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Abstract: With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and
nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and
lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable
interest in the last three decades as versatile platforms for drug delivery applications and for the
design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also
attractive for use in various biomedical applications. Here, microfluidics provides unique opportuni-
ties for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and
sizes, and their in situ characterization through manipulation of the flow conditions and coupling to
synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering
techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices
are attractive not only for the continuous production of monodispersed nanomaterials, but also for
improving our understanding of the involved nucleation and growth mechanisms during the forma-
tion of hard nanocrystals under confined geometry conditions. They allow further gaining insight
into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of
self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from
fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D
microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in
in situ characterization investigations through coupling to nanostructural characterization techniques
(e.g., SAXS, WAXS, and SANS).

Keywords: drug delivery; dynamic structural transitions; hard nanocrystals; liposomes; microfluidics;
nanoparticles; reaction times; SAXS; SANS; WAXS

1. Introduction

Microfluidic platforms have emerged as attractive, powerful, and versatile tools for
various biomedical and pharmaceutical applications, including nanomaterial synthesis,
drug delivery, vaccine design, cell analysis, personalized medicine development, and diag-
nosis [1–11]. Among these, the continuous production of monodispersed nanomaterials
(including soft lipid and polymer nanoparticles) and hard nanocrystals with controllable
sizes and shapes is considered one of the frontline applications of microfluidics in re-
cent years [1,5,7,12–23]. Schematic illustrations on the microfluidic synthesis of different
nanoparticles attractive for use in the development of nanomedicines or functional food
nanocarriers are presented in Figure 1. In addition to the microfluidic synthesis of monodis-
persed liposomes and their remote loading with therapeutics (Figure 1A), Figure 1B–D
shows the employed microfluidic synthesis methods for the continuous production of
cubosomes and other non-lamellar liquid crystalline nanoparticles (including hexosomes).
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These nanoparticles were produced through the use of a staggered herringbone mixer
(Figure 1B) and hydrodynamic flow-focusing (HFF) microfluidic devices (Figure 1C,D),
respectively. For further detailed information on these microfluidic methods for nanomate-
rial synthesis and recent advances in this research area, the interested reader is directed to
the following recent review articles [5,20,21,24–26].
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mission from [18]. 2018, the American Chemical Society. (C) Hydrodynamic flow-focusing (HFF) 
polyimide microfluidic device for microfluidic synthesis of Pluronic F127-stabilized hexosomes 
based on docosahexaenoic acid monoglyceride (MAG-DHA). Reprinted with permission from [19]. 
2019, the Royal Society of Chemistry. (D) Continuous production of lamellar and non-lamellar liq-
uid crystalline nano-self-assemblies (liposomes and cubosomes) for delivering the therapeutic agent 
thymoquinone by using a simple commercial microfluidic. Reprinted from [17]. 2021, MDPI. 

Figure 1. Schematic illustrations of continuous production of drug-free and drug-loaded lipid
nanoparticles including liposomes, cubosomes, and hexosomes. (A) Multifunctional microfluidic
device for rapid single-step microfluidic synthesis of monodispersed liposomes and their remote
loading with therapeutics. Reprinted with permission from [27]. 2014, the Royal Society of Chem-
istry. (B) Staggered herringbone mixer for microfluidic synthesis of siRNA-loaded cubosomes. The
continuous production includes additional chip-off step for evaporation of ethanol. Adapted with
permission from [18]. 2018, the American Chemical Society. (C) Hydrodynamic flow-focusing (HFF)
polyimide microfluidic device for microfluidic synthesis of Pluronic F127-stabilized hexosomes based
on docosahexaenoic acid monoglyceride (MAG-DHA). Reprinted with permission from [19]. 2019,
the Royal Society of Chemistry. (D) Continuous production of lamellar and non-lamellar liquid
crystalline nano-self-assemblies (liposomes and cubosomes) for delivering the therapeutic agent
thymoquinone by using a simple commercial microfluidic. Reprinted from [17]. 2021, MDPI.

