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Abstract
Uncontrolled proliferation of cells in a tissue caused by genetic mutations inside a cell is referred to as a tumor. A tumor
which grows rapidly encounters a barrier when it grows to a certain size in presence of preexisting vasculature. This is
the time when it has to find a way to go on the growth. The tumor starts to secrete tumor angiogenic factors (TAFs)
and stimulate preexisting vessels to grow new sprouts. These new sprouts will find their way to the tumor in the extra-
cellular matrix (ECM) by the gradient of TAF. As these new capillaries anastomose and reach tumor, fresh oxygen is avail-
able for the tumor and it will reinitiate the growth. Number of initial sprouts, distance of initial tumor cells from the
vessel(s) and initial density of the tumor at the time of sprout formation are questions which are to be investigated. In
the present study, the aim is to find the response of tumor cells and vessels to the reciprocal effects of each other in dif-
ferent circumstances in the tissue. Together with a mathematical formulation, a radial basis function (RBF) neural net-
work is established to predict the number of tumor cells at different circumstances including size and distance of initial
tumors from the parent vessel. A final formulation is given for the final number of tumor cells as a function of initial
tumor size and distance between a parent vessel and a tumor. Results of this simulation demonstrate that, increasing the
distance between a tumor and a parent vessel decreases the number of final tumor cells. Specially, this decrement
becomes faster beyond a certain distance. Moreover, initial tumors in bigger domains must become much bigger before
inducing angiogenesis which makes it harder for them to survive.
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Introduction

Cancer is known as the second leading cause of death
worldwide.1 Therefore, understanding the mechanisms
of this uncontrollable disease is of vital importance.
Rapid proliferation of these abnormal cells depends on
different spatial and temporal scales2 that is affected by
the tumor microenvironment and the structure of the
surrounding tissue.3 As known, tumor growth includes
three distinct levels.2 At first, a tumor grows while it is
fed by existing vasculature in the host tissue. Since
tumor cells proliferate rapidly and consume more oxy-
gen, the surrounding vasculature is not able to meet
nutritious requirements of the starving tumor cells. In
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the second stage, the tumor seeks a way to overcome
oxygen deficiency by inducing vessel growth toward the
tumor. The process of stimulating and growing new
capillaries from pre-existing vessels is known as angio-
genesis. The third and most fatal part of the growth is
when the tumor has acquired its own vascular network.
Unstable and leaky capillaries are not only a source of
oxygen, but also a shortcut for tumor cells to breach
into and be transported to the other parts of the body
which is called metastasis. Understanding these distinct
levels and dependence of tumor on surrounding tissue
is crucial in defining the outcomes of a chemotherapeu-
tic treatment.

For many years, scientists were struggling to find the
underlying mechanisms of this devastating disease.4,5

Folkman was the first scientist who distinguished the
different steps of tumor growth.6 He then proposed the
hypothesis that tumors are not able to grow beyond a
certain size in the absence of angiogenesis.7 Since then,
many scientists and clinicians have been working on
angiogenesis and vascularized tumors to fully capture
the underlying phenomena and hinder tumor growth
via obstructing the ways for tumor to provoke angio-
genesis. A momentous part which is still obscure for
scientists is the effects of surrounding tissue and exist-
ing vasculature. In vivo models are difficult and costly
to implement. Moreover, all physical phenomena hap-
pening in the tumor microenvironment cannot be inves-
tigated by in vivo models. On the other hand, in vitro
models make clinicians able maneuver on some precise
and controllable parameters. For instance, it is possible
to culture endothelial cells and to see if they respond to
some stimulating factors or not. However, these models
have drawbacks which make them limited in a variety
of ways. Restrictions related to temporal and spatial
scales inhibit utilization of experimental methods for
tumor studies.8 The only choice remaining is using in
silico models which make researchers able to test their
hypotheses without considerable effort in comparison
to experimental methods. In addition, when new find-
ings are acquired in experiments, scientists refer to in
silico models to clarify and illuminate the underlying
stimulators for the phenomena. Therefore, scientists
and researchers have recently been attracted toward
mathematical models and it is believed that integrated
methods are the most reliable and efficient ways to
study tumor growth.9 Wide variety of methods, para-
meters, physical situations, and time scales could be
modeled through in silico models.

According to Araujo and McElwain,9 Hill10 was
pioneer in studying the tumor microenvironment math-
ematically. Following him, many scientists have studied
avascular and vascular tumor growth using different
approaches leading to important outcomes which have
assisted clinicians in the battle against their nemesis.
All in all, mathematical models are categorized into
three main groups of continuum, discrete, and hybrid.
Each method is accompanied by its pros and cons.
Continuum methods are governed by Partial

Differential Equations (PDEs) and treat tumor as
ensembles of cells acting and moving together. Hence,
this modality is able to capture macroscale interactions
between tumor cells. On the other side of mathematical
models lies discrete ones. These methods as known by
their names, handle each single cell inside the tumor
microenvironment. As a result, it is feasible to track
each cell and decide about its destiny in the model.
Nonetheless, in this case, some macroscale phenomena
cannot be simulated. Moreover, as the number of cells
increases, time, and cost of simulation increases con-
currently. To overcome these difficulties, researchers
have combined two methods and hybrid formulation is
achieved. In this formulation, some part of the simula-
tion is governed by PDEs and the other by discrete
methods. In some cases, it is suitable to use continuum
methods to capture the phenomena in macroscale
which is costly and difficult by discrete models.

