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ABSTRACT

Motivation: Eukaryotic gene expression is controlled through molecu-

lar logic circuits that combine regulatory signals of many different fac-

tors. In particular, complexation of transcription factors (TFs) and other

regulatory proteins is a prevailing and highly conserved mechanism of

signal integration within critical regulatory pathways and enables us to

infer controlled genes as well as the exerted regulatory mechanism.

Common approaches for protein complex prediction that only use

protein interaction networks, however, are designed to detect self-

contained functional complexes and have difficulties to reveal dynamic

combinatorial assemblies of physically interacting proteins.

Results: We developed the novel algorithm DACO that combines pro-

tein–protein interaction networks and domain–domain interaction net-

works with the cluster-quality metric cohesiveness. The metric is

locally maximized on the holistic level of protein interactions, and con-

nectivity constraints on the domain level are used to account for the

exclusive and thus inherently combinatorial nature of the interactions

within such assemblies. When applied to predicting TF complexes in

the yeast Saccharomyces cerevisiae, the proposed approach outper-

formed popular complex prediction methods by far. Furthermore, we

were able to assign many of the predictions to target genes, as well as

to a potential regulatory effect in agreement with literature evidence.

Availability and implementation: A prototype implementation is

freely available at https://sourceforge.net/projects/dacoalgorithm/.

Contact: volkhard.helms@bioinformatik.uni-saarland.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The complexity of higher eukaryotes cannot be explained with-

out considering the combinatorial regulation of transcription

(Levine and Tjian, 2003). Recent experimental work showed

that the information encoded by many regulatory control elem-

ents, namely specific DNA-binding transcription factors (TFs)

and their cofactors, epigenetic marks, microRNAs and other

input signals, is integrated to orchestrate the expression patterns

of genes in a context-dependent manner in time and space (Spitz

and Furlong, 2012).
On a conceptual level, this complex signal processing task is

accomplished by an interplay of several control layers. Cis-regu-

latory modules, functional sequence segments whose accessibility

is dependent on the packing state of the chromatin, enable basic

logic operations on the input that are essentially implemented by

protein–protein interactions between DNA-binding proteins

with suitably positioned binding sites (Buchler et al., 2003;

Istrail and Davidson, 2005). When bound to the DNA, these

proteins often mediate further physical interactions that provide

an additional scaffold besides the regulatory sequence. This

important aspect expands the current understanding of cis-regu-

latory signal integration beyond the linear sequence-based code

(Junion et al., 2012; Siggers and Gordan, 2014). The scaffold is

used to recruit additional TFs or cofactors that entail regulatory

capabilities such as epigenetic alterations or mediate interactions

with other TFs on selected sites where binding motifs obey cer-

tain distance constraints (Diez et al., 2014; G €oke et al., 2011).
TFs that participate in such multi-protein complexes to pro-

duce decisive output signals are referred to as being ‘cooperative’