In addition to the high reproducibility and possible implantation of automation steps,
microfluidics offers unique opportunities for online chemical and biological analyses, rheo-
logical characterization, and structural screening and analysis [5,8,9,21,28–37]. These oppor-
tunities include short measurement times, a high precision of liquid modulation and control
of timing and flow parameters, and use of minimal input sample volumes (particularly im-
portant for minimizing the consumption of expensive materials) [4,7,12,16,31,32,38]. Here,
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2D and 3D microfluidic platforms are attractive for real-time tracking analysis of nucleation
and monitoring of growth mechanisms of hard metal nanocrystals [39–43], in situ (online),
high-throughput protein structure screening and analysis during crystallization processes
and under various conditions [44,45], real-time monitoring of structural dynamic events
during the generation of nano-self-assemblies [5,28,30,31,46,47], and online self-assembly
behavior of amphiphiles or macromolecules under flow conditions [44,46,48–51]. Further,
the use is extended to other research areas, including in situ characterization studies for
monitoring the dynamic structural events during the digestion of drug formulations [52],
the exposure of charged nano-self assemblies to divalent ions [53,54], the spinning process
of artificial fibers [55], the generation of single domain supercrystals [56], the precipitation
of crystals in moving droplets [57], and the nanoparticle agglomeration [58].

There is a growing interest in coupling SAXS (or SANS) to light sources, stopped-
flow devices, pressure cells, and optical tweezers, among others, for online structural
characterization investigations [59–69]. However, in this review, we exclusively focus on in
situ characterization of nano-self-assemblies under flow conditions through coupling of
2D or 3D microfluidic platforms to nanostructural characterization scattering techniques
(namely synchrotron SAXS, WAXS, and SANS). Recent advancements in the fabrication of
specialized microfluidic platforms with reduced attenuation and background scattering
compatible to these techniques are discussed. Limitations, challenges, and opportunities in
this research area are also highlighted. Different recent examples on in situ characterization
studies (SAXS/WAXS-on-chip and microfluidic-SANS) are presented. The current number
of such studies is limited, but it is expected to rapidly grow in the future.

2. Two-Dimensional and Three-Dimensional Specialized and Compatible Microfluidic
Chips for In Situ Characterization Studies

Coupling microfluidics to SAXS (or SANS) provides unique opportunities for investi-
gating self-assemblies under confined and continuous flow conditions. In this section, we
describe the main microfluidic characteristic features of 2D and 3D X-ray- and neutron-
compatible microfluidic platforms designed for online (in situ) investigations on nanomate-
rials during their continuous productions or for real-time monitoring of phase behavior
of surfactant solutions under flow conditions. Table 1 presents different examples from
the literature on such online investigations and briefly describes the reported advantages
of the employed microfluidic platforms. However, certain common microfluidic advan-
tages (including simplicity, low cost, ease and rapid fabrication, reproducibility, flexibility,
adaptability, and minimization of material consumption) are not mentioned in the table.

The X-ray-compatible microfluidic platforms typically have different main characteris-
tic features and advantages including: (i) X-ray transparency and compatibility; (ii) reduc-
tion of attenuation and background scattering and achievement of a good signal-to-noise
ratio; (iii) reproducibility and negligible platform-to-platform variations; (iv) prevention the
adsorption of lipids, proteins, and other compounds onto the interfaces of the microfluidic
walls that may cause clogging and reduce the quality of measurements; (v) elimination
of potential radiation damage; (vi) compatibility to organic solvents; (vii) ease of cleaning
between measurements; and (vii) durability [28,42,43,49,57,70–73].

To guarantee successful SAXS analysis, it is important when employing HFF devices
or similar microfluidic platforms to ensure that the channel width, through which the
X-ray travels, is bigger than that of the X-ray beam for preventing parasitic scattering
from the microfluidic channel walls [31]. Here, SAXS measurements at different positions
along the channel should be conducted under flow conditions by maintaining the X-ray
beam confined between the channel walls. The use of such devices with relatively bigger
channel widths can compromise the microfluidic efficacy in controlling the nanoparticle
size characteristics [31].

For online SANS investigations, it is important to use microfluidic chips with a
low neutron absorption and a low neutron activation [37]. For further information,
the interested reader is directed to the recent review of Cabral and co-workers [37]. It
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presents different microfluidic requirements (including some commonly shared with X-ray-
compatible chips) [37].

For special and certain applications, we may need to consider additional microfluidic
characteristic features for online SAXS (or SANS) studies [37].