Different macroscale aspects of tumor growth have
been investigated by continuum methods.1,11–15

Mechanical interactions, cell-cell adhesion, cell-matrix
interactions, and ECM stiffness are studied by the so
called method which occur in macroscales. On the other
hand, most models use discrete framework to treat
tumor growth numerically.2,16–19 These methods have
reported intracellular and intercellular phenomena such
as cell birth and death, cell deformation and cell-cell
signaling. And also hybrid models which are a combi-
nation of both models is being used to study tumor.
Scientific literature is rich of papers about different
mechanical and chemical interactions among cells and
the tissue. Dyson et al.20 studied the mechanical proper-
ties of ECM and cell-ECM interactions and fiber aniso-
tropy on the morphology of tumor cells. Authors
stated that different patterns for cell aggregates and col-
lagen and medium were observed under different
mechanical conditions. The results showed that fibers
realign by cell migration. In addition, circular, elliptic,
and stripe configurations for tumor cell aggregates were
observed. Cho and Levy11 evaluated the treatment effi-
cacy of cytotoxic and cytostatic drugs. They concluded
that tumor cells were totally eliminated when both
drugs were infused in the tissue simultaneously and
relapse is prevented. Salavati et al.21 worked on a new
formulation of vascular tumors and validated the
results by experiments on mice. The model confirmed
the necessity of angiogenesis in solid tumors and the
model can be used as a basis formulation to study ther-
apeutics in solid tumors. Santagiuliana et al.22 assessed
the biomechanical effects of the tumor microenviron-
ment on tumor growth over time. According to the
authors, decreasing ECM stiffness and cell-ECM adhe-
sion and increasing porosity of ECM increases tumor
mass. Sefidgar et al.23 studied effects of ECM stiffness
on Endothelial Cell (EC) migration speed and reported
that the ECs migrate faster in intermediate ECM stiff-
ness. Salavati and Soltani24 investigated impacts of pro-
liferation rate on the overall rate of ECs movement
using a Cellular Potts Model (CPM). They concluded
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that using variable proliferation rate for ECs, more rea-
listic results could be achieved which matches well with
experimental observations. Effects of tumor shape and
size on drug delivery is studied by Soltani and Chen.25

The results where indicative of importance of tumor
size in filtration flux (flow rate out of the vasculature
per unit volume) and pressure inside tumor. Bazmara
et al.26 studied EC proliferation and migration focusing
on the effects of blood flow on EC phenotype altera-
tion. The results showed that in the absence of blood
flow and shear stress, a loop cannot maintain its stabi-
lity and collapses at the end. Following this research,
Bazmara et al.27 published a paper studying blocking of
intracellular signaling pathways to inhibit lumen for-
mation and EC proliferation and hence to prevent
angiogenesis during tumor growth.

Smeared finite element method which is introduced
by Kojic et al.28,29 and further studied by Milosevic
et al.30 can be used to model mass transport between
capillaries and tissue in the tumor microenvironment.
Kremheller et al.31 used smeared representation of neo-
vasculature to capture species transport in tumor-
induced vasculature which is highly tortuous and con-
tains tiny vessels. They compared the results obtained
by their model to preexisting models to validate their
results.

Computational studies have been beneficial to assess
the efficiency of chemotherapy for cancer treatment.
Ribba et al.32 used an age-structured cell cycle model
to examine efficacy of anti-metastatic agents, called
inhibitors of matrix metalloproteinases (MMPi). It was
revealed that MMPi is not an effective treatment in
advanced cancers. Billy et al.33 coupled a continuum
model of angiogenesis with a continuum model of
tumor growth to develop an age-structured cell cycle
model and examine influence of endostatin overpro-
duction on hindering angiogenesis. It was concluded
that endostatin overproduction may suppress angio-
genesis and tumor growth. Ribba et al.34 investigated
the effect of chemotherapy on tumor growth using an
age-structured model and demonstrated that physio-
pathological parameters have higher impact on treat-
ment efficacy than drug-related parameters. Lignet
et al.35 studied the interaction of antiangiogenic drugs
and chemotherapeutic agents and presented an optimal
therapeutic strategy for combined usage of these two
treatments.

Pamuk et al.36 proposed a mathematical model to
study tumor growth. They studied onset of vasculariza-
tion of tumors inside the tissue. Their results were in
good agreement with experiments. Perfahl et al.37 stud-
ied effects of domain size and boundary conditions on
tumor response. Their results proved that distance of
tumor and parent vessel, initial structure of the vascu-
lar network are important in determining the final
architecture of the vascular tumor. Grogan et al.38 per-
formed a mathematical model of mouse cornea to
study effects of cornea geometry on vascular network
formation. They studied effects of geometry on VEGF

concentration and vascular density in the domain. The
results proved that selection of pellet location and geo-
metry of the domain greatly influences angiogenesis.
Modeling of avascular tumor growth, blood flow and
vessel regression are absent in their modeling. Recently,
Nikmaneshi et al.39 proposed an agent-based mathe-
matical model to study avascular and vascular tumors.
The authors surveyed abnormal blood conditions
encountered in cancer patients. It is concluded that
hyperglycemia, hyperoxemia, and hypercarbia can aid
in tumor growth. Moreover, hypertension can also lead
to malignant tumors.

One important feature of tumor growth which is a
debate among scientists in spite of great advancements
in in silico models is the behavior of tumor cells in dif-
ferent distances of parent vessels. Which environmental
conditions can make cells more devastating and when
clinicians can better suppress tumor growth during the
growth? Gimbrone et al.40 experimentally studied
tumor growth in different conditions of parent vessel.
Their results were helpful in understanding the states
and reaction of tumor cells in the tissue. Recently,
Ghazani et al.41 studied growth of a solid tumor at dif-
ferent distances of a parent vessel using a discrete
tumor model where effects of tumor interstitial pressure
in tumor cell cycle are also included.

In this paper, the aim is to make a useful contribu-
tion in understanding the fatality of a tumor in a vari-
ety of situations using a continuum tumor model and
artificial neural network.

Effects of tumor location in the domain, domain
size, and number of initial sprouts on the final architec-
ture of the tumor and capillary network using a conti-
nuum tumor model and an agent based probabilistic
angiogenesis method are studied.

