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Abstract

Polyploidy is present in many cancer types and is increasingly recognized as an important factor in promoting chromosomal
instability, genome evolution, and heterogeneity in cancer cells. However, the mechanisms that trigger polyploidy in cancer
cells are largely unknown. In this study, we investigated the origin of polyploidy in esophageal adenocarcinoma (EAC), a
highly heterogenous cancer, using a combination of genomics and cell biology approaches in EAC cell lines, organoids, and
tumors. We found the EAC cells and organoids present specific mitotic defects consistent with problems in the attachment of
chromosomes to the microtubules of the mitotic spindle. Time-lapse analyses confirmed that EAC cells have problems in
congressing and aligning their chromosomes, which can ultimately culminate in mitotic slippage and polyploidy.
Furthermore, whole-genome sequencing, RNA-seq, and quantitative immunofluorescence analyses revealed alterations in
the copy number, expression, and cellular distribution of several proteins known to be involved in the mechanics and
regulation of chromosome dynamics during mitosis. Together, these results provide evidence that an imbalance in the
amount of proteins implicated in the attachment of chromosomes to spindle microtubules is the molecular mechanism
underlying mitotic slippage in EAC. Our findings that the likely origin of polyploidy in EAC is mitotic failure caused by
problems in chromosomal attachments not only improves our understanding of cancer evolution and diversification, but may
also aid in the classification and treatment of EAC and possibly other highly heterogeneous cancers.

Introduction

Genomic instability drives evolution, diversification, het-
erogeneity, and adaptation in many cancers. One type of
genomic instability, chromosomal instability (CIN), pro-
motes large scale structural and numerical genomic changes
that can lead to punctuated evolution by producing abrupt
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various cancers, can directly lead to an increase in incorrect
(merotelic) attachments of chromosomes to the spindle
microtubules that in turn cause chromosome mis-
segregation and aneuploidy [3, 4]. By contrast, our
knowledge of the mechanisms that trigger polyploidy in
cancer cells is still poor, despite the evidence that nearly
30% of different cancer types present whole-genome dou-
bling (WGD) events and that polyploidy propagates CIN,
accelerates cancer genome evolution, increases tolerance to
chromosome mis-segregation and drug treatments, and is
associated with poor cancer prognosis [5-8].

Esophageal adenocarcinoma (EAC), the predominant
histological type of esophageal carcinomas in the western
world with high mutation burden and substantial hetero-
geneity [9-12], represents an ideal system to study the
origins and role of polyploidy in cancer evolution and
heterogeneity. EAC develops from a pre-cancerous condi-
tion known as Barrett’s esophagus (BE). BE can progress
from a non-dysplastic lesion through intermediate stages of
low-grade and high-grade dysplasia leading to EAC for-
mation [13]. During EAC development, the copy number
and heterogeneity of the genome increases and the spectrum
of mutations and rearrangements shows very little overlap
with its paired BE counterpart [14]. Whole-genome
sequencing (WGS) of paired BE and EAC samples indi-
cated that, although approximately 80% of point mutations
found in EAC samples are already present in the DNA from
the adjacent BE epithelium [15], the difference in copy
number aberrations between BE vs. EAC samples was
much more dramatic. BE samples contained very few copy
number changes and were mostly diploid, whereas EAC
showed a wide range of copy numbers changes including
some highly amplified regions [14, 16]. These studies also
found that up to two-thirds of EACs emerged following a
WGD event (tetraploidy), in a proposed pathway compris-
ing an initial loss of p53 followed by tetraploidy and sub-
sequent CIN [16].

There are four events that, in principle, can lead to
polyploidy: cell fusion, genome endoreduplication, cyto-
kinesis failure, or mitotic slippage. In the latter case, cells
fail to satisfy the mitotic checkpoint and, after sustaining a
prolonged arrest, the chromosomes decondense without
segregating to the poles and cells re-enter in G1 phase. Both
cytokinesis failure and mitotic slippage result in the for-
mation of cells with a polyploid number of chromosomes,
but the first leads to cells containing two equally sized
nuclei (binucleate) whereas the second generally leads to
cells with a single, large tetraploid nucleus. As no clear
evidence for either cell fusion or endoreduplication has been
reported in BE and EAC, we hypothesized that genome
doubling in EAC development might arise as a result of a
defect in cell division. To address this hypothesis and to
understand the origin(s) of polyploidy in EAC, we analyzed
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cell division in both a 2D cell system that recapitulate EAC
development and in patient-derived organoids. Our findings
indicated that polyploidy in EAC originates from mitotic
slippage caused by failure in chromosome alignment and
segregation. Furthermore, WGS, RNA-seq, and quantitative
immunofluorescence analyses suggested that an imbalance
in the amount, and possibly regulation, of proteins involved
in the attachment of chromosomes to spindle microtubules
could be the molecular mechanism underlying this mitotic
failure.