(Aguilar and Oliva, 2008; Spitz and Furlong, 2012). Cooperative

TFs are found in shorter distance and are more clustered within

the protein interaction network than expected by chance (Aguilar

and Oliva, 2008; Manke et al., 2003). Although they influence

similar groups of target genes, what supports their role as im-

portant regulatory drivers, they neither seem to share similar

regulatory inputs nor regulate each other (Aguilar and Oliva,

2008). Recent research showed that cooperative binding events

are evolutionary much stronger conserved (G €oke et al., 2011; He

et al., 2011; Kazemian et al., 2013) and show a greater impact on

expression compared with individual binding events (Hemberg

and Kreiman, 2011). Furthermore, they turned out to be driving

regulators in essential eukaryotic control processes such as the

cell cycle in yeast (Simon et al., 2001), body part formation in

Drosophila (He et al., 2011; Kazemian et al., 2013) or mamma-

lian cell fate determination (G €oke et al., 2011; Hochedlinger and

Plath, 2009; Wilson et al., 2010). The understanding of this com-

binatorial interplay requires a paradigm shift from single key

players to the coupled activity of many regulatory control

elements.
At a first glance, the prediction of protein complexes is a well-

established field. Data for physical interactions between proteins

in the form of protein–protein interaction networks (PPIN) is

abundant and so are suitable clustering approaches that find

dense areas in networks. A very successful recent method is

ClusterONE (Nepusz et al., 2012), which locally optimizes the

cluster quality measure cohesiveness. This is done iteratively by

stepwise addition/removal of the locally most valuable incident/

boundary proteins. The cohesiveness f of a set of proteins V in a

network is generally defined as

fðVÞ=
winðVÞ

winðVÞ+wboundðVÞ

where winðVÞ denotes the total weight of edges between members

of V (internal edges), and wboundðVÞ denotes the total weight of

edges that connect V with the rest of the network (boundary

edges). Figure 1 illustrates these definitions with an example

and additionally introduces the notion of incident and bound-

ary proteins. Cohesiveness assesses the structural properties of

subnetworks that we aim for in this work: they should be

densely connected but at the same time well separated from the
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An important feature of ClusterONE and other successful

complex prediction approaches is to account for overlaps be-

tween complexes. Many protein complexes are organized in a

modular and combinatorial fashion so that proteins may take

part in several distinct complexes (Han et al., 2004; Jung et al.,

2010; Kim et al., 2006). PPINs provide a static compilation of

assumed pairwise interactions, whereas real biological inter-

actions are highly dynamic and intrinsically controlled by protein

expression and spatial constraints. To enable the formation of a

physically interacting protein complex, all involved proteins must

be expressed at the same time (Han et al., 2004; Jansen et al.,

2002) and must be capable of forming a stable binding topology

devoid of any binding site competition (Keskin and Nussinov,

2007; Kim et al., 2006). The integration of additional data should

thus allow us to derive a clearer picture of the combinatorial

complexity of protein complexes.
Although the combinatorial manifold of individual proteins

was studied before (Tuncbag et al., 2009; Tyagi et al., 2009),

few computational methods so far account for those effects. A

first step in this direction was taken by Jung et al. (2010) who

annotated mutually exclusive interactions in a yeast protein net-

work using structural data, where available, to determine all pos-

sible conflict-free subnetworks. Owing to the exponential

complexity, the construction was limited to previously deter-

mined dense areas of the network that were then used to predict

complexes. The evaluation showed that the effort can lead to a

considerable refinement of a given pre-clustering by the conse-

quent exclusion of superfluous proteins from complex candi-

dates. To our knowledge, this is the only available method that

accounts for the combinatorial possibilities due to binding inter-

face limitations.
Due to the current sparsity of available structural data on the

3D conformations of protein–protein complexes, a model based

on domain–domain interactions (DDIs) as introduced by Ozawa

et al. (2010) appeared to us as a worthwhile alternative. Given a

dense protein interaction subnetwork from a generic complex

prediction approach, one decomposes the member proteins

into their domains and bases the connectivity on interactions

between the individual domains, the DDIs. This transformation

to a domain-level network can then be used to filter out false-

positive predictions. If every domain is restricted to participate in

only one interaction, the model implies a certain binding inter-

face constraint and thus reveals which proteins can be connected

at the same time. This is important because true protein com-

plexes must admit a topology of pairwise binding at the level of

interfaces, and these interfaces are often exclusive (Aloy and

Russell, 2006; Kim et al., 2006). The model assumes that the

correct topology has the maximal number of simultaneous inter-

actions. Ma et al. (2012) enhanced the initial model by introdu-

cing a sequence-based domain prediction step and artificial

domains that help to maintain connectivity due to incomplete

annotation. Furthermore, they suggested a polynomial time so-

lution. Deploying the DDI model as a filtering step to existing

clustering approaches was shown to increase the precision of

predictions. However, the methods by Ozawa and Ma only pro-

vide a fixed solution for each complex candidate. If one is inter-

ested in the combinatorial manifold of potential solutions, one

would have to enumerate all possible exclusive choices in ad-

vance. This is the gap we want to fill with our algorithm.