Table 1. Examples of X-ray- and neutron-compatible microfluidics and their reported uses in online
structural investigations.

Microfluidics Features, Advantages, and Reported Main Drawbacks Characterization and Phase Mapping Ref.

2D HFF
platform based

on thiol-ene

Suitability for X-ray studies; lipid adsorption
prevention; and
disposability.
Main drawback: low efficacy in
controlling the nanoparticle size characteristics.

â Effect of Ca2+ ions on negatively charged
cubosomes: synchrotron SAXS study.

â Continuous production and characterization of
MLVs: synchrotron SAXS study.

â Mixing nanoparticles and micellar solutions:
production of lamellar and non-lamellar liquid
crystalline nanoparticles: synchrotron SAXS study.

[53]

[31]

[30]

Different
polyimide-
based chips

Good resistance to X-ray; suitability for SAXS-scanning
studies: investigation
of orientation and structural features of self-assemblies;
thermal stability; and
compatibility to organic solvents.

â Provision of in situ structural information on
different soft matters (including orientation
aspects).

â Behavior of lamellar and hexagonal phase under
flow conditions.

[34]

[74]

Cyclic olefin
copolymer

(COC) devices

Prevention of leakage (fabrication from COCs only, no
need for gluing between
interfaces); suitability for X-ray studies;
and high X-ray transmission and
radiation resistance.
Main drawbacks: incompatibility with
tetrahydrofuran and instability at
relatively high temperatures [49].

â Monitoring early formation stage of well-ordered
structures from self-organized intermediate
filament proteins.

[73]

Laser
lithography
(LL) chips

High transparency and low X-ray background scattering;
and suitability for
X-ray studies.

â Characterization of phospholipid nanodispersion
as a proof of concept.

[72]

3D polyimide chips

A more efficient and uniform mixing as compared to 2D
polyimide chips;
a combination of suitability for X-ray
studies and compatibility to organic solvents with 3D
focusing. The employed
laser micromachining procedure is
also reliable.

â In situ SAXS-on-chip investigations: mapping
phase transitions within millisecond time scales
under flow conditions.

[49]

Platform based
on thiol-ene

Pressure and temperature resistance;
capability to handle viscous fluids;
suitability for X-ray studies. Interesting
features: SAXS set-up allows controlling the temperature
and conducting SAXS
experiments at relatively high
temperature.

â In situ SAXS-on-chip investigations on the
structure and orientation of lamellar phases and
MLVs based on surfactant solution. The online
experiments are conducted at 70 ◦C.

[71]

A custom-built crown glass
contraction–
expansion

device

Suitability for SANS studies; enabling
tubular flow in continuous and
oscillatory modes, relevance to
industrial continuous and tubular flow
processes.

â In situ SANS-on-chip investigations on
transformation of lamellar phase to MLVs:
structural elucidation and alignment behavior of a
flow-responsive surfactant solution.

[51]

3D Kapton-
based

flow-focusing
device

Compatibility to organic solvents;
suitability for SAXS studies; a high
spatial and temporal resolution; and
rapid and efficient mixing of solvents.

â In situ SAXS-on-chip investigations on early
clustering behavior of gold nanoparticles under
flow conditions.

[43]

Droplet-based
device

Suitability for X-ray studies; a high-throughput analysis;
automatic
screening of variable crystallization
conditions.

â In situ SAXS-on-chip investigations on protein
interactions and crystallization from solution.

[45]

Silicon/glass
chips

High cost; suitability for SAXS and
SANS studies; compatibility to organic
solvents; and a time-consuming
fabrication.

â In situ SAXS-on-chip investigations on lipid
nanocapsules.

[47]

Epoxy-based
chips

Good conditions for SAXS studies;
X-ray and optical transparency;
pressure resistance up to 2.9 bar;
chemical resistance to certain solvents.
Main drawbacks: incompatibility to
some organic solvents, including
tetrahydrofuran.

â SAXS-on-chip tests in absence of any sample. [70]

Thiol-ene-
epoxy

(OSTE+)
droplet devices

Suitability for SAXS/WAXS studies;
X-ray transparency; X-ray signal quality
of OSTE+ material as compared to
typically used polyimide (Kapton).

â SAXS-on-chip investigations on gold
nanoparticles.

â In situ characterization of cerium oxalate.