Results

p53-deficient BE and EAC cells display specific
mitotic defects

As a first step to investigate the potential origin(s) of
polyploidy in EAC, we analyzed cell division in a panel of
BE and EAC cultured cells specifically selected in order to
recapitulate the stages of progression from the pre-
malignant condition to the carcinoma. We used two BE
cell lines: CPA and CPD; the first is non-dysplastic, near-
diploid, and has wild-type p53, while the second is dys-
plastic, near tetraploid, and have mutated p53. We also
analyzed four different EAC cell lines (all near-tetraploid
and p53-deficient) and included the non-transformed
immortalized RPE-1 cell line as a reference control cell
line (Supplementary Table S1). To analyze mitosis, cells
were stained by immunofluorescence for the mitotic marker
histone H3 pS10, tubulin, and DNA, to calculate the fre-
quency of mitotic cells or mitotic index (MI) and visualize
the mitotic spindle and chromosomes. All BE and EAC
cells had an MI lower than the control RPE1 cells (Fig. 1a).
CPA, CPD, and FLO cells had very similar MI values at
around 4%, whereas JH-Eso-Adl and OE19 had slightly
lower Mls, and OE33 cells had the highest MI among the
esophageal cell lines, which was comparable to that of
RPE1 cells (Fig. 1a). Quantification of cells at different
mitotic stages (prophase/prometaphase, metaphase, ana-
phase, and telophase/cytokinesis) revealed some interesting
differences (Fig. 1b, Supplementary Table S2). As expec-
ted, in control RPE-1 cells the highest percentage of mitotic
cells were found to be in prophase/prometaphase and telo-
phase/cytokinesis (Fig. 1b). A similar trend was observed in
the two BE cell lines and in OE19, albeit both CPA and
CPD had a low percentage of cells in telophase/cytokinesis
(Fig. 1b). By contrast, the other three EAC cell lines had a
higher percentage of cells displaying a metaphase plate with
apparently aligned chromosomes compared to RPE-1 and
BE cells, which in FLO and JH-Eso-Adl was even higher
than the number of cells in prophase. The combination in
these EAC cells of an increase in metaphase cells without a
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successfully progress through mitosis and the rest of the cell
cycle. Immuno-fluorescence analysis also revealed that the
p53-deficient CPD and EAC cell lines displayed a higher
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Fig. 1 BE and EAC cells display specific mitotic defects. a Cells
from representative BE and OAC cell lines were stained to detect the
mitotic marker histone H3 pS10, tubulin and DNA (see f and g below).
The percentages of cells in mitosis (mitotic indices) were counted (a)
and categorized by each mitotic stage (b) through visual analysis of the
presence of H3 pS10 and characteristic mitotic figures. In addition, for
each cell line the number of abnormal mitoses was also counted (c¢)
and categorized into one of three phenotypes: lagging chromatin,
multipolar spindles, or scattered chromosomes (e). d Graph showing
the percentages of multinucleate cells from the experiments described
in (a—g). More than 3000 cells in total and more than 200 mitotic cells
per each cell line were counted; n > 6 independent experiments; *p <
0.05, **p<0.01, ***p<0.001, ****p<0.0001 (Mann—-Whitney U
test). Two-way ANOVA statistical analyses with multiple comparisons
of the data in (b) and (e) are shown in Supplementary Table S2 and S3,
respectively. To improve visualization, only the summary of the data is
shown in (e), but a similar graph including also the individual values is
shown in Supplementary Fig. S1. In each graph, bars indicate SEM. f,
g Representative images from the indicated BE and OAC cell lines
fixed and stained to detect the mitotic marker histone H3 pS10 (red in
the merged images), tubulin (green in the merged images), and DNA
(blue in the merged images). Bars, 10 pm.

frequency of mitotic defects (up to 10%) than RPE-1 and
CPA cells (Fig. 1c). A similar result was observed for the
quantification of multinucleate cells (cells containing two or
more equally sized nuclei; a readout for cytokinesis failure),
although the frequency of this phenotype was much lower
(<2%) (Fig. 1d). The mitotic defects were categorized into
three main phenotypes: lagging chromatin/chromosomes,
multipolar spindles, and defects in chromosome congres-
sion, characterized by the presence of misaligned chromo-
somes (Fig. le—g, Supplementary Fig. S1, Supplementary
Table S3). Chromosome congression defects presented with
varying levels of severity; in some cases most chromosomes
successfully aligned at the metaphase plate with just a few
uncongressed chromosomes, whereas in other severe cases
all chromosomes failed to congress and were randomly
distributed over the mitotic spindle (Fig. 1f, g). We will
hereafter collectively refer to chromosome congression
defects as the “scattered chromosomes” phenotype. This
phenotype was one of the most frequently observed across
all the p53-deficient cell lines and was absent in both RPE-1
and CPA.

A previous study reported that centrosome amplification
occurred early in the progression of BE into EAC, and that
this was dependent upon p53 loss [17]. As supernumerary
centrosomes can cause mitotic defects, we analyzed their
presence in our BE cell lines and in the two EAC cell lines,
FLO and JH-Eso-Adl, that had the highest percentage of
mitotic defects (Fig. 1e). We stained BE and EAC cells with
antibodies against Plk4 and y-tubulin to mark and quantify
centrioles and centrosomes, respectively, and assessed
whether extra centrosomes correlated with multipolar
spindles and/or scattered chromosomes (Supplementary
Fig. S2). Both BE cell lines showed only bipolar spindles
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with two centrosomes and correctly aligned chromosomes,
while FLO and JH-Eso-Ad1 cells had 10-12% of cells with
more than two centrosomes (Supplementary Fig. S2b),
which often generated multipolar spindles, but with prop-
erly congressed chromosomes (Supplementary Figs. S2a
and S2c). Importantly, scattered chromosomes were only
observed in cells with two centrosomes and bipolar spindles
(Supplementary Fig. S2c).

Together, our results indicate that p53-deficient BE and
EAC cells have a significant increase in cells with mis-
aligned chromosomes that do not appear to be associated
with extra centrosomes and multipolar spindles.