2 MATERIALS AND METHODS

We developed a novel combinatorial approach that combines the local

optimization of cohesiveness based on weighted protein interaction data

and the competition of binding interfaces by adapted integration of

domain interaction data. We consequently termed the method ‘domain-

aware cohesiveness optimization’ or ‘DACO’. The integration of different

levels of granularity coupled with the set of rules introduced by the DDI

model is used to enforce a loop invariant within the iterative algorithm

that ensures a conflict-free domain interaction topology within the cur-

rently grown dense subset during the execution. Hence, a selection of

densely connected proteins is always accompanied with a valid spanning

tree on the domain level.

A prototype of the approach was implemented in Python (Fig. 2). The

only data sources needed as input are a probability-weighted PPIN in the

SIF format (simple interaction format, interaction partners and weight

are supplied linewise) with nodes named by their UniProt IDs (The

UniProt Consortium, 2014), a list of proteins that are used to seed the

growth, a threshold to generate the seed pairs, and an upper bound for

Fig. 2. Shown is the workflow of DACO with its necessary input data,

automatically retrieved information and computed output. The network

examples show the corresponding subnetworks of the SWI/SNF complex

[as annotated in CYC2008 (Pu et al., 2009)] built within the documented

framework and visualized using Cytoscape (Saito et al., 2012). The add-

itional domain information (right) enables a different view on the con-

nectivity of the complex compared with the perfect clique connected by

high-probability edges in the PPIN (left)

Fig. 1. For convenience, all edges in the PPIN have unit weight and the

corresponding weight annotation is omitted. The current members of the

cohesive subset V=fC;D;Eg and their internal edges are colored green,

boundary edges are marked red. Boundary edges can be thought to span

a boundary (shown as a dashed line) that separates the current dense

subset V from the remaining network. This border defines the set of

incident proteins Vinc=fB;Fg, external vertices adjacent to the boundary,

and boundary proteins Vbound=fD;Eg, internal vertices at the boundary.

For the given example winðVÞ=3; wboundðVÞ=4 and fðVÞ=3
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the depth of search to keep the combinatorial explosion on a local level.

Given those requirements, the tool automatically retrieves all the data

that it needs to build the DDIN and executes the proposed DACO. The

program queries Pfam (Punta et al., 2012) and InterPro (Hunter et al.,

2012) for the domain annotation and IDDI (Kim et al., 2012) and

DOMINE (Yellaboina et al., 2011) as the data sources for domain inter-

actions. Furthermore, UniProt annotations and the ‘dbfetch’ Web service

at EMBL-EBI (Lopez et al., 2003) are used for name conversion tasks.

The implementation is completely independent of the organism and can

directly be applied to any other desired organism if the required input

data are provided. Details are given in the Supplementary Materials

(Section 1.3).

2.1 Domain-aware cohesiveness optimization

Figure 3 illustrates the definitions for incident and boundary proteins on

the domain level. Given a certain execution state of the algorithm, defined

as the set of currently selected proteins in the assumed cluster V and the

active domain interactions between them, the first step is to determine

incident and boundary proteins. Connectivity issues are considered ac-

cording to the domain occupancy of the DDIN using the constraints of

the DDI model. With the introduction of this abstraction, binding site

conflicts as defined by the model are precluded right from the start to

retain the self-imposed loop invariant.

In the next step, we check for all incident proteins whether the cohe-

siveness can be increased when adding them to V. The same test is applied

for removing all boundary proteins. This computation is solely performed

on the level of the weighted protein interactions and is independent of the

current domain occupancy in the sense that all interactions are taken into

account. Although individual edge weights may be unreliable, deviations

will average out when many weighted interactions are combined (Nepusz

et al., 2012). Among all possible modifications V0 we select the one that

maximizes the cohesiveness. Every iteration can have three outcomes: the

algorithm could terminate because no further increase is possible, the

removal of a protein could yield the largest gain or the addition of a

protein may be the optimal choice. In the first case, the current complex

candidate set V is returned and the algorithm terminates, as the cohesive-

ness is locally optimal. The removal case changes the current state. The

boundary protein P is removed from V leading to V0=VnfPg.