[57]
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3. Continuous Production and In Situ Characterization of Nano-Self-Assemblies
Attractive for Drug or Functional Food Delivery, or Vaccine Development

This section presents different examples on coupling microfluidics with SAXS (or
SANS) for the online characterization of nano-self-assemblies. Here, it is worth noting that
the in situ characterization of nano-self-assemblies during their microfluidic synthesis, or on
exposure of already off-chip-prepared ones to an external trigger (such as divalent ions), or
an environmental change at different measurement time points (reaction times) and under
confined microfluidic geometries, is still in its infancy. The number of articles on such online
characterization investigations is still very modest. Clearly, there is need to expand the re-
search efforts in this direction for gaining further insight into the dynamic structural events
occurring during the continuous production of lipidic or polymeric nanoparticles that are
attractive for use in various technological applications, including the development of drug
(or functional food) nanocarriers, vaccines, and nanoreactors for chemical and enzymatic
reactions. These studies will improve our understanding of the involved dynamic structural
pathways and formation kinetics during the microfluidic nanoparticle synthesis process.
They will also provide further insight into the behavior of already off-chip-prepared lipid
formulations (including emulsions, liposomes, and solid lipid nanoparticles) during their
digestion, interactions with biologically relevant media (such as human plasma), or on
exposure to an external trigger. In this section, different studies on in situ characterization of
nano-self-assemblies during their continuous production through use of microfluidic plat-
forms are presented. Figure 2 shows a few different examples on such in situ nanostructural
investigations through coupling of X-ray-compatible microfluidic platforms to synchrotron
SAXS. Figure 3 presents an illustration of an employed X-ray-compatible HFF microfluidic
chip with different probed SAXS measurement positions along the microchannel, and the
employed experimental synchrotron SAXS set-up, respectively.