EAC cells have a functional spindle assembly
checkpoint and manifest mitotic slippage

We next employed time-lapse microscopy to better under-
stand the origin of the mitotic defects in both BE and EAC
cells and how they affected progression through mitosis.
However, we first established whether these cell lines had a
functional spindle assembly checkpoint (SAC), the sur-
veillance mechanism that prevents mitotic exit until all
chromatids have correct bipolar attachments [18]. In the
presence of a functional SAC, cells arrest in mitosis when
treated with the microtubule depolymerizing drug nocoda-
zole. BE, EAC, and RPE-1 cells displayed variable
increases in MI after nocodazole treatment, clearly indi-
cating that they all possess a functional SAC (Supplemen-
tary Fig. S3).

We incubated CPA, FLO, and JH-Eso-Ad]1 cells with the
SiR-DNA dye to visualize chromosomes and then recorded
images at 5-min intervals for 8-10-h periods to monitor
their progression through mitosis (Fig. 2). As expected,
almost all CPA cells (90.0%; n =30) progressed through
mitosis without problems (Fig. 2A, Supplementary
Movie 1) and only a small percentage of CPA cells showed
lagging chromatin or failed cytokinesis (Fig. 2E). Similar to
the results observed in fixed cells, 72% of FLO cells divided
normally, while 6% formed multipolar spindles, 11% lag-
ging chromatin (Fig. 2B, Supplementary Movie 2), and
11% experienced mitotic slippage (Fig. 2E). In the last case,
cells formed a broad metaphase plate, indicating chromo-
some congression defects, spent up to 3 h in this config-
uration without entering anaphase, and then the
chromosomes appeared to decondense and a nucleus
reformed (Fig. 2C, Supplementary Movie 3). Mitotic slip-
page was also observed with even higher frequency in JH-
Eso-Adl cells (28.6%; n =7) (Fig. 2D, E). Cells that failed
to progress past metaphase appeared to have congressed
their chromosomes at the equator, forming a well-defined
metaphase plate, ~30 min after nuclear envelope breakdown
(NEB), which marks the beginning of prometaphase. The
cells then remained in this phase for about 90 min until the
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Fig. 2 EAC cells have problems in congressing and aligning
chromosomes and display mitotic slippage. A—D Images from time-
lapse recordings of the indicated BE and EAC cells treated with SiR-
DNA dye to visualize chromosome dynamics. Images were captured at
Smin intervals for 8-10h. Time is in min:sec relative to nuclear
envelope breakdown (NEB). The arrows in (B) mark lagging chro-
matin. Bar, 10 um. E Graph showing the frequency of phenotypes

chromosomes began to drift away from the metaphase plate.
In extreme cases, like the one showed in Fig. 2D, 6 h after
NEB the chromosomes drifted from the metaphase plate and
attempted to realign, but failed and by the end of the
recording period (8 h) the cell begun to decondense the
chromosomes, possibly because of cohesion fatigue
(Fig. 2D, Supplementary Movie 4). The number of filmed
JH-Eso-Adl1 cells was lower than the other two cell lines
because most of the cells died during or prior to filming,
despite our extensive troubleshooting to establish optimal
conditions for these cells.

Our time-lapse experiments allowed us also to calculate
the length of mitosis and we found that EAC cells took at
least twice as long to divide than BE cells. Mitosis in CPA
cells was completed in about 1 h (58 + 14 min), while it took
an average of 103 (£31) min in FLO cells and 212 (+19)
min in JH-Eso-Ad1 cells (Fig. 2F). It took also significantly
longer for FLO and JH-Eso-Adl cells to reach anaphase
onset after NEB than CPA cells (Fig. 2F), indicating that
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observed in the time-lapse recordings described in (A-D). 30 inde-
pendent CPA cells, 18 independent FLO cells, and 7 independent JH-
Eso-AD1 cells were analyzed. F Scatter plots showing quantification
of the length of mitosis (from NEB until telophase) and the length of
prometaphase-anaphase (from NEB until anaphase onset). n =15 for
CPA cells, n=12 for FLO cells, and n =5 for JH-Eso-ADI cells;
*##%p < 0.001, ****p <0.0001 (Mann—Whitney U test).

chromosome congression was more challenging in
EAC cells.

In conclusion, these findings indicate that EAC cells
have problems in congressing and aligning chromosomes,

which can ultimately cause mitotic slippage and polyploidy.

EAC organoids display mitotic defects similar to
cultured cells

EAC cell lines are the most widely used model for EAC
research, but in many cases we lack genomic information
about both their primary tumors and germlines [19]. More-
over, they can only recapitulate EAC to an extent because
culturing them over numerous passages make them unrepre-
sentative of the mutational features of the original tumor [19].
To overcome these limitations, we have recently develop a
series of EAC-derived organoids that more faithfully repre-
sent the primary cancers from which they derived and can be
stably maintained [20]. Therefore, we decided to further

SPRINGER NATURE
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Fig. 3 EAC organoids display mitotic defects similar to EAC cul-
tured cells. a The indicated control and EAC organoids were fixed and
stained to detect tubulin (red in the merged images), the centromeric
marker CREST (green in the merged images), and DNA (blue in the
merged images). Bars, 10 um. b Graph showing the quantification of

validate our findings from cultured cell lines by investigating
whether EAC organoids presented similar mitotic defects.