Additionally, the domains occupied by the distinct spanning edge that

connected P to the remaining cluster V0 are made available again. The

definition of boundary proteins ensures the preservation of connectivity

within domains of V0. The next iteration is then computed using this

modified state.

Adding a protein P is more difficult. Certainly, V is modified to

V0=V [ fPg and P needs to establish a domain interaction with a protein

within V. But often several interactions are able to link P to V on the

domain level. This choice can be crucial for further expansions because it

may lead to differing occupancies on the domain level and therefore

changes the moves that will be possible in later steps. To take this into

account, the algorithm branches and evaluates the outcome of every pos-

sible spanning edge on the domain level. The DDIN does not provide a

qualitative rating for its individual edges, and all choices lead to the same

increase in cohesiveness. However, a reasonable consideration is to ex-

ploit the weight annotation of the protein interaction network.

Associating each domain interaction with the probability of the corres-

ponding edge between the connected proteins in the PPIN establishes an

overall probability that can be used as an early pruning criterion. This

correspondence will likely represent an upper limit achievable by any of

the domain interactions between the proteins (or even a combination of

several) and thus provides a conservative estimate. When assuming that

spanning edges in the DDIN are independent of each other, the prob-

ability to observe an underlying spanning tree on the domain level is the

product of the probabilities of all its spanning edges. If, at a particular

iteration of the algorithm, a resulting cohesiveness-maximizing candidate

would yield a value50.5, the current cluster is returned instead. In the

case of an addition, all alternatives below the threshold are withdrawn

early and the current cluster is only returned if no alternative choice

shows a total probability within the boundary. Further information

and pseudocode is provided in the Supplementary Materials (Section 1.

1/1.2).

Local cohesiveness optimization in ClusterONE starts its greedy

growth process from single proteins in the network. Like every greedy

algorithm, it is prone to local extrema. In our case, this is desirable be-

cause we want to grasp the local combinatorial manifold of complexes

around TFs and, owing to the implemented branching principle, the al-

gorithm is able to diversify its intermediate states with a variety of justi-

fied directionalities induced by the previous history of domain choices.

However, each time the complex candidate is enlarged, only one protein

is selected for expansion to keep the runtime convenient. This is especially

critical and error-prone during the very first expansion step when only

one internal edge and the boundary edges of the two proteins taken from

inherently noisy network data (von Mering et al., 2002) are taken into

account (Supplementary Fig. S2). Considering this, we decided to start

the growth process from pre-built pairs of proteins to spice up the opti-

mization. This overcomes any unfounded directional bias early on in the

first expansion step and paves the way for the reasoned bias owing to

domain constraints. Furthermore, the pairings should be determined on

the basis of the probability of a protein interaction between the two

proteins up to a certain likelihood if such data are available. While co-

hesiveness is undoubtedly a powerful measure of cluster quality if several

proteins are involved, its included notion of seclusiveness only has a

limited validity for pairs. It is especially misleading for proteins that are

combinatorically active and thus potentially exhibit higher boundary

weights within the cohesiveness calculations, putting them at a disadvan-

tage compared with less promiscuous nodes in the network.

2.2 Setup for yeast computations

We compared our DACO approach to the most recent versions of the

popular complex prediction tools MCODE (Bader and Hogue, 2003),

MCL (Enright et al., 2002) and ClusterONE (Nepusz et al., 2012)

using common benchmarks for protein complex prediction in yeast and

the weighted high-quality yeast protein interaction network PrePPI

(Zhang et al., 2013).

Figure 2 illustrates the workflow of the DACO algorithm. Given the

PrePPI network and 148 TFs as annotated in the Yeast Promotor Atlas

(YPA) (Chang et al., 2011), the complete DDIN was built and all seed

pairs were selected that exceed a probability of t=0.75 according to

PrePPI (or at least two partners if no interaction was within the thresh-

old). Two TFs annotated in the YPA, MATA1 and MAL63 are not

Fig. 3. The green nodes in this DDIN are the proteins currently included

in V=fA;C;Eg and the green edges show how the current dense cluster is

connected on the domain level. Incident nodes Vinc=fB;Dg are those

nodes that can be connected to V by a new domain-interaction edge

(colored in red) to an unused domain of an internal protein (blue do-

mains). Boundary nodes Vbound=fA;Eg are proteins in V with only one

used domain. A later removal of an internal node with two or more

occupied domains would inevitably lead to a breakdown of the spanning

tree on the domain level and thus introduce inconsistencies during

execution
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represented in the PrePPI-PPIN and were therefore omitted. The thus