Mathematical model

In order to model growth of a tumor in a tissue, a
hybrid continuum-discrete model of tumor growth is
prepared. The mathematical model for simulation of
tumor cells is a continuum age structured model which
makes use of PDEs. A discrete agent-based method
which comprises probabilistic phenomena is used to
make us able to track each single EC in the domain.
Therefore, branching, anastomosis and blood flow are
considered in the model. Based on blood flow, oxygen
diffuses in the domain and reaches nearby tumor cells.
On the other hand, VEGF as dominant TAF is secreted
by tumor cells and consumed and used by ECs to route
their way.

Tumor growth

Tumor growth is modeled by a continuum age-
structured cell cycle model embedded in a macroscopic
model of tumor dynamics.33 Four different cell types
are in tumor microenvironment: Proliferative, quies-
cent, necrotic, and healthy cells. To model mitosis,
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proliferative cells are considered to be in two different
phases named proliferative phase 1 and proliferative
phase 2. In ‘‘Restriction Point,’’ oxygen concentration
and available spaces are evaluated to define where
tumor cells are placed in their cell cycle. Cells enter pro-
liferative phase 2 when oxygen concentration is suffi-
cient for proliferation and space is available for cells to
duplicate. As soon as cells pass the restriction point
and enter proliferative phase 2, they continue their cell
cycle disregarding oxygen availability. If defined condi-
tions are not satisfied, cells are transferred to quiescent
state. Cells can survive unlimited in the quiescent state
until the conditions are met. If oxygen concentration
falls below severe hypoxia threshold, the cells cannot
endure severe oxygen deficiency and become necrotic
(the condition is modeled as function h). Therefore,
proliferative cells develop in both age and time in their
cell cycle while quiescent and necrotic cells develop
only in time. Figure 1 shows schematic of cell cycle.

To model transition between different phases in
tumor microenvironment, functions g and h are intro-
duced as follows in point (x, y) and time t in equations
(1) and (2).

g(x, y, t)=

1 if
Ð amax ,P1

0 P1 x, y, t, að Þ da+2Ð amax ,P2

0 P2 x, y, t, að Þ da+Q x, y, tð Þ4t0
and O x, y, tð Þø t1, h

0 else

8>><
>>:

ð1Þ

h x, y, tð Þ= 1 if O x, y, tð Þø t2, h
0 else

�
ð2Þ

where P1, P2, Q are proliferative phase 1, proliferative
phase 2 and quiescent cell’s density, O is oxygen con-
centration, tO, t1,h, and t2,h are overpopulation thresh-
old, hypoxic threshold and severe hypoxic threshold, a
is the cell’s age in time, and amax ,P1

, amax ,P2
are maxi-

mum duration of proliferative phases P1 and P2, respec-
tively. Since there are two proliferative phases in the
model, total density of proliferative phase is calculated
in point (x, y) and time t in equation (3).

P(x, y, t)=

ðamax ,P1

0

P1 x, y, a, tð Þ da+
ðamax ,P2

0

P2 x, y, a, tð Þ da
ð3Þ

where P is the total density of cells in proliferative
phase. Since the total number of cells per unit volume is
constant, densities are non-dimensionalized by constant
total number of cells, N0, as shown in equation (4).

P+Q+A+M=N0)P=N0
+Q=N0

+A=N0
+M=N0

=1

~P+ ~Q+ ~A+ ~M=1

ð4Þ

where A and M are densities of necrotic and healthy
phases, respectively. Tilde, (;), is omitted in equations
(5) and (6) for the sake of brevity. Tumor cells develop
in both age and time in proliferative phases, therefore
the evolution equations are presented in equations (5)
and (6).

∂P1

∂t
+

∂P1

∂a
+r: vP1

P1ð Þ=0 ð5Þ

∂P2

∂t
+

∂P2

∂a
+r: vP2

P2ð Þ=0 ð6Þ

Quiescent and necrotic cells develop in time only in
equations (7) and (8).

∂Q

∂t
+r: vQQ

� �
= h 1� gð ÞP1 a= amax ,P1

ð Þ

� g0tð Þ
+
Q t�ð Þ+ h0tð Þ�Q t�ð Þ

ð7Þ

∂A

∂t
+r: vAAð Þ= 1� hð ÞP1 a= amax ,P1

ð Þ � h0tð Þ�Q t�ð Þ

ð8Þ

where g0tð Þ+, h0tð Þ+ and g0tð Þ�, h0tð Þ� are positive and
negative parts of the derivatives, and vP1

, vP2
, vQ, vA

are corresponding velocities of proliferative phase 1,
proliferative phase 2, quiescent phase and necrotic
phase, respectively. Q t�ð Þ implies the density of
quiescent phase in previous time step. Boundary condi-
tions for turning one phase to another are shown in
equation (9).

P1 a=0ð Þ=2P2 a= amax ,P2
ð Þ

P2 a=0ð Þ= gP1 a= amax ,P1
ð Þ+ g0tð Þ+Q t�ð Þ

�
ð9Þ

The cell birth provides a passive movement and acti-
vates tumor cell motility. Given the fact that cells move

Figure 1. Schematic presentation of different steps in cell cycle.
The restriction point is modeled at the end of P1 phase where
environmental conditions are checked. Cell duplication occurs at
the end of P2 phase. The function g determines phase transitions
between proliferative and quiescent phases. The arrows show that
cells can return to proliferative phase from quiescent phase. The
function h is an indication of necrosis and the single arrow shows
that cells entering the necrotic phase cannot exit the phase.
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due to passive movement created by the cell birth and
are pushed out through the domain boundaries, equa-
tion (10) is dedicated to evolution of healthy cells.