A selection of organoids that represent healthy gastric
tissues (NGO88) and EACs with various ploidies and kar-
yotypes (Supplementary Table S4 and Supplementary
Fig. S4) were stained for tubulin, DNA, and the centromeric
marker CREST [21] to visualize, characterize, and quantify
mitotic figures (Fig. 3a). Almost all (95%, n = 20) mitotic
spindles observed in a normal gastric organoid line
(NGO088) were bipolar and had correctly congressed chro-
mosomes (Fig. 3a and b). By contrast, all EAC organoids
presented a much higher frequency of abnormal mitoses
than NGO88 (Fig. 3b). Similar to the data collected from
cell lines, the most prevalent mitotic aberrations observed in
EAC organoids were multipolar spindles and scattered
chromosomes (Fig. 3c). With the exception of organoid
CAM423, multipolar spindles were present in at least 10%
of mitoses. The incidence of scattered chromosomes
(5-20%) was sometime lower than multipolar spindles
(Fig. 3c), but still comparable to the data obtained from
EAC cell lines (Fig. 1). Interestingly, although these two
mitotic defects were observed in both polyploid and aneu-
ploid EAC organoids, one of the two polyploid organoids,
CAMA423, did not show multipolar spindles, while the other,
CAM277, had no scattered chromosomes (Fig. 3c).
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Together, our findings indicate that EAC organoids
present the same types of mitotic aberrations observed in
EAC and BE cell lines. Although we could not find any
clear correlation between mitotic defects and ploidy, the
presence of scattered chromosomes did not appear to
depend on the formation of multipolar spindles, which is
consistent with the cell line data.

WGS of BE and EAC cell lines and primary tumors
shows numerous copy number changes in
kinetochore genes

The presence of chromosome alignment defects in both
EAC cells and organoids suggested that the attachment of
chromosome to microtubules might be impaired in these
cells. The centromeric regions of chromosomes attach to
microtubules through the kinetochore, a macromolecular
structure composed of a multitude of proteins and protein
complexes [22]. The kinetochore is divided into two layers,
the inner and outer kinetochore. The inner kinetochore
comprises many CENP proteins that assemble onto the
major centromeric protein CENP-A, a centromere-specific
variant of histone H3, to form the constitutive centromere-
associated network (CCAN) [22]. The outer kinetochore is
comprised primarily of the large multi-subunit Knl1/Mis12/
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Fig. 4 Genes involved in chromosome attachments are altered in
EAC cells, organoids, and tumors. Diagrams showing the frequency
and nature of SNVs, indels, and copy number alterations of genes
involved in chromosome attachment in cell lines and organoids (a),

Ndc80 complex network (KMN network), which is recrui-
ted by the CCAN at the inner kinetochore to form strong
interactions with mitotic spindle microtubules [23]. Fur-
thermore, the association of kinetochores to microtubules is
finely regulated by phosphorylation mediated by serine/
threonine kinases and counteracting phosphatases, includ-
ing Aurora B kinase (AURKB) [24].

We therefore investigated whether EAC cells, orga-
noids, and tumors presented alterations in the structure
and copy numbers of genes that might be responsible for
the chromosome attachment defects observed in EAC
cells and organoids. We selected genes encoding proteins
known to be involved in chromosome alignment, includ-
ing kinetochore components (e.g., CCAN and KMN
proteins), SAC proteins, and regulatory factors, such as
AURKB, Polo-like kinase 1 (Plk1l), and members of the
PP1 and PP2A phosphatase families [22, 25] (Supple-
mentary Table S5). WGS analyses revealed a number of
alterations in our selected gene set that were shared across
cell lines, organoids, and tumors (Fig. 4). The most
common feature was gene amplification, which was fre-
quently observed for the outer kinetochore components

and EAC cases (n = 379) from the Oesophageal Cancer Clinical And
Molecular Stratification (OCCAMS) consortium (b). Total proportion
of cases altered by individual gene are listed at the bottom (a) or at the
left (b) of the oncoplot.

Dsnl and Ndc80, the SAC proteins Madl and Mad2-
binding protein MAD2L1BP (also known as p31 comet)
[26], and various members of the PP1 family of phos-
phatases (Fig. 4). The picture for CCAN inner centromeric
proteins (CENPs) was more mixed, with a combination of
amplifications and missense mutations (Fig. 4). RNA-seq
analyses confirmed that, in tumors, gene amplification
corresponded to a significant increase in gene expression
levels (p value<0.0001) for the mostly frequently
amplified genes encoding for Dsnl, MAD2LI1BP, and the
regulatory PP1 subunit PPPIRIB (Fig. 5a). In many
cases, PPPIR1B was over-amplified (ploidy adjusted
copy number > 10), which is particularly interesting
considering its close proximity to the oncogene ERBB2
that is also frequently over-amplified in EACs. Moreover,
single sample gene set enrichment analysis showed a co-
enrichment of our gene signatures with known cell-cycle
hallmark gene signatures (Fig. 5b).

These findings suggest that alterations in the copy
number and expression of genes involved in chromosome
attachment might be connected to the mitotic defects
observed in both cell lines and organoids.
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The expression levels of inner and outer
kinetochore components are altered in EAC cells

The alterations in copy number and expression of our gene
set highlighted by the WGS and RNA-seq analyses promp-
ted us to investigate whether these changes were also
reflected at protein level in BE and EAC cells by both
Western blot and immunofluorescence microscopy. We
analyzed the levels of a selection of SAC and kinetochore
proteins, BubR1, CENP-C, Dsnl, Ndc80, and Spc24, in
unsynchronized BE and EAC cells by Western blot (Fig. 6a).
CPA cells were used as reference controls because are not
dysplastic and have very few copy number changes [27]
(Supplementary Table S1). In agreement with our WGS and
RNA-seq results, Western blot analysis revealed substantial
differences in the levels of kinetochore proteins both within
individual cell lines and comparatively across the different
BE and EAC cell lines. The levels of the outer kinetochore
components Ndc80 and DSN1 (member of the Misl2
complex) were increased between two- and four-fold in all
cell lines compared to CPA (Fig. 6a). The levels of the outer
kinetochore component Spc24 (member of the Ndc80 com-
plex) and inner kinetochore component CENP-C showed a
more modest increase only in FLO and JH-Eso-Adl cells
(Fig. 6a). By contrast, the mitotic checkpoint protein
BubR1 showed slightly decreased expression in CPD, FLO,
and JH-Eso-Adl cells. Interestingly, an additional, slower
migrating BubR1 band was present in CPD and, more
weakly, FLO cells, which could represent either a longer
isoform or a specific post-translational modification (Fig. 6a).