generated start seed comprised 1526 distinct protein pairs that form 1898

start states considering the choices of the necessary domain interaction

between each pair. The runs were then executed with a depth threshold of

d=10, i.e. the DACO algorithm considered complexes containing up to

10 proteins. The parameter choice of t and d is discussed in the

Supplementary Materials (Section 2.1).

MCODE (MCD) was used as a Cytoscape3 plug-in (Saito et al., 2012)

in version 1.4b2. For MCL, the stand-alone binary in version 12-068 was

used. ClusterONE results were generated with the stand-alone implemen-

tation in version 1.0. ClusterONE allows the user to manually influence

seed node or sets of seed nodes. In the unsupervised mode (termed Cl1

here), the implementation takes care of the initialization. Additionally,

two different case-specific seeded variants were set manually. In the first

case, all YPA-annotated TFs were set as initial start proteins (Cl1s). In

the second case, all pairs used to initialize DACO were also taken to

commence ClusterONE (Cl1ps) to assess the benefit of an induced com-

binatorial flavor. To restrict the results to TF complexes, the output of

MCODE, MCL and ClusterONE was filtered for predicted candidates

that contained at least one TF annotated in the YPA. Because the com-

pared general approaches allow tuning of individual parameters, opti-

mization of the most influential settings was conducted to obtain the

most competitive individual and overall parameter sets for every single

score. As the best overall parameter set, we used the one with the largest

sum of averaged reference and biological scores (Supplementary

Materials Section 2.2).

3 RESULTS AND DISCUSSION

Table 1 lists the quantities of predicted TF-containing complexes

and distinct combinations of TFs that are predicted by the indi-

vidual methods. Our new DACO algorithm suggested 8–85 times

more TF complex candidates than any of the established meth-

ods. As expected, the ClusterONE run initialized with the pre-

built pairs returned the second most TF complexes and variants.

MCODE detected the smallest number of complexes. Also, the

MCODE output size deviated the most between overall best and

individual best parameter set. The differences between the start

variants for ClusterONE (that also locally optimizes the cohe-

siveness but does not use the domain model) were surprising:

when initialized with the individual TFs as seeds, fewer com-

plexes were predicted than when starting the growth from hub

proteins in the PPIN, irrespective of the type of the hub proteins.

Likewise worth mentioning is the comparably small number of

candidates suggested when starting from the 1526 pre-built pairs

in comparison with the domain-aware approach. Although

initiated with seeds that should favor the combinatorial

manifold, the number of predicted TF variants was below the

number of annotated TFs (148). This suggests that an approach

that only uses protein interaction data is not sufficient to grasp

the biological borders of such highly modular subnetworks that

fulfill binding-interface constraints.

3.1 Common complex prediction benchmarks

We computed established measures for the quality of complex

predictions based on the agreement with reference datasets.

Precision, recall and F-score (Li et al., 2010) were calculated

on the basis of the overlap score (Bader and Hogue, 2003).

Furthermore, we computed the geometric accuracy (Broh�ee

and van Helden, 2006) and the maximum matching ratio

(Nepusz et al., 2012). All measures were independently evaluated

on three different protein complex reference datasets for yeast,

namely CYC2008 (Pu et al., 2009), MIPS (Mewes et al., 2006)

and the SGD (Cherry et al., 2012). With the exception of the

precision, all quality metrics were calculated in compliance with

the corresponding reference complex sets filtered to the subset of

known complexes that involve at least one annotated TF. The

precision calculation was allowed to match a candidate to a ref-

erence complex that does not include a TF. This was done to

facilitate matches that potentially recruited larger complexes of

regulatory function in yeast, such as SWI/SNF or RSC. In this

context, a method that predicts a candidate with high overlap to

such a complex and contains at least one TF should not be

placed at a disadvantage. The threshold of tests based on the

overlap score was set to !ðA;BÞ40:25.
Figure 4 shows the results of all benchmarks for the overall