∂M

∂t
+r: vMMð Þ=0 ð10Þ

The duplication of cells increases pressure locally and
forces cells to move and relax their pressure. The Darcy
law for porous media is applied to relate the pressure
created by the cell birth and the velocity of tumor cells
in tumor microenvironment (equation (11)).

v= �ru ð11Þ

in which v is velocity of tumor cells and u is a potential
corresponding to the pressure in tumor microenviron-
ment. It is assumed that all tumor cells move with the
same velocity as vP1

=vP2
=vQ =vA =vM =v.

Combining equations (5)–(8) and (10) provides the rela-
tionship shown in equation (12), which is an indicator
of tumor expansion.

r:v=P2 a= amax ,P2
ð Þ ð12Þ

Angiogenesis

Tumor-induced angiogenesis, growth of new capillaries
from pre-existing vessels, was almost neglected until the
time when Folkman7 proposed the idea that angiogen-
esis is the most fatal part of a tumor’s growth. Many
scientists have tried to model angiogenesis based on
mathematical models. The one which was proposed by
Anderson and Chaplain42 has attracted more attention
and used by many researchers to simulate angiogenesis.
The angiogenesis model in this paper also makes use of
formulations represented by Anderson and Chaplain.42

Based on Anderson and Chaplain,42 there are three
mechanisms governing ECs movement in the domain.
Random movement which is a consequence of random
walk of ECs which has led to a formulation similar to
diffusion mechanism. The other mechanism affecting
ECs in the extracellular matrix (ECM) which is proved
by Keller and Segel43 is chemotaxis, interpreted as
direct movement of ECs as a result of soluble chemoat-
tractants. The remaining mechanism in this model is
haptotaxis, which is representative of transverse

movements and is a result of adhesion force in the
ECM. Combining these mechanisms and related for-
mulations, total flux term for EC density in the domain
is reached as equation (13):

Jn = Jrandom + Jchemo + Jhapto ð13Þ

In which Jn is total flux of ECs, Jrandom, Jchemo, and
Jhapto are diffusion, chemotaxis, and haptotaxis terms,
respectively. Simplifying and writing the related para-
meters for each term results in equation (14) as below:

∂n

∂t
=Dnr2n�r: x cð Þnrcð Þ � r: r0nrfð Þ ð14Þ

where n is density of ECs, Dn is diffusion coefficient
of ECs, x(c) is chemotactic function, c is VEGF con-
centration, r0 is positive coefficient for haptotaxis and f
is fibronectin concentration. To nondimensionalize
equation (14), the related parameters are divided by ref-
erence parameters introduced in Anderson and
Chaplain42 as ~c= c

c0
, ~f= f

f0
, ~n= n

n0
, and ~t= t

t
. Using

these nondimensional parameters, equation (14) is non-
dimensionalized and a new dimensionless equation is
reached:

∂n

∂t
=Dr2n�r: x

1+ac
nrc

� �
�r: rnrfð Þ ð15Þ

Nondimensional parameters in equation (15) are:

D=
Dn

Dc
, x =

x0c0
Dc

,a=
c0
k1

, r =
r0f0
Dc

, t =
L2

Dc
ð16Þ

Most of the parameters are adopted from Anderson
and Chaplain42 except the parameters which are related
to domain size and should be updated to fit this model.
t is dimensionless time parameter which is dependent
upon the distance between the tumor and parent vessel
and should be varied based on tumor position in the
domain. The related dimensionless time parameters for
different distances are stated in the Supplemental File.

Discretizing equation (15) using Euler finite differ-
ence scheme, equation (17) is reached:

n
q+1
l,m = n

q
l,mR0 + n

q
l+1,mR1 + n

q
l�1,mR2 + n

q
l,m+1R3

+ n
q
l,m�1R4

R0 =1� 4kD

b2
+

kax c
q
l,m

� �

4b2 1+ac
q
l,m

� � c
q
l+1,m � c

q
l�1,m

� �2
+ c

q
l,m+1 � c

q
l,m�1

� �2� �

�
kx c

q
l,m

� �
b2

c
q
l+1,m + c

q
l�1,m � 4c

q
l,m + c

q
l,m+1 + c

q
l,m�1

� �

� kr

b2
f
q
l+1,m + f

q
l�1,m � 4f

q
l,m + f

q
l,m+1 + f

q
l,m�1

� �
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R1 =
kD

b2
� k

4b2

x c
q
l,m

� �
c
q
l+1,m � c

q
l�1,m

� �
+ r f

q
l+1,m � f

q
l�1,m

� �h i

R2 =
kD

b2
+

k

4b2

x c
q
l,m

� �
c
q
l+1,m � c

q
l�1,m

� �
+ r f

q
l+1,m � f

q
l�1,mÞ

� ih

R3 =
kD

b2
� k

4b2

x c
q
l,m

� �
c
q
l,m+1 � c

q
l,m�1

� �
+ r f

q
l,m+1 � f

q
l,m�1

� �h i

R4 =
kD

b2
+

k

4b2

x c
q
l,m

� �
c
q
l,m+1 � c

q
l,m�1

� �
+ r f

q
l,m+1 � f

q
l,m�1Þ

� ih
ð17Þ

An EC’s movement is decided based on this equation
in which R0 is the probability to stay stationary and R1,
R2, R3, R4 are probabilities to move right, left, up and
down, respectively. l, m are indicators of position of a
point in the discretized computational grid in the direc-
tion of x and y, respectively. These probabilities are
normalized by the sum of the probabilities. Then each
movement probability falls in a range between 0 and 1.
Therefore each limited range represents a movement to
one of the four directions and also staying stationary. A
random number is generated between 0 and 1 to decide
about the direction of movement. Therefore, EC moves
in the direction where the random number has fallen.