We next analyzed the accumulation of kinetochore pro-
teins in mitotic cells by immunofluorescence. The level of
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each kinetochore protein was normalized to the level of a
centromeric marker derived from human CREST patient
serum [21] (see Methods). The accumulation of Ndc80,
Spc24, and BubR1 at kinetochores followed in large part the
same profiles observed in our Western blot analysis
(Fig. 6b—d). Ndc80 intensity was significantly higher in CPD
and FLO cells than in CPA cells, but no significant difference
was observed in JH-Eso-Adl cells (Fig. 6b). By contrast,
accumulation of the other Ndc80 complex subunit, Spc24,
was only reduced in CPD cells, but not in EAC cells, com-
pared to CPA controls (Fig. 6¢). In full accordance with the
Western blot analysis, BubR1 levels were reduced in both
EAC cell lines (Fig. 6d). Unfortunately, we failed to obtain a
clear BubR1 signal in CPD cells, which might be possibly
related to the presence of an additional band in Western blots
(Fig. 6a). In contrast to the Western blot analysis, the levels of
the Mis12 subunit DSN1 were significantly reduced in all cell
lines (Fig. 6e). We then analyzed the levels of AURKB
because of its key role in correcting improper chromosome
attachments [24, 28]. AURKB levels were strongly reduced in
both CPD and FLO cells, but not in JH-Eso-Adl (Fig. 6f).
Finally, comparison between mitoses with aligned or scattered
chromosomes revealed that the levels of all these kinetochore
proteins were significantly reduced on kinetochores of scat-
tered chromosomes in almost all EAC cell lines, with the only
exception of BubR1 in JH-Eso-Ad1 cells (Fig. 6b—f).

In conclusion, these results indicate that both inner and
outer kinetochore proteins show different expression and
kinetochore accumulation levels in dysplastic BE and EAC
cells compared to CPA controls, which is likely to contribute
to the defects in chromosome attachments observed in
these cells.
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Fig. 6 Kinetochore protein levels are altered in dysplastic BE and
EAC cells. a Analysis of protein expression in BE (CPA and CPD)
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lyzed by Western blot to identify the proteins indicated to the right.
The numbers on the left indicate the sizes of the molecular mass
marker. The graph at the bottom shows the quantification of protein
levels, normalized to tubulin and relative to levels in CPA cells. b—f
Indicated BE and EAC cells were fixed and stained to detect the

EAC cells with scattered chromosomes have a
significant increase of lateral kinetochore-
microtubule attachments

The initial lateral attachments of kinetochores to spindle
microtubules are subsequently converted into end-on

fluorescence intensity (AU)
w o
1 1

N
h

m
0B R obcEPo @
a8

SrC

8 254 Fkkk 8 -~

= | 9 o
§520 * ®7 os80
§§,“5‘ 00330 4 8°§ g
ngo_ i&"’ 3 gog"
g

0.0

- T 0 T T
FLO FLO(S) JHH(S)

indicated epitopes. The insets show a 5x magnification of selected
kinetochores. Bars, 10 um. In each panel, the graphs to the right show
quantification of fluorescence levels normalized to the centromere
marker CREST (see Methods). More than 25 kinetochores from cells
with aligned chromosomes and at least 10 kinetochores from cells with
scattered (S) chromosomes were counted in n>3 independent
experiments. Horizontal bars indicate medians; ****p <0.0001, ***p
<0.001 (two-tailed unpaired student’s T-test).

attachments [29], which are necessary to impart the push-
ing and pulling forces required for chromosome congres-
sion [30]. The astrin-SKAP complex is recruited to mature,
end-on kinetochores and is therefore used as a marker of
end-on conversion [31]. To investigate whether the chro-
mosome congression defects observed in EAC cells could
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show a 5x magnification of selected kinetochores. Bars, 10 um. b
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result from a failure in converting lateral to end-on attach-
ments, we stained with antibodies against astrin to visualize
and quantify the different types of kinetochore-microtubule
attachments (Fig. 7a). In both CPA and FLO cells that had
successfully congressed to the metaphase plate, <10% of
kinetochores were laterally attached (Fig. 7b), whereas there
was a two-fold increase of lateral attachments in FLO cells
with scattered chromosomes (Fig. 7b). This data suggests
that a problem in converting from lateral to end-on attach-
ments could be in part responsible for chromosome con-
gression failure in EAC cells.

Discussion

The emerging evidence that polyploidy contributes to can-
cer evolution and heterogeneity by promoting CIN high-
lights the need to study the mechanisms that cause genome
doubling in cancers not only to understand its role in cancer
biology, but also to aid in the classification and design of
therapeutic treatments of highly heterogeneous cancers. In
this study, we present evidence that polyploidy in EAC
originates from mitotic slippage caused by defects in
chromosome attachments during mitosis. Importantly, the
frequency of these defects, <10% in cells and around 20%
in organoids (Figs. 1 and 3), is high enough to promote
CIN, but not to significantly affect the viability of the entire
cell population. We propose that these defects may permit
the evolution of small clones within the large EAC cell
population that can then more successfully adapt to the
selective pressure of changing conditions.