best parameter set of the compared methods. The overall quali-

tative picture is neither affected if the best parameter set per

measure is considered (Supplementary Table S9) nor by the

Fig. 4. Graphical summary of the performance of complex prediction

methods on reference complex data from CYC2008, MIPS and the

SGD as well as measures of biological relevance (Supplementary Table

S9). For the parameter-adjusted methods, each evaluation shows the

result of the overall best parameter set. The composite score is taken as

the sum of the individual quality measures given in the bars. Abbreviated

performance measures: Prec: Precision, Rec: Recall, GeoA: geometric

accuracy, MMR: maximum matching ratio, NColoc: nucleus colocaliza-

tion and GOE(x): overrepresentation score based on GO term enrichment

(all terms, MF: molecular function, BP: biological process, CC: cellular

component)

Table 1. Predicted TF complexes and TF complex variants (how many

distinct combinations of TFs are involved in complexes) that were ob-

tained by various approaches

DACO Cl1ps Cl1s Cl1 MCD MCL

TF complexes 1375 175/176 61/63 106/106 16/38 75/79

TF variants 412 134/138 59/61 80/80 16/38 75/79

Note: Where parameter tuning was conducted, the left value represents the result of

the parameter set that gave the overall best balanced performance for all criteria and

the right value is the highest value achieved by any parameter set for this criterion.
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relaxed definition of the precision (Supplementary Table S11).

Except for the geometric accuracy on the MIPS dataset, our

novel DACO approach designed for the combinatorial task of

predicting TF complexes outperformed the established general

algorithms in the agreement with reference complexes. Owing to

its local enumeration and thus smaller predicted complexes,

DACO is put at a technical disadvantage toward the relatively

large TF complexes in MIPS though (Supplementary Table S12).

Surprisingly, ClusterONE when started from the curated pairs

was on average not superior to the completely unsupervised ver-

sion. Even the recall was only slightly better for one dataset,

whereas the precision was strictly lower. Only in the maximum

matching ratio, owing to its missing penalization of non-match-

ing predictions, it performed slightly better. This shows that

growing from pairs does not benefit the local cohesiveness opti-

mization as implemented by ClusterONE. This can again be

attributed to the missing information of physical constraints in

protein interaction networks leading to the fusion of highly

modular dense subnetworks (Supplementary Fig. S3). The add-

itional incorporation of the domain topology in the fashion of

Ma et al. (2012) can be beneficial but leads to an even smaller

ensemble of solutions (Supplementary Tables S10 and 11).
Next, we tested the biological plausibility of the results on the

basis of colocalization and functional homogeneity within com-

plexes. In the special case of TF complexes, one should expect an

in vivo localization to the nucleus for all proteins within the same

complex. The nucleus colocalization score is defined as the aver-

age fraction of proteins per complex encountered in the nucleus

weighted by the size of the complex (Friedel et al., 2009).

Localization data were taken from Huh et al. (2003).

Homogeneity was tested as the fraction of complex candidates

with at least one enriched Gene Ontology annotation (Ashburner

et al., 2000) at significance level P=0.05 (Bonferroni corrected)

(Zhang et al., 2008).
Our novel method also performed well in the assessments of

biological relevance. While MCODE delivered the best-scoring

candidates with respect to enrichment, on average less than half

of the proteins among the TF complexes predicted by MCODE

are found in the nucleus. MCL was not able to achieve443%

nucleus colocalization with any setting. For the particular task of

TF complex prediction, the nucleus colocalization score should

be clearly seen as the most important one among the measures of

biological relevance. Hence, the DACO approach also clearly

succeeds in this aspect.

