binding peptides 
may be adapted for selective targeting of cancer cells overexpressing PSA1,2,13,66. Hence, the conserved continuous 
binding pocket of Siglec-11 lent itself to the synergistic study of PSA-binding peptides across various platforms.

Thus, rational peptide design informed on interactions of PSA and the native ligand Siglec-11, supported 
comparative analysis amongst peptides (including peptides from non-Siglec origins), and provided peptides 
demonstrating unique applicability. For example, the described design and characterisation strategy saliently 
revealed the top-performing peptide amongst 762 (I-P24) to originate from the unstructured loop bordering the 
Siglec binding pocket—thus supporting insight into lectin–PSA interactions while presenting a peptide candi-
date with desirable affinity and selectivity characteristics across multiple platforms. In this manner, exploiting 
possible lectin binders to glycans for peptide design can provide lectin-mimics with desirable properties, even if 
direct experimental study of lectin structure and binding proves challenging. Furthermore, based on the general 
epitope required for peptide–PSA affinity and selectivity, further investigations may isolate PSA-binding regions 
of other important proteins thought to interact with PSA (e.g., neurotrophins). In future work, hypothesis-driven 
approaches can build on knowledge of PSA–protein interactions to investigate structural and thermodynamic/
kinetic aspects of PSA interactions, improve upon native ligand-based peptide design for polysaccharides, and 
use design rules from peptide sequence analysis for controlled modulation of ligand affinity and selectivity.

Methods
Peptide microarray screening.  Peptide library synthesis, microarray preparation, and microarray screen-
ing were performed as described previously25 with the following specifications. Siglec-related sequences were 
N-terminally acetylated to match the charge of the corresponding protein fragment. All peptides were printed 
in triplicate (60 nL spots), and each initial affinity screening was carried out at least three times. Screening was 
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conducted with 10 μM colominic acid (CA; 5 mL per microarray), the Escherichia coli homolog of α-2,8-PSA 
identical in structure to human-derived PSA67, and with antibody-based chemiluminescent detection of CA. 
For selectivity screening, microarrays were challenged with 10 μM CA with 0, 0.1, 1, and 10 μM α-2,8/9-PSA 
in separate conditions (5 mL total volume each), where molar concentrations were based on molecular weight 
estimation of synthesized 2,8/9-PSA (details on α-2,8/9-PSA production, purification, and analysis are provided 
in Supplementary Information). Selectivity screening with monomeric sialic acid was conducted with mass and 
molar equivalents of N-acetylneuraminic acid (Rose Scientific, Ltd.) along with 10 μM CA (5 mL total volume 
each). The mass equivalent amount of sialic acid (specifically, 970 μM sialic acid for a given volume of 10 μM CA) 
was calculated for CA of an average degree of polymerization of 100. For study of pH-dependent binding, affin-
ity screening with CA was performed using PBS buffers of pH 6.0, 7.0, 7.4, and 8.0 (10 mM phosphate, 100 mM 
NaCl). The impact of NaCl on peptide binding was assessed at pH 7.4 with 0, 100, and 200 mM NaCl. Control 
dot blot assays for all alternative microarray conditions (e.g., α-8/9-PSA competition or pH 6.0) confirmed that 
antibody detection of CA was not considerably altered in these conditions and that antibodies did not show 
cross-reactivity with competitors.

Microarray image and data analysis was performed as described25. Image transform values for normalization 
within the image acquisition software were selected based on relative maximum and minimum intensities across 
all images and hence differed from values selected in previous work; this results in different absolute intensities 
reported for peptides II-1–II-223, I-P264, and I-P342, though relative intensities are the same (within expected 
error)25. Of the triplicate experiments used to generate mean microarray affinity intensities in standard conditions 
(within each of which 762 peptides were represented in triplicate), 225 out of 762 values in one of these three 
experiments were derived from raw data previously reported25, but were alternatively analysed as stated. Peptide 
isoelectric points were calculated with the EMBOSS iep program68.

For compositional and positional analyses, residue occurrence within peptide sequences and at each posi-
tion within sequences was compared between the compiled peptide library and the top 5% affinity binders, as 
well as between the library and approximately the top 5% selective binders (consisting of peptides with selec-
tivity >65%). For identification of the top 5% selective binders, an affinity constraint was first applied, where 
peptides displaying background or non-binding intensities (approximately 75% of the library with intensities in 
the bottom 20% of the intensity range) were excluded along with an additional 5% of very weakly binding pep-
tides (including peptides with intensities in the bottom 30% of the intensity range). Following application of the 
affinity criteria, 115 peptides (approximately 15% of the library) with binding above background were considered 
for selectivity assessment. Though select sequences were chosen for modification in the process of peptide design, 
each set of modified sequences (from different origins) comprised <10% of all sequences and thus inclusion in 
affinity and selectivity compositional and positional analyses was not considered to affect statistical outcomes 
through sampling bias.