The most prevalent mitotic defect observed in EAC cells
was chromosome congression failure characterized by the

SPRINGER NATURE

DNA b

% lateral attachments

= = N N w
o o o (6] o (&) o
| | | 1 | 1 |
o4

QUL

Qv <<\/O \o')\

attachments in CPA and FLO cells. 100 kinetochores were counted in
each group; n =11 independent CPA cells, n = 10 independent FLO
cells and n =9 independent FLO cells with scattered chromosomes
(S). Bars indicate standard errors; *p <0.05 (Mann—Whitney U test).

presence of misaligned and scattered chromosomes, which
is a phenotype typically caused by defective kinetochores
invoking a robust SAC. Structural and/or functional
alterations of kinetochore and centromeric proteins have
been widely implicated in the promotion of chromosome
mis-segregation and aneuploidy [32, 33]. WGS and RNA-
seq analyses coupled with analysis of kinetochore protein
expression by Western blot and immunofluorescence
revealed a number of copy number alterations and abnormal
levels of numerous important constituents of the inner and
outer kinetochore (Fig. 8). Notably, our findings highlighted
clear imbalances in the abundance of kinetochore proteins
in BE and EAC cells. For example, both Western blot and
immunofluorescence analyses indicated that the stoichio-
metry of the Ndc80 complex subunits Ndc80 and Spc24
was altered, as in most cases Ndc80 was more abundant
than Spc24 in CPD and EAC cells (Fig. 6). Ndc80 over-
expression has previously been described in brain, liver,
breast, and lung cancers and increase in total Ndc80 trans-
lated into increased accumulation of this protein at the
kinetochore in human colorectal carcinoma (HCT116),
colorectal adenocarcinoma (HT29), osteosarcoma (U20S)
and cervix adenocarcinoma (HeLa) cells [34, 35]. These
findings led to speculate that increased accumulation of
Ndc80, as part of the Ndc80 complex, might influence the
interaction between kinetochores and microtubules in can-
cer cells. Our findings also support a similar conclusion that
an increase of Ndc80 in EAC cells might be responsible for
the chromosome alignment defects observed in these cells
(Figs. 1 and 2). In addition, an increase in Ndc80 was
associated with a decrease in AURKB in both CPD and
FLO cells (Figs. 6 and 8). The combination of reduced
AURKB and Ndc80 overexpression could result in low
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Fig. 8 Alteration in genes and
proteins involved in
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identified in this study.
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Ndc80 phosphorylation and the formation of hyperstable
kinetochore-microtubule attachments and consequent pro-
blems in chromosome congression. Furthermore, the
reduced levels of AURKB and BubR1 might weaken the
SAC and allow mitotic slippage. It is important to point out
that these alterations cause subtle changes in the regulation
and mechanics of chromosome dynamics, which would
allow most mitoses to progress normally. However, in a few
cases these changes could lead to polyploidy and CIN,
thereby promoting the evolution and diversification of new
clones with potentially advantageous characteristics.
Moreover, chromosome segregation defects could also in
turn lead to additional changes in the copy number and
expression of other mitotic and non-mitotic genes creating a
self-feeding loop that would further refine the carcinogenic
potential and adaptability of the clones over time and in
response to specific selective pressures.

Our findings also indicated that the Misl2 component
Dsnl was amplified and expressed at high levels in both
EAC cultured cells and tumors, but paradoxically its accu-
mulation at kinetochore in mitosis was reduced (Figs. 4, 6,
and 8). We don’t have any explanation for this discrepancy
at the moment, but these findings clearly indicate that a
combination of different approaches—ranging from the
analysis of genomes, transcriptomes, and proteomes down
to the structure and composition of individual sub-cellular
components—is necessary to fully evaluate the potential
impact of gene and protein alterations in cancers.

One question raised from our data is whether the scat-
tered chromosome phenotype occurs just because of chro-
mosome congression failure or also because of cohesion
fatigue after a prolonged mitotic arrest. The evidence that
EAC cells take significantly longer than CPA to align their
chromosomes (Fig. 2) would suggest problems in chromo-
some congression, although we cannot exclude that EAC

KEY:
C=CPD, F=FLO, J=JH, O=0ES33,
numbers=organoids, T=tumour,
WB=western blot, IF=immunofluorescence.
A =upregulated ¥ =downregulated

centromere

cells take longer to align their chromosomes because they
are polyploid. Moreover, our time-lapse experiments indi-
cated that some EAC cells showed problems in maintaining
chromosome alignment after mitotic arrest (Fig. 2 and
Supplementary movies 3 and 4), which would suggest that
the spread of the chromosomes over the mitotic spindle
might also result from cohesion fatigue. Future time lapse
experiments using multiple fluorescent markers, such as
tubulin and cyclin B, could help resolve this issue.

Finally, our WGS analyses revealed that members of the
PP1 family of phosphatases were frequently amplified in
EAC cell lines, organoids, and tumors (Fig. 8). In particular,
PPP1R1B, also known as DARPP-32, was one of the genes
that showed the highest increase in copy number in EAC
patients. DARPP-32 is a neuronal protein and a potent PP1
inhibitor [36]. Amplification of DARPP-32 and its truncated
isoform t-DARPP has been found in 68% of gastric cancers
and several studies indicated that it is also over-expressed in
cancers of the breast, prostate, colon, and esophagus—
specifically in 30% of esophageal squamous cell carcinomas
[37-43]. PP1 phosphatases antagonize the phosphorylation
of many mitotic proteins by AURKB [44] and it is therefore
tempting to speculate that their de-regulation could affect
kinetochore-microtubule attachments. Understanding how
the PP1-AURKB regulatory balance is altered in EAC
could provide extremely valuable insights for future tar-
geted cancer therapies.