As stated above, fibronectin exists in the ECM. It
adheres to the matrix and does not diffuse in the tissue.
Therefore, its concentration is constant in the tissue ini-
tially. It is proved that fibronectin is secreted by ECs
and also exists in the domain. On the other hand, fibro-
nectin is consumed as ECs move in the domain toward
the tumor. Summing all these factors, equation (18) is
reached in which there are generation and consumption
terms in the formulation:

∂f

∂t
=vn� mnf ð18Þ

where v and m are positive constants.
For ECs to move in the domain, a gradient of

VEGF is required. The ECs sense the gradient and
move toward the highest gradients. VEGF is consumed
while ECs move in the domain which affects their sub-
sequent move. Therefore, the equation of consumption
of VEGF is considered in angiogenesis section as
below:

∂c

∂t
= � lnc ð19Þ

in which l is a positive constant. Secretion of VEGF
by tumor cells is proposed in the next sections.

Equations (18) and (19) are nondimensionalized
using the aforementioned parameters of reference EC
density, VEGF, fibronectin, and time constants:

∂c

∂t
=� hnc

∂f

∂t
=bn� gnf ð20Þ

where h, b, and g are positive non-dimensional coeffi-
cients defined as:

h=
lL2n0
Dc

, g =
mL2n0
Dc

, b=
vL2n0
f0Dc

ð21Þ

The set of equations (20) is also discretized using
Euler finite difference method.

Posterior to cell movement, ECs may encounter each
other during movement and fuse together, which will
lead to anastomosis. An EC can also come across a
stalk cell and anastomosis will occur. On the other
hand, ECs may branch in their way toward tumor.
Many factors affect EC branching which can be intro-
duced as: (1) ECs and stalk cells must reach a certain
age and be mature enough prior to being able to
branch, (2) Density of ECs in the point of branching is
high enough, and (3) there is an available space nearby
for the new EC to occupy. If these conditions are satis-
fied, one another parameter will be checked to let ECs
branch, concentration of TAF must be above a thresh-
old value to let ECs branch.

Pbranching(x, y)=0, c(x, y)40:1
Pbranching(x, y)=1, c(x, y). 0:1

�
ð22Þ

The probability condition is estimated in this paper
to make the model able to mimic real physical situa-
tions in the tumor microenvironment. As stated above,
ECs encounter each other and form closed loops.
Circulating blood flow is the main aim of tumor-
induced angiogenesis to deliver oxygen and nutrients to
the tumor site. Therefore, as closed loops form, blood
flows in the network and provides fresh oxygen for
tumor cells. Dewhirst et al.44,45 stated that there is no
relationship between vessel diameter and blood flow
inside tumor-induced neovessels. Nevertheless, many
scientists39,46–48 have assumed that since blood flow is
laminar inside the neovessels, one can use Poiseuille’s
law from Mechanical Engineering formulations to
obtain the flow in the vascular network. Therefore, in
this research the same procedure is followed and blood
is assumed to flow laminarly in the capillaries and obey
Poiseuille’s law:
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_V=
pR4

8Lc

DPB

mB

ð23Þ

where DPB is pressure difference between two junc-
tions, R is vessel radius, Lc is distance between two
junctions, and mB is blood viscosity. The blood viscos-
ity is assumed constant and equal to 43 1023 Pa.s.49

Apart from blood flow rate, pressure difference is also
unknown in this equation, hence another equation is
required to determine the unknowns. Conservation of
mass law is applied for each junction of the vascular
network where three capillaries meet.

XN
k=1

_V l,mð Þ, k =0 ð24Þ

where N is the number of capillaries joining junction
in the position shown by indices (l, m). Pressure difference
across parent vessel is 8000Pa (60mmHg) and diameter of
parent vessel is 14mm and new capillaries are 8mm.49

Vascular growth

Two distinct parts of tumor growth are dependent upon
each other via communicating through chemicals in the
tumor microenvironment. Among many factors being
transmitted via ECM between tumor cells and vessels

are nutrients and TAFs. The most dominant TAF here
is Vascular Endothelial Growth Factor (VEGF) which
is secreted by hypoxic tumor cells and consumed by
ECs. On the other hand, vessels are sources of oxygen
which is considered to be dominant nutrient in the
model. As new capillaries anastomose and blood circu-
lates in the domain, the required oxygen for hypoxic
tumor cells are provided and the cells will enter prolif-
erative phase if the conditions are suitable. Flowchart
of simulation of vascular tumor growth is demonstrated
in Figure 2.

Dissemination of these chemicals are so fast in com-
parison to tumor growth and angiogenesis phenomena
that the equations for concentration of them can
be considered to be in steady state conditions. For
distribution of VEGF in the domain, equation (25) is
proposed as below:

0=
∂c

∂t
=r: DVrcð Þ+aVQ� dVc ð25Þ

where DV is VEGF diffusion rate in the tissue, aV is
production rate of VEGF by quiescent cells, and dV is
degradation rate of VEGF in the tissue. There is no
consumption term in this equation since it is considered
in equation (19) where ECs consume VEGF when they
move in the domain. The governing equation for calcu-
lating oxygen concentration is defined as equation (26).

Figure 2. The flowchart for the simulation steps of the coupled tumor growth and angiogenesis. The VEGF and oxygen are used to
connect distinct parts of the angiogenesis, tumor growth, and ECM. Oxygen is used to determine the state of tumor cells whereas
VEGF provides a gradient of chemoattractant for ECs to move toward the tumor.
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0= ∂O
∂t =DO2

r2O� b1,OP+b2,OQ+b3,OM
� �

O� dOO
O=Omax, where n=1

8<
:

ð26Þ

where DO2
is diffusion coefficient of oxygen, and b1,O,

b2,O, b3,O are consumption rates of proliferative, quies-
cent, and healthy cells, respectively. dO is degradation
rate of oxygen within the tissue domain. Required para-
meters are tabulated in Table 1.