3.2 Regulatory role of TF complexes

In the next step, we determined the target genes of all involved

TFs from the binding data provided by the YPA. In total, 79%

of the 412 distinct TF sets that belong to complexes predicted by

DACO shared common target genes, which is above mere chance

for every n-tuple of TFs (Supplementary Fig. S4). This informa-

tion could be used to build a gene regulatory network that in-

cludes potentially meaningful cooperative TFs. However, even

more powerful predictions are feasible based on the DACO re-

sults because recruited regulatory proteins were predicted as well.
As an example for such an analysis, we have tried to charac-

terize the different modes of action by which TF complexes may

affect transcription. In general, TFs or regulatory proteins

recruited by TFs either interact with the basal machinery or

affect the chromatin structure and histone placement. Yeast

only contains few proteins for histone acetylation and for the

specific methylation of H3K4,36,79, whereas all modifications

are basically associated with increased accessibility and therefore

transcriptional upregulation (Millar and Grunstein, 2006). Few

exceptions to this are known so far (Xin et al., 2007). On the

basis of this yeast-specific simplification, we compiled proteins

associated with the following list of GO terms, namely direct

contribution to a positive or negative transcriptional regulation

(GO:0045944/GO:0000122), cofactor-mediated (GO:0003713/

GO:0003714), and epigenetic contributions (GO:0004402,

GO:0042054/GO:0004407, GO:0032452). Further, we deter-

mined chromatin remodeling proteins (GO:0006338) and pro-

teins that belong to the basal machinery (GO:0016591). Single

proteins that were annotated with both positive and negative

influence in different contexts were excluded to prevent ambigu-

ity (Supplementary Table S13).
Then, all protein assemblies predicted by DACO across all TF

variants were checked for contradictory statements, e.g. whether

they harbored proteins that are marked to positively influence

transcription as well as proteins that are annotated with repres-

sory function. Only 17% of the predicted complexes comprised

conflicting proteins. Among the consistent candidates, 79% had

at least one of the annotation as considered, and for 65% even the

direction of the contribution to the regulation could be inferred.

Interestingly, 3% of the TF combinations took part in assemblies

with opposing regulatory effects. For example, the TF pairRFX1/

REB1 occurred in 10 predicted candidates. Four of those were

annotated with activating proteins, for two complexes repressory

function was deduced and eight involved chromatin remodeling.

All candidates were devoid of contradictory annotations. RFX1 is

known to change its function by recruitment of the CYC8/TUP1

corepressor complex (Zhang and Reese, 2005). Both corepressor

proteins were found in the predicted repressive candidates and

were the decisive factors for the corresponding classification.

Furthermore, REB1 is associated with nucleosome-depleted re-

gions, supporting the recruitment of remodelers (Bai et al., 2011).
While this simple categorization strategy seems to work well

for yeast where it provided further mechanistic insights on such

complexes, it will likely not be adequate for higher eukaryotes.

Still, the potential information on the mode of action carried out

by the recruited proteins is a huge benefit in comparison with the

common information that is retrieved from the functions of TFs

and target genes in gene regulatory networks. Future computa-

tional models of transcription may also consider the histone

code, so that possible modifications could be inferred with an

equivalent level of detail from recruited writer proteins.

3.3 Analysis of target gene coexpression

The complete set of predicted complex candidates provides a super-

ordinate overview of putative regulatory players. To find causal

links between TF tuples and their regulatory targets, we incorpo-

rated expression data and applied a strict association method.

Based on the idea that genes that are regulated by the same control

mechanism should exhibit a highly similar expression pattern in a

certain condition, individual assemblies can be assigned to cellular

states (Pilpel et al., 2001; Wang and Zhang, 2006).
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For all predicted pairs and higher-order tuples of TFs (290 in

total), we analyzed the coexpression of their target genes within a

time series of 32 timepoints for the yeast cell cycle by Chin et al.

(2012). The aim of this was to determine significantly cooperative

TF tuples that are assumed to be decisive regulatory drivers.

Here, a tuple of n TFs is assumed to be decisive if the coexpres-

sion of the target genes significantly increases with the refinement

induced by binding site constraints of an n-th TF. To quantify

this measure, we used the methodology of Pilpel et al. (2001) with
an expression coherence scoring (ECS) based on the correlation.