Materials and methods
Cell culture

Cell lines are listed in Supplementary Table S1 along with
their characteristics, genetic information, origin, and source.
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RPEL1 cells were cultured in Dulbecco’s Modified Eagle
Medium Nutrient Mixture F12 (Life technologies) supple-
mented with 10% FBS (Sigma) and 1% pen/strep (Ther-
moFisher). CPA and CPD cells were cultured in
Keratinocyte-SFM  supplemented with 2.5 ug prequalified
human Epidermal Growth Factor 1-53 (EGF) (Life tech-
nologies), 25 mg Bovine Pituitary Extract (BPE) (Life
technologies) and 0.5% penicillin/streptomycin (pen/strep)
(ThermoFisher). FLO cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) (Sigma) supplemented
with 10% Fetal Bovine Serum (FBS) (Sigma) and 1% pen/
strep (ThermoFisher). JH-Eso-AD1 cells were cultured in
Minimum Essential Medium (MEM) (Sigma) supplemented
with 10% FBS and 1% pen/strep (ThermoFisher). OE33
and OE19 cells were cultured in Roswell Park Memorial
Institute (RPMI) Medium (Life technologies) supplemented
with 10% FBS (Sigma) and 1% pen/strep (ThermoFisher).
All cells were cultured in a humidified atmosphere with 5%
CO, at 37 °C.

Organoid culture

Organoids are listed in Supplementary Table S4 along with
their characteristics and genetic information. Derivation and
culture of organoids were recently described [20]. Briefly,
for passaging organoids were washed with PBS, cen-
trifuged, and then disassociated by using TrypLE (Invitro-
gen) at 37 °C. The cell pellet was re-suspended in 7.5 mg/ml
basement membrane matrix (Cultrex BME RGF type 2—
BME-2, Amsbio) and plated as 10-15ul droplets. After
BME-2 polymerized, complete media was added, and
organoid culture left at 37 °C. All organoids have been
passaged at least 25 times and grew for over 6 months.
Organoids were evaluated with primary tumors at DNA,
RNA, and histological level to confirm their origin.

Fluorescence microscopy

Cells were grown on microscope glass coverslips (Menzel-
Glaser) and fixed in either PHEM buffer (60 mM PIPES, 25
mM HEPES pH 7, 10 mM EGTA, 4 mM MgCl,, 3.7% [v/v]
formaldehyde) for 12 min at room temperature or in ice-cold
methanol for 10 min at —20 °C. For astrin staining, cover-
slips were first incubated for 5 min in pre-extraction buffer
(60 mM PIPES pH 7.0, 25 mM HEPES pH 7.0, 10 mM
EGTA, 4 mM MgSO,, 0.5 % [v/v] Triton X-100) and then
fixed using PHEM buffer. After fixing, coverslips were
washed three times for 10 min with PBS and incubated in
blocking buffer (PBS, 0.5% [v/v] Triton X-100 and 5% [w/
v] BSA) for 1h at room temperature. Coverslips were
incubated overnight at 4 °C with the primary antibodies
indicated in the figure legends, diluted in PBT (PBS, 0.1%
[v/v] Triton X-100 and 1% [w/v] BSA). The day after,
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coverslips were washed twice for 5 min in PBT, incubated
with secondary antibodies diluted in PBT for 2 h at RT and
then washed twice with PBT and once with PBS. Coverslips
were mounted on SuperFrost Microscope Slides (VWR)
using VECTASHIELD Mounting Medium containing
DAPI (Vector Laboratories). Phenotypes were blindly
scored by at least two people independently. Images were
acquired using a Zeiss Axiovert epifluorescence microscope
equipped with MetaMorph software.

Organoids were cultured on chamber slide for 7 days and
washed twice with PBS. Cultures were fixed in 4% PFA at
room temperature, quenched with 100 mM glycine-PBS for
10 min, permeabilized in PBS + 0.5% Triton X-100 for 20
min, followed by blocking buffer (PBS, 1% BSA [w/v]) for
1'h, and then incubated at 4 °C with primary antibodies.
After overnight incubation, organoids were washed and
incubated with appropriate secondary antibody for 1h at
room temperature as indicated above. Coverslips were
mounted using VECTASHIELD Mounting Medium con-
taining DAPI for nuclei staining. Organoids were imaged
using a Leica confocal microscope TCS SP5, Z stacks were
taken at 1-um intervals and scored by two independent
researchers. Images were processed by Volocity image
analyze software (Perkin Elmer, version 6.3.0).

Fiji [45] was used to generate maximum intensity pro-
jections, which were adjusted for contrast and brightness
and assembled using Photoshop. Fluorescence intensity
values of kinetochore proteins were calculated using Fiji
software and the following formula: (Ix — Ig) — (Ic — Ig)/
([C — IB) = (IK — IC)/(IC — IB), where IK = kinetochore
intensity, Ic=CREST intensity, and [Ig = background
intensity.