Numerical method

To explore the effects of domain size (corresponding to
tissue size), two different sizes of the domain are
selected. The small domain is selected to be 4mm3 4
mm with 2003 200 grids and the large domain is
selected to be 6mm3 6mm with 3003 300 grids. For
ECs with the diameter of 8–12mm, the average dia-
meter of 10mm has been selected.

The discrete part of equations that belongs to angio-
genesis are discretized using Euler finite difference
method. The configuration of domains provides the

mesh size of Dx=Dy= b=20mm. ECs are assumed
to move one double space in real tissue during each
time step of the simulation to enable us to use the same
computational grid for the equations of tumor growth
and angiogenesis. Time step is set equal to 1 h when we
multiply time step to non-dimensional time parameter.
A meshing network of 3003 300 is used to preserve the
size of meshes for the large domain. Therefore, every
procedure explained for the small domain is also valid
for the large domain.

No-flux boundary condition is imposed on ECs for
angiogenesis equation (equation (27)).

z: �Dnrn+ n x cð Þrc+ r0rfð Þð Þ=0 ð27Þ

where z is an outward unit normal vector. Finite vol-
ume method is used to solve equations of tumor
growth. Cell-centered method is used for discretization
of equations. The small and large domains consist of
2003 200 and 3003 300 control volumes, respectively.
Control volumes are chosen such that center points of
control volumes coincide with the points used to solve
discrete equations of angiogenesis and eliminate the
need to interpolation among the points. Since there is

Table 1. Parameters involved in equations governing the coupled tumor growth-angiogenesis model.

Parameter Value
(dimension)

References Explanation Equations

Tumor growth parameters
amax , P1

12 h Billy et al.33 Duration of proliferative phase 1 (1), (3), (7)–(9)
amax , P2

12 h Billy et al.33 Duration of proliferative phase 2 (1), (3), (9), (12)
t1,h 5.5 M Höckel and Vaupel50 Hypoxia threshold (1)
t2,h 1.52 M Billy et al.33 Severe hypoxia threshold (2)
tO 0.8 cells mm22 Billy et al.33 Overpopulation threshold (1)
DV 1.044 3 1021 mm2 h21 Anderson and Chaplain42 VEGF diffusion rate (25)
aV 2.11M cells21 mm2 h21 Billy et al.33 VEGF production rate (25)
dV 1.2531024 h21 Billy et al.33 VEGF degradation rate (25)
DO2

1 mm2 h21 Androjna et al.51 Oxygen diffusion rate (26)
Omax 8 M Pittman52 Oxygen concentration in vessels (26)
b1,O 3 cells21 mm2 h21 Billy et al.33 Rate of oxygen consumption

by proliferative cells
(26)

b2,O 1.5 cells21mm2 h21 Billy et al.33 Rate of oxygen consumption
by hypoxic cells

(26)

b3,O 3.75 3 1021 cells21 mm2 h21 Billy et al.33 Rate of oxygen consumption
by healthy cells

(26)

dO 1023 h21 Billy et al.33 Oxygen degradation rate (26)
N0 2 3 106 cells mm22 Ribba et al.32 Constant number of cells

per unit volume
(4)

Angiogenesis parameters
D 0.00035 Anderson and Chaplain42,

Lesart et al.53
Diffusion coefficient of ECs (15)

a 1.8 Estimated Denominator coefficient of
chemotactic function

(15)

b 0.45 Anderson and Chaplain42,
Lesart et al.53

Fibronectin production rate (20)

g 0.9 Anderson and Chaplain42,
Lesart et al.53

Fibronectin consumption rate (20)

r 0.16 Stéphanou et al.54 Haptotaxis coefficient (15)
x 1.14 Estimated Chemotaxis coefficient (15)
h 0.9 Anderson and Chaplain42,

Lesart et al.53
VEGF consumption rate (20)
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no specific restrains for selecting time step of the finite
volume method, for the distances of 1, 1.5, and 2mm
time step is equal to 1 h and for the distances of 2.5 and
3mm, time steps are 2 and 3 h, respectively, when we
multiply the nondimensional time step to the nondi-
mensional time parameter. Hence, in order to solve the
coupled equations, for each step of tumor cell growth
in cases of 2.5 and 3mm distance, we go through 2 and
3 steps in angiogenesis, respectively.

Boundary conditions for transition among phases
are detailed in section 2.1. For the outer boundary, it is
assumed that healthy cells leave the domain as tumor
grows.

Oxygen and VEGF are used to couple two distinct
parts of tumor growth. Steady state equations are used
for oxygen and VEGF since their diffusion time scale is
much shorter than the time scale of tumor growth and
angiogenesis. Equations (25) and (26) are solved using
Gauss-Seidel iteration method in the domain. We
assume that oxygen and VEGF cannot cross the
boundary, therefore Neumann boundary condition is
imposed on the edges of the domain for oxygen and

VEGF (∂O
∂z
j∂O =0 and ∂c

∂z
j∂O =0).

Each configuration has simulated at least for five
times and the mean values are reported in the results
section.

Initial conditions

Tumors with a quiescent core and a proliferative rim
are considered as initial tumors for simulations. In pro-
liferating rim, outer strip is in proliferative phase 2 and
inner strip is in proliferative phase 1. To realize how
the size of initial tumor affects angiogenesis process
and tumor growth is influenced by angiogenesis, tumor
growth and angiogenesis are studied for three initial
tumor sizes of small (0.5mm in diameter), medium
(1mm in diameter) and large (1.5mm in diameter).
Inspired from animal models, different distances
between initial tumor and parent vessels (1, 1.5, 2, 2.5,
and 3mm) are examined. Also two different numbers
of initial sprouts (three and five sprouts) are tested.
Three different conditions are selected for location of
vessels with respect to position of initial tumor: (1) only
one parent vessel exists on left wall of the domain, (2)
two parent vessels exist on left and right walls of the
domain, and (3) one parent vessel is placed inside the
domain since tumors positioned near the outer bound-
ary may grow beyond the size of domain. To compare
the results in different conditions, the distance between
initial sprouts is preserved in both of the domains.