As noted above, coupling synchrotron SAXS to X-ray-compatible microfluidic plat-
forms, as illustrated in Figure 2A, provides a powerful in situ characterization tool for
studying the early dynamic events of the microfluidic nanoparticle synthesis process. It
is attractive for use for gaining insight into the dynamic phase behavior by mapping
structural alterations and transitions and detecting in real-time the involved intermediate
phases. For example, Khaliqi et al. [30] reported on coupling of synchrotron SAXS with
an X-ray-compatible microfluidic device for online characterization of the early dynamic
structural events, occurring on mixing an already chip-off-prepared citrem nanodispersion
with a micellar solution of soybean phospholipid (Figure 2B). Such interfacing of a thiol-
ene-based hydrodynamic flow-focusing (HFF) chip with synchrotron SAXS allowed, at
different reaction (mixing) times (different corresponding positions along the microchan-
nel), for in situ monitoring of fast nonlamellar–lamellar transitions within fractions of
seconds (Figure 2B). These results demonstrated the rapid lipid exchange among citrem
nanoparticles and micelles. Through varying lipid composition and ethanol concentration,
and precise control of the experimental flow parameters, this microfluidic method is attrac-
tive for generation of lamellar (vesicles) and non-lamellar nano-self-assemblies (such as
cubosomes and hexosomes) by rapidly mixing micelles with citrem nanoparticles prepared
chip-off. The latter sample was prepared by employing a low-energy emulsification method
(vortexing citrem in excess buffer). The same HFF chip was also coupled with synchrotron
SAXS by Ghazal et al. [31] for online characterization of multi-lamellar vesicles (MLVs)
during their microfluidic synthesis process at a constant flow rate ratio (FRR) of 17.2, which
is the ratio of the sheath streams to the center stream, and total volumetric flow rates (TFRs)
of 5 or 10 µL/min (Figure 2C). It was reported on rapid generation of MLVs on exposure
of an ethanol solution containing a binary lipid mixture to excess buffer [31]. Herein, the
vesicle microfluidic synthesis process involves most likely the pathways suggested by
Lasic [75] and Jahn et al. [14,15]. These include the generation of dynamic intermediate flat
and disk-shaped nanoobjects (bilayered lipid (or phospholipid) fragments (BPFs)) and their
self-closure to vesicles (Figure 2D). It was proposed that the growth of these intermediate
nanoobjects and their self-closure to vesicles are attributed to the self-assembly of the
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lipids with simultaneous diffusion out of the organic solvent (ethanol) molecules into the
continuous aqueous medium. This is associated with mutual lipid and water diffusion
with simultaneous environmental changes in the composition of the continuous medium
on exposure of the organic solution of the lipids to excess buffer [15,31]. Further, it is worth
considering the plausibility of the formation of an asymmetric curved state bilayer with
non-zero spontaneous curvature (C0 6= 0) due to an uneven distribution of the embedded
lipid molecules at the lipid–water interfacial film, leading eventually to the self-closure
to vesicles [31,76–78]. The fast generation of the continuously produced vesicles is clearly
seen in Figure 2E. They start to be evolved at approximately 0.43 s and their structures are
fully developed within around 1–2 s.
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Figure 2. (A) Schematic illustration of an experimental set-up of coupling X-ray-compatible mi-
crofluidic platform to synchrotron SAXS. Reprinted with permission [5]. 2021, Elsevier. (B) SAXS
patterns at different reaction times (different corresponding positions along the center channel of
thiol-ene-based hydrodynamic flow-focusing (HFF) chip coupled to synchrotron SAXS. It indicates
nonlamellar–lamellar phase transitions on exposure of citrem nanoparticles to an ethanol solution of
soybean phospholipid. Adapted with permission from [30]. 2017, the Royal Society of Chemistry.
(C) Continuous production of multi-lamellar vesicles (MLVs) through use of thiol-ene-based HFF
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chip. (D) Schematic illustration of the formation mechanism of vesicles in the HFF microfluidic chip.
(E) In situ synchrotron SAXS characterization: SAXS patterns at different corresponding reaction
times for SAXS measurements conducted at different positions along the center channel of the HFF
chip (different corresponding reaction times) and compared with the black SAXS pattern of already
prepared chip-off samples. Panels (C–E) reprinted with permission from [31]. 2017, the American
Chemical Society. (F) In situ SAXS characterization of nano-self-assemblies generated during digestion
of lipid formulations by coupling synchrotron SAXS to serpentine HFF microfluidic chip. SAXS
measurements were conducted at different positions along the microchannel. (G) Digestion of lipid
formulation containing phytantriol, leading to the evolvement of inverse cubic Pn3m phase after an
elapsed time of about 90 s. Panels (F,G) reprinted with permission from [52]. 2019, the Royal Society
of Chemistry.
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Figure 3. (A) Schematic illustration of an X-ray-compatible HFF microfluidic device for in situ SAXS
characterization of lipid nanoparticles at 4 different positions along the microchannel. (B) Synchrotron
SAXS set-up employed by coupling SAXS to an X-ray-compatible HFF microfluidic device for in situ
characterization studies. The figure is reprinted with permission from [30]. 2017, the Royal Society
of Chemistry.

In a recent study, Boyd and co-workers [52] reported on online characterization of lipid
formulations during their digestion through coupling a simple T-junction microcapillary
system, HFF microfluidic chip (Figure 2F), or pH-stat apparatus to synchrotron SAXS. They
reported on the suitability of both microfluidic devices for the in situ SAXS characterization
investigations of lipid nanoparticulate formulations. Figure 2G shows the SAXS patterns
at different reaction times, indicating the generation of an inverse cubic Pn3m phase on
digesting a lipid formulation containing phytantriol [52].

It is worth also noting that the flow strains and the employed shear stresses in mi-
crofluidics may lead to the alignment of vesicles and affect the orientation of lamellar and
hexagonal phases under shear flow, resulting in the appearance of anisotropic SAXS (or
SANS) patterns [31,71,74,79]. For instance, a slight alignment was detected during the
microfluidic synthesis of MLVs on increasing TFR from 5 to 15 µL/min (Figure 4A,B).
A shear-induced deformation of MLVs was also detected under shear flow during their
formation from a lamellar phase [79]. Through a microfluidic SAXS scanning study, Liebi
and co-workers [74] reported on the flow-induced transformation of the lamellar (Lα)
phase to an aligned lamellae region via MLVs to an extended lamellae region by increasing
the shear rates (Figure 4D). A significant effect of the microfluidic constriction, leading
to an orientation of the lamellar phase under flow, was also reported (Figure 4E,F) in
another study [71].
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SAXS pattern, indicating a slight deformation of the continuously produced MLVs as illustrated in
(C). Panels (A–C) reprinted with permission from [31]. 2017, the American Chemical Society. (D) Left:
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lamellae structure, MLVs, and stretched MLVs in the flow direction. Right: Corresponding radial
SAXS profiles in the three areas (A–C). Adapted with permission from [74]. 2021, Wiley. (E) SAXS
measurements at the positions A–C along the centerline of the microchannel. (F) 2D SAXS patterns at
three measurement positions (A–C): an isotropic pattern at position A; whereas a strong anisotropy
was detected at positions B and C, indicating bilayers alignment upon entering the microfluidic
constriction and upon exiting, respectively. Panels (E,F) reprinted with permission from [71]. 2016,
the American Chemical Society.