To obtain a more accurate description of the binding mechanism,
in addition to the unconstrained target genes shared by a set of

TFs, also mutual targets were considered that allowed for colo-
calization of the TFs. These were defined as binding regions

where all TFs showed pairwise distances in the range of –50 to

+50 bp, which means overlaps and corecruitment were con-
ceded. Also, targets of mediated cooperativity were defined as

the genes that allowed for pairwise distances between 10 and
50bp, and targets with supposed direct cooperativity were re-

stricted to 0–10 bp.
Seventeen higher-order TF combinations led to a significantly

increased ECS in the context of the cell cycle (PdECS50.05) for a
certain binding mode. As an example, Figure 5 shows the com-

plex-induced refinement in expression coherence among the

target genes of the TF pair MET4/MET32. Subjected to GO
term enrichment analysis, 76% of the corresponding target

gene sets were significantly enriched with specific biological pro-
cess annotations (P50.05, Bonferroni corrected). Table 2 sum-

marizes the results of the evaluation. Not surprisingly, all

significant tuples were associated with either cell cycle control
itself or with metabolic processes that are in crosstalk with the

cell cycle during normal growth. Most tuples are supported by
literature evidence (Supplementary Table S14).

4 CONCLUSION

TF complexes are highly modular combinatorial assemblies and
thus clearly different from large self-contained functional protein

complexes. Our novel DACO approach was found to give super-
ior results to established complex prediction programs for the

Table 2. The list of predicted TF combinations with significant increase of expression coherence (PdECS) among their mutual targets comprised 15 pairs

and two triples

TFs PdECS Binding mode Targets Regulatory influence GO process enrichment (P50.05, Bonferroni corrected) in targets

MET4/MET32 0.0010 coloc. 19 + Methionine metabolic process

TBP/HAP5 0.0335 med. 47 + /

GLN3/DAL80 0.0009 med. 28 / Allantoin catabolic process

DIG1/STE12/SWI6 0.0369 all 15 / Fungal-type cell wall organization

FHL1/RAP1 0.0001 coloc. 116 + rRNA transport

RPH1/GIS1 0.0001 med. 100 – Hexose catabolic process

CBF1/MET32 0.0002 coloc. 33 o Sulfate assimilation

DIG1/STE12 0.0003 med. 34 – Response to pheromone

GCN4/RAP1 0.033 med. 62 + /

MSN4/MSN2 0.0021 med. 105 + Oligosaccharide biosynthetic process

DAL80/GZF3 0.0044 med. 20 – Purine nucleobase metabolic process

SWI6/SWI4 0.0039 med. 53 + Regulation of cyclin-dependent protein serine/threonine kinase activity

STB1/SWI6 0.0275 all 47 + /

TBP/SWI6 0.0159 med. 14 + /

GLN3/GZF3 0.0120 adj. 31 / Allantoin catabolic process

MBP1/SWI6/SWI4 0.0307 med. 18 + Regulation of cyclin-dependent protein serine/threonine kinase activity

MBP1/SWI6 0.0124 adj. 25 / Cell cycle process

Note: Owing to the number of permutations of the test, the lowest possible value is PdECS=10�4. The calculations were conducted for different conceivable modes of targeting

(all shared target proteins, direct adjacency, mediated adjacency and colocalization) to have a detailed picture of the possible target–gene sets. Only the most enriched GO

process term is shown for each target set. The inferred regulatory influence on the rate of transcription is abbreviated as follows: + (increase), – (decrease), o (no statement

possible), / (conflicting annotations).

Fig. 5. Cell cycle expression profiles of all genes targeted by MET4 or

MET32 (gray) are compared with the refined set of target genes where

MET4 and MET32 bind as a colocalized complex with the two binding

sites at pairwise distance between –50 and 50bp (black). The increase in

expression coherence between the targets of the individual TFs and the

targets of a colocalized complex is highly significant (Table 2)
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sophisticated task of predicting complexes involving TFs in the

yeast Saccharomyces cerevisiae. In addition, we showed how the

predictions can be used beneficially to identify individual com-

plexes as regulatory drivers during a defined cellular state and

condition.
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