It is assumed that fibronectin is initially secreted by
ECs and its concentration is higher near vessels and less
near the tumor site. Initial profile of fibronectin concen-
tration is defined as equation (28)42:

f x, y, 0ð Þ= kfe
�x2

e1 ð28Þ

where e1 and kf are 0.45 and 0.75, respectively. VEGF is
distributed within the tissue primarily by quiescent core
of the tumor. Since the equations governing angiogen-
esis are solved in non-dimensional format, values for
VEGF and fibronectin concentrations are normalized.
Initial VEGF concentration is correlated to initial num-
ber of quiescent tumor cells. Initial concentrations of
fibronectin and VEGF for different conditions are pre-
sented in Supplemental Figures S1 and S2, respectively.

Results

The coupled model of tumor growth and angiogenesis
in a vascular tumor microenvironment is established to
explore how configuration and properties of parent ves-
sels and initial tumor size and distance regulate tumor
growth and angiogenesis. To examine differences
among different conditions, the evolution of tumor
growth and angiogenesis are presented in 90days. First,
the tumor with following conditions are modeled: ini-
tial size of medium (1mm diameter); the tumor placed
at middle of the small domain (4mm by 4mm); five
sprouts on each parent vessel; and one or two parent
vessels placed on walls of the domain (Figure 3(a) and
(b)). For the configuration with one single parent vessel
on left wall of the domain (Figure 3(a)), branching
occurs after 1.3 days and first loop is formed after
1.833 days. The tumor lacks oxygen in first days and all
tumor cells turn to hypoxic. Left part of the tumor
starts proliferating after 4.5 days and right part of the
tumor initiates proliferation after 6.5 days when the
capillary network is close enough to the tumor to feed
nutrient and oxygen. It should be noted that capillary
network reached the tumor in 4 days but capillaries that
have reached the tumor site are not functional since
they have not anastomosed. Therefore, there is no
blood flow in these capillaries. Following propagation
of capillary network and formation of closed loops,
oxygen diffuses to all parts of tumor and induces prolif-
eration. After a few days of tumor growth when tumor
reaches a certain size and consumes oxygen supplied by
vessels, farther parts of tumor cannot receive enough
oxygen to survive, and therefore they turn to hypoxic
cells. The growth of tumor is then biased toward the
oxygen source since the right part of the domain does
not have access to enough oxygen. Angiogenesis pro-
cess continues for 7.833 days. The final configuration of
tumor growth and angiogenesis after 90 days is shown
in Figure 4(a). The results of tumor growth over the
course of 90 days for the condition shown in Figure
3(a), with one parent vessel present on left wall and
tumor centered in the small domain, are presented in
Figure 5 and Supplemental Video 1. The density of
tumor cells in initial days of tumor growth increases in
the outer rim (where cells are in proliferative phase 2)
and cell cycles continue disregarding oxygen availabil-
ity. As time passes and capillaries provide oxygen for
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Figure 4. Different configurations of tumors after 90 days of progression with different tumor sizes and number of sprouts in small
domain: (a) final configuration of medium size tumor with one parent vessel and five sprouts, (b) final configuration of medium size
tumor in the presence of two parent vessels with five initial sprouts on each one, (c) final configuration of medium size tumor with
one parent vessel and three sprouts, (d) final configuration of medium size tumor with two parent vessels and three initial sprouts,
(e) final configuration of small size tumor with five initial sprouts on one parent vessel, and (f) final configuration of small size tumor
with two parent vessels and five initial sprouts.

Figure 3. Different configurations of initial conditions in terms of tumor size and number of sprouts in small domain (4 mm by
4 mm): (a) initial medium tumor with one parent vessel and five sprouts, (b) initial medium tumor with two parent vessels and five
initial sprouts on each vessel wall, (c) initial medium tumor with one parent vessel and three sprouts on vessel wall, (d) initial medium
tumor with two parent vessels and three initial sprouts on each vessel wall, (e) initial small tumor with five initial sprouts on one
parent vessel, and (f) initial small tumor with two parent vessels and five initial sprouts on each vessel wall.

1344 Proc IMechE Part H: J Engineering in Medicine 235(11)



cells on inner parts, tumor also start proliferating until
the space is filled without any free space remained for
cell duplication. Afterward, cells on a thin strip of pro-
liferating rim on the outer part of the tumor duplicate
and move outward, which leads to tumor expansion.

Through incorporation of one more parent vessel to
the right wall (Figure 3(b)), oxygen level in right and
left rim of tumor reaches above the hypoxic level and a
small portion of tumor starts proliferating at first days.
Then, the capillary network propagates and reaches
tumor and through preparation of fresh oxygen, all
tumor cells start proliferating. Branching initiates after
1 day near right parent vessel. First loop is formed after
2.625 days adjacent to right parent vessel. The other
parts of tumor that are in hypoxic state start proliferat-
ing after 4 days. The capillary network reaches tumor
after 4 days and angiogenesis continues for 7.875 days.
The results of 90 days of tumor progression and angio-
genesis are illustrated in Figure 4(b). The results of
tumor growth and angiogenesis over the course of
90 days are presented in Figure 6 and Supplemental
Video 2.