4. In Situ Phase Behavior and Structural Dynamics Investigations of Amphiphilic
Polymers and Lipids

In addition to the aforementioned reports on the in situ characterization of soft lipid
(mainly vesicles) and polymer-based nano-self-assemblies under flow conditions, it is
worth presenting different studies on coupling synchrotron SAXS (or SANS) with microflu-
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idics for investigating the phase behavior of amphiphiles (including amphiphilic lipids
and polymers).

There is a growing interest in designing different microfluidic platforms for accu-
rate and rapid mapping of phases of surfactant solutions [48,50,80]. For instance, a rapid
phase-mapping method based on a microfluidic device with a stepped temperature pro-
file was recently reported, and the identified phases were validated through the use of
optical microscopy and SANS analyses [80]. In this section, we only focus on investiga-
tions conducted by coupling microfluidics to synchrotron SAXS or SANS. Among these
online investigations, we mention the work of Kenis and co-workers [48] on on-chip forma-
tion and in situ SAXS characterization of lyotropic non-lamellar liquid crystalline phases
through the use of four different microfluidic platforms with active-mixing capabilities
and suitability for X-ray experiments [48]. This microfluidic method led to a significant
reduction in materials used in lyotropic liquid crystalline preparations, and the obtained
phases (including lamellar and inverse bicontinuous cubic phases) and their structural
features agreed well with those produced chip-off [48]. In another study, it was reported on
online scanning SAXS of lamellar (Lα) and normal hexagonal (H1) phases in microfluidic
channels [74]. It was found that these phases are aligned under flow, but the flow-induced
changes are not identical. Increasing the shear rate was associated with the observation
of a perpendicularly oriented H1 phase to the flow, and the presence of flow-induced
orientation in the flow direction at relatively high shear rates. However, the flow-induced
alignments and involved transitions were different for the Lα phase as discussed above
(see Figure 4D). Other published examples on flow-induced orientations of liquid crystals
(including lamellar and nematic phases) and cylindrical micelles are presented in the review
of B. Silva [28] and the report of Trebbin et al. [81], respectively.

There are also different recent studies on combining SAXS with 2D or 3D microflu-
idic platforms for investigating phase transitions in solutions based on amphiphilic co-
polymers [49,50,82]. Among these studies, we mention the use of a 3D Kapton microfluidic
device in combination with SAXS for online investigations of self-assembly of amphiphilic
copolymers under flow conditions [49]. In another study, it was reported on fast self-
assembly of an amphiphilic copolymer in microfluidics, leading to the formation of micelles
and an FCC liquid crystalline phase [50].

For online SANS investigations, different microfluidic platforms were suggested for
phase mapping of surfactant solutions [9,37,51,83–85]. For instance, a transformation of
the lamellar liquid–crystalline phase to MLVs was recently investigated by employing
microfluidic-SANS [51]. Further information on compatible microfluidics with SANS and
recent online structural investigations is presented in the recent review of Lopez et al. [37].