Time-lapse imaging

Cells were plated on an eight-well u slide (Ibidi) in their
appropriate growth media. Prior to recording, media was
replaced with Leibovitz’s L-15 media (ThermoFisher)
containing 0.5 uM SiR-DNA dye (SpiroChrome). Cells
were incubated in the dark at 37 °C for 20 min and then
imaged on an Olympus IX83 with an LED illuminator
(Spectra-X, Lumencor), XY automated stage (ASI) in a 37 °
C incubation chamber (Digital Pixel) controlled using
Micromanager freeware. Images were captured every 5 min
for 100 frames with 100 ms brightfield and 20 ms Cy5
exposure times. Further processing was carried out using
Fiji [45].

Western blot
Cells were centrifuged, resuspended in phosphate buffer

saline (PBS) and then an equal volume of 2x Laemmli
buffer was added. Samples were then boiled for 10 min and
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stored at —20 °C. Proteins were separated by SDS PAGE
and then transferred onto PVDF membrane (Immobilon-P)
at 15V for 1 h. Membranes were blocked overnight at 4 °C
in PBS + 0.1% (v/v) Tween (PBST) with 5% (v/v) dry milk
powder. After blocking, membranes were washed once with
PBST and then incubated with the appropriate primary
antibody diluted in PBST + 3% (v/v) BSA (Sigma) for 2 h
at RT. Membranes were washed 3 x5 min in PBST and
then incubated with HRPA-conjugated secondary anti-
bodies in PBST + 1% BSA for 1h at room temperature.
After further 3 x 5 min washes in PBST, the signals were
detected using the ECL West Pico substrate (ThermoFisher)
and chemiluminescent signals were acquired below satura-
tion levels using a G:BOX Chemi XRQ (Syngene) and
quantified using Fiji [45].

Antibodies

The following antibodies and dilutions for Western blot
(WB) and immuno-fluorescence (IF) were used in this
study: mouse monoclonal anti o-tubulin (clone DMIA,
Sigma, T9026; dilutions for WB 1:20000, for IF 1:2000),
rabbit polyclonal anti-p-tubulin (Abcam, ab6046; dilutions
for WB 1:5000, for IF 1:400), mouse monoclonal anti y-
tubulin (Sigma, GTUS8S; dilutions for IF 1:200), mouse
monoclonal anti-cyclin B1 (Santa Cruz, clone GNSI1, sc-
245; dilution for WB 1:2000), mouse monoclonal anti-
Aurora B (clone AIM-1, BD Transduction Laboratories,
611082; dilutions for WB 1:2000, for IF 1:100), rabbit
polyclonal anti-phospho-histone H3 pS10 (Merck, 06-570;
dilution for WB 1:10000 for IF 1:500), rabbit polyclonal
anti-BubR1 (Abcam, ab172518; dilution for WB 1:10000,
for IF 1:500), rabbit polyclonal anti-DSN1 (Sigma,
SAB2702119; dilution for WB 1:2000, for IF 1:100),
human anti-CREST (Antibodies Incorporated, 15-234;
dilution for IF 1:1000) rat polyclonal anti-Plk4 (kind gift
from P. Almeida Coelho and D. M. Glover, University of
Cambridge, UK; dilution for IF 1:1000), rabbit monoclonal
anti-Spc24 (Abcam, ab169786; dilution for WB 1:2000, for
IF 1:200), mouse monoclonal anti-Ndc80/Hecl (Santa
Cruz, sc-515550, dilution for WB 1:500, for IF 1:50), rabbit
polyclonal anti-astrin (Novus Biologicals, NB100-74638,
dilution for IF 1:100). Peroxidase and Alexa-fluor con-
jugated secondary antibodies were purchased from Jackson
Laboratories and ThermoFisher, respectively.

Computational and statistical analyses

Mutation and copy number calls for different BE and EAC
cell lines as published [19] were used for analysis. Copy
number calling was performed by FREEC [46], as described
[19]. Mutations were called by GATK (Broad Institute,
MA, USA), as described [19]. Amplifications were defined

as genes with 2x the median copy number of the host
chromosome or greater.

To capture mutations and copy number alterations in
EACs and primary organoids, we used WGS sequencing data
of 379 EAC cases from the Oesophageal Cancer Clinical And
Molecular Stratification (OCCAMS) consortium [9]. We used
final calls available for these datasets, where Strelka [47] was
applied for calling SNVs/small indels and ASCAT [48] for
copy number alterations. Genes were tagged as amplified if
ploidy adjusted CN >2 and <10 or extrachromosomal-like if
their ploidy adjusted CN> 10. Along with WGS data, mat-
ched RNA-seq for subset of cases was used for transcriptomic
analysis. We used processed expression quantification mea-
sured as Transcripts per Million (TPM) for analysis [9]. Both
genomic alterations and transcriptomic analysis were restric-
ted to a set of annotated kinetochore-related genes (Supple-
mentary Table S5). Only genes altered in at least 3% of cases
were reported. To check whether amplification correlate with
expression, we compared expression of the target gene
between cases without alterations and cases with amplifica-
tion; level of significance was measured by non-parametric
Wilcoxon test.

We ran a single sample-based gene set enrichment
method to measure enrichment of annotated gene signatures
(collection of genes). In this case, we used known annotated
hallmark gene signatures [49] related to cell cycle along
with our annotated kinetochore genes and measured their
enrichment across all EAC cases with RNA-seq data
available using GSVA [50].

Unless otherwise specified, Prism8 (GraphPad) and
Excel (Microsoft) were used for statistical analyses and to
prepare graphs.

Data availability

The WGS and RNAseq data of the EAC primary tumors
and BE and EAC cell lines were published before and
deposited at the European Genome-phenome Archive
(EGA); accession numbers can be found in the relative
publications cited in the text. The RNAseq and WGS data
of the organoid lines have been deposited at the EGA under
accession number EGAD00001006738.
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