Fluorescence anisotropy assay.  Peptides (Table 2) were synthesized at >95% purity (confirmed 
with HPLC) by Biomatik (see Supplementary Information). All peptides were N-terminally acetylated and 
C-terminally labelled with tetramethylrhodamine dye (TAMRA). TAMRA was chosen as a label due to its 
pH insensitivity compared to FAM (fluorescein) and related dyes commonly used for fluorescence assays. 
Experiments were conducted in black 384-well plates with non-binding surface (NBS, Corning, Inc.) to mini-
mize background binding and enhance signal-to-noise ratio in the fluorescence-based binding assay. Titrations 
were carried out through addition of TAMRA-labelled peptide (8 μL, final concentration 20 nM) to CA (72 μL, 
final concentrations 0–1500 μM) in PBS, pH 7.4 (10 mM phosphate, 100 mM NaCl), and solutions were incu-
bated with agitation to equilibrium at room temperature (3 h, ~20 °C). Parallel and perpendicular intensities 
were subsequently measured at 530 nm excitation (band width 5 nm) and 580 nm emission (band width 20 nm) 
in fluorescence polarization mode with a Tecan Infinite M1000 Pro plate reader. Total fluorescence intensities 
were also measured as a control for fluorophore properties with target binding69; fluorescence intensities of free 
peptide were determined to be approximately equivalent to intensities with peptide–CA mixtures. At higher 
concentrations of free CA (control with no peptide addition), attenuation of detected light differed in parallel 
and perpendicular planes, so respective intensities were subtracted from peptide–CA intensities prior to ani-
sotropy calculations. Increased fluorescence output at high CA concentrations corresponded to higher solution 
viscosity and likely resulted in light scattering that considerably affected anisotropies without this correction 
(rheology studies on CA viscosity are provided in Supplementary Information). Unique samples were screened 
in at least triplicate within each titration experiment, and each peptide titration was carried out at least twice. In 
experimental repeats, peptide locations on plates were varied to prevent location-specific effects, if any, and dif-
ferent combinations of peptides were assessed at once. Anisotropies were calculated from corrected parallel and 
perpendicular intensities69, and values were fit to the four-parameter logistic binding model70 in MATLAB. Prior 
to curve fitting, anisotropy values for each peptide were transformed through subtraction of minimum values to 
enhance comparison between peptides. The resulting translations in binding curves were identical, within error, 
to change in anisotropy curves obtained through subtraction of anisotropy of free labelled peptide. Bmax and KD 
values obtained were used in the calculation of Bmax/KD ratios for comparison to microarray intensity values, and 
the Pearson correlation coefficient (r) was determined.

Molecular dynamics simulations.  The N-terminal binding domain of Siglec-11 (residues 28–156) was 
modelled from homologous members of the Siglec family of sialic acid-binding lectins23,27 using homology mod-
elling in YASARA as previously described71–73. Models for peptides were obtained from the PEP-FOLD web 
server74. Siglec-11 and peptides were equilibrated under all-atom molecular dynamics (MD) at 300 K for 300 ns 
using the GROMACS engine75. All atoms were described using the CHARMM36m forcefield76, and solutes were 
solvated in TIP3P water77 and 100 mM NaCl counterions. Equilibrated structures of the peptides were clustered 
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using gmx cluster utility, and the cluster with the highest population was utilized for binding studies. Decasialic 
acid structures (with either 2,8 or 2,8/9 linkages) were built using the oligosaccharide builder in YASARA. The 
binding sites for PSA on Siglec-11 were inferred from co-solvent MD simulations where one PSA chain was 
equilibrated with one Siglec-11 monomer (1:1). Similarly, one peptide was equilibrated with one PSA chain (1:1). 
In both cases, simulations were carried out in triplicates. Simulations were sampled for 500 ns for Siglec-11 and 
250 ns for the peptides. The longest contacting peptide–PSA conformations were isolated for further analysis. 
Potential of mean force (PMF) calculations were carried out for peptide interactions with PSA via umbrella sam-
pling simulation using GROMACS and PLUMED78. The PMF was calculated using weighted histogram analysis. 
Python packages MDAnalysis79,80 and GromacsWrapper were used to build in-house analysis and plotting scripts.

Cell binding studies.  ReNcell VM human neural progenitor cells (NPCs; EMD Millipore) were cul-
tured in accordance with manufacturer’s instructions and passaged at 80–90% confluency with accutase. 
Immunocytochemistry/immunofluorescence of NPCs with anti-PSA-NCAM antibody (EMD Millipore) was 
used to confirm PSA expression, as expression varies amongst cell types/populations and decreases with differ-
entiation. NPCs were fixed with methanol prior to blocking with 5% BSA and incubation with anti-PSA-NCAM 
(EMD Millipore) and Alexa Fluor-labelled goat anti-mouse IgM (Invitrogen).

NPCs were labelled with CellTracker Red CMTPX dye (Thermo Fisher Scientific; 10 μM). Peptide microarray 
experiments were carried out similarly to carbohydrate screens, except peptide positions were randomized, and 
microarrays were blocked overnight at 4 °C in 5% BSA (10 mL each) prior to incubation with labelled cells at 
37 °C (2 mL on slide surface; 0, 1, 2.5, and 5 million cells). Washes were conducted with PBS, pH 7.4 (3×10 min-
utes, 10 mL each). Microarrays were air-dried overnight before fluorescence imaging (GE Typhoon Trio+ flatbed 
scanner; 633 nm excitation, 670BP30 nm emission, 450 PMT, 10 μm resolution). Fluorescence values for cell 
binding were adjusted by subtraction of control slide intensities (without cells) to account for autofluorescence 
and non-specific binding. Since background and dynamic range were different with variation in cell numbers, 
binding ranks were determined to enable comparison of peptide binding between conditions, and the Spearman 
rank-order correlation coefficient (ρ) was calculated (n = 59).

Data availability
Any data generated or analysed during this study that are not included in the published article and Supplementary 
Information, including raw microarray images and PDB files generated from MD simulations, are available from 
the corresponding authors upon reasonable request.
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