5. In Situ Structural Dynamics and Kinetic Formation Investigations of Hard
Solid Nanoparticles

In addition to the aforementioned online investigations, it is worth mentioning the
growing interest in coupling SAXS (or SANS) with suitable microfluidic devices for the in
situ characterization of hard solid nanoparticles, including nanocrystals, silk fibers, and
millimeter-sized supercrystals [41–43,55–57,86]. For instance, Chen et al. reported through
in situ UV–vis, and time-resolved microfocus SAXS experiments on the formation process
of monodispersed gold nanoparticles with different sizes in a stopped-flow microfluidics
(Figure 5A) [86]. They found that the nucleation and growth process are controlled by the
binding affinity of the investigated ligands to the gold nanoparticles [86]. In another recent
study, a 3D flow-focusing microfluidic reactor was combined with SAXS and UV–vis–NIR
spectroscopy for the online characterization of gold nanoparticles coated with polystyrene.
At an early stage, it was possible using this experimental set-up to gain important informa-
tion on the collapse of the polymer shell and the clustering behavior of the nanoparticles
(Figure 5B,C). A similar approach was also followed in the work of Herbst et al. [41]. They
reported on coupling microfluidics to SAXS/WAXS and UV–vis spectroscopy for gaining
insight into the nucleation and growth kinetics of ZnO nanoparticles. They introduced a
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microfluidic method for preparing monodispersed ZnO nanoparticles and discussed the
involved intermediate states during their microfluidic synthesis.
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Figure 5. (A) SAXS patterns at different time points during the formation of gold nanoparticles in
a stopped-flow microfluidic platform. (B) On-chip SAXS experiments and real-time UV–vis–NIR
measurements for online studies of the self-assembly of gold nanoparticles and their clustering
behavior upon mixing with water by using 3D flow-focusing microfluidic reactor. (C) On-chip
characterization of nanoparticle clustering behavior. At 3 flow rate ratios (FFRs) of 2, 4, and 10, SAXS
patterns are recorded at different downstream microfluidic channel positions. (B) reprinted with
permission from [86]. 2021, the American Chemical Society. Panels (B,C) reprinted with permission
from [43]. 2019, (the American Chemical Society.

Another use of microfluidic-SAXS is in studies of the early-stage agglomeration of
nanoparticles and their interactions on varying the composition or properties of the sur-
rounding aqueous media of the investigated suspensions [58].
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In addition to SAXS and SANS, coupling microfluidics to X-ray absorption microscopy
(XAS) is another option with unique opportunities for the in situ monitoring of reactions
and crystallization processes [87–89]. For instance, deMello and co-workers reported on
the integration of a droplet-based microfluidic platform with XAS for in situ monitoring of
calcium carbonate precipitation [87].

6. Conclusions

Microfluidics has various advantages (including versatility, small sample volumes,
scale-up ease, and precise control over fluid conditions). It offers, therefore, unique oppor-
tunities for various technological applications and opens up new possibilities for uses in
analytical and material science research fields. Among others, microfluidic platforms are
powerful and attractive tools for the continuous production of nanomaterials with control-
lable sizes (including drug nanocarriers and solid crystalline and amorphous nanoobjects).

Thanks to recent advances in the microfluidic research area, there is a growing interest
in the use of 2D and 3D microfluidics in numerous online characterization investigations
of soft and hard nanoparticles. Among different state-of-the-art tools, we present here
recent advances on coupling SAXS (or SANS) to compatible microfluidics for gaining
insight into the involved structural pathways and formation kinetics of soft nanoparti-
cles and solid nanoobjects. Such in situ SAXS (or SANS)-on-chip studies provide also
important information on the behavior of nanomaterials under confined geometries and
flow conditions.

Despite the attractiveness of microfluidic devices and the expected significant increase
in their uses in in situ SAXS (or SANS)-on-chip research investigations in the next 10 years,
the design and use of suitable microfluidic platforms for such studies pose a major challenge.
In this research area, these studies generally require experts with highly specialized skills,
particularly when using microfluidics with complex structures, or when the operation
and control of flow conditions involve multiple steps. In addition, it is worth noting the
reported microfluidic platforms for online SAXS (or SANS) studies in the literature are
typically custom-built or home-made systems, and accessible to relatively few research
groups. However, different synchrotron SAXS and SANS facilities recently focus on the
engagement of a larger community of researchers through the provision of access to X-ray-
and neutron-compatible microfluidic platforms for performing time-resolved experiments
during the beamtimes.

We should take into account that this area is multidisciplinary, and, therefore, further
research progress is expected through the integration and collaboration of scientists with
different backgrounds. It is also worth noting that the potential uses of SAXS (or SANS)-
on-chip for online investigations are mainly explored in academic studies, whereas the
engagement of industry is very limited. Here, more industry engagement and further
industry–academia collaborations will contribute to this research area.
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