Furthermore, to explore how initial number of
sprouts affect tumor growth and angiogenesis, initial
number of sprouts is reduced from five to three.
Although the simulation process remains the same for
each tumor, we study differences in timing of events
and explain possible deviations from normal tumor
growth discussed above. All information about models
as well as references to figures and videos are tabulated
in Tables 2 and 3. The conditions for tumor and parent
vessels with three sprouts are shown in Figure 3(c) and

(d). When there is one parent vessel on the left wall
(Figure 3(c)), first branch is observed after 1.125 days
and first loop is formed after 2.9 days. However, the
tumor remains in hypoxic state until it starts proliferat-
ing after 4.5 days when the capillary network supplies
enough oxygen. The capillary network reaches tumor
after 3.625 days and angiogenesis continues for
6.75 days. As tumor grows, the induced capillary net-
work cannot supply oxygen to right parts of tumor and
hence the growth is not eccentric and is directed toward
parent vessel and capillaries. Capillary network and
tumor growth after 90 days are shown in Figure 4(c).
The simulation results of tumor growth and angiogen-
esis for this configuration over the course of 90 days
are illustrated in Supplemental Video 3. When there are
two parent vessels with three sprouts on each wall
(Figure 3(d)), first branch appears after 0.875 days.
First loop is formed after 2.5 days. Other parts of the
tumor start proliferating after 3.75 days. Capillaries
reach the tumor site after 3.75 days but these capillaries
are void of blood flow until they form closed loops.
Angiogenesis continues for 6.5 days. Tumor growth
and capillary network for this condition after 90 days is
shown in Figure 4(d). The simulation results of tumor
growth and angiogenesis over the course of 90 days are
illustrated in Supplemental Video 4. Comparing the
configurations with three and five initial sprouts show
that capillary density is reduced for three-sprout config-
uration, therefore we continue the simulations with
parent vessels that have five sprouts.

To understand how tumor size and initial number of
cancer cells affect angiogenesis and tumor growth, the

Figure 5. The growth of medium tumor during 90 days in tumor microenvironment with one parent vessel on left wall of
4 mm 3 4 mm small domain. First loop adjacent to parent vessel is formed after 1.833 days. Angiogenesis continues for 7.833 days.
Tumor continues the growth unconditionally until day 90.
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model is simulated for a smaller tumor size with the ini-
tial diameter of 0.5mm, with one and two parent ves-
sels and with five initial sprouts. Initial placement of
the tumor and parent vessels are shown in Figure 3(e)
and (f). When there is one parent vessel on left wall of
the domain (Figure 3(e)), all tumor cells enter quiescent
phase. First branching occurs after 2.375 days and first
loop is formed after 1.875 days. Left part of the tumor
starts proliferating after 5 days while the right part
remains hypoxic. Capillary network reaches the tumor
site after 4.625 days and right part of the tumor starts

proliferating after 6.75 days. Angiogenesis continues
for 8.5 days. Similar to one single parent vessel config-
uration, tumor grows eccentrically toward capillary
network. Tumor density and capillaries after 90 days
are shown in Figure 4(e) and the simulation results of
tumor growth and angiogenesis over the course of
90 days are illustrated in Supplemental Video 5. For
the configuration with two parent vessels placed on
right and left walls of the tumor domain (Figure 3(f)),
right and left rim of the tumor start proliferating from
the beginning. First branch is produced adjacent to left

Figure 6. Evolution of medium tumor during 90 days in tumor microenvironment with two parent vessels on left and right walls of
4 mm 3 4 mm small domain. Primary capillary loop is formed near right parent vessel in 2.25 days. First loop adjacent to left parent
vessel is formed in 2.625 days.

Table 2. Characteristics of different configurations of tumor and parent vessels.

Configuration no. Domain Tumor No. of parent
vessels

No. of initial
sprouts

Distance of
vessels
and tumor

Initial
configuration
figure

1 Small Medium 1 5 2 3-A
2 Small Medium 2 5 2 3-B
3 Small Medium 1 3 2 3-C
4 Small Medium 2 3 2 3-D
5 Small Small 1 5 2 3-E
6 Small Small 2 5 2 3-F
7 Small Small 1 5 1 7-A
8 Small Small 1 5 1.5 7-B
9 Small Medium 1 5 1 7-C
10 Small Medium 1 5 1.5 7-D
11 Small Small 1 5 2.5 7-E
12 Small Medium 1 5 2.5 7-F
13 Small Medium 1 5 3 7-G
14 Large Medium 1 5 3 9-A
15 Large Medium 2 5 3 9-B
16 Large Large 1 5 3 9-C
17 Large Large 2 5 3 9-D
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parent vessel after 2.125 days and simultaneously first
loop forms next to right parent vessel. Since there exist
two parent vessels, initial loop is sufficient to feed oxy-
gen to the tumor and induce tumor growth. The capil-
lary network reaches the tumor site after 5 days from
both sides. Angiogenesis continues for 7 days (Figure
4(f)). The simulation results of tumor growth and
angiogenesis over the course of 90 days in this condi-
tion are illustrated in Supplemental Video 6.

To investigate how distance between tumor and par-
ent vessel affects tumor growth and angiogenesis,
tumors with initial small and medium size are placed
closer and farther from the parent vessel which the
results are reported in Table 3 for brevity. When tumor
with medium size is placed 3mm away from the parent
vessel, the trend of tumor growth is completely different
from other configurations (Figure 7(g)). First branches
are observed after 5.75 days. First loop is formed after
14.25 days and angiogenesis continues for 26 days.
Particularly, right part of the tumor becomes necrotic
at first days because of its large distance from oxygen
source. Final configurations after 90 days are shown in
Figure 8(g), where the results show that tumor growth
is directed toward oxygen source in the domain,
approaching the newly formed capillary network. Also
for the tumor with a distance of 3mm away from the
parent vessel, the duration of angiogenesis increases
dramatically and this is due to necrotic region of the
tumor with limited production of TAFs (Supplemental
Video 13).

The last configuration is to investigate effects of
domain size and tumor initial density on vascular
tumor growth. First, the centered tumor with an initial
medium size and a parent vessel on left wall of the large
domain (6mm3 6mm) is simulated (Figure 9(a)). First
branch is formed 7 days after initiation of angiogenesis

and first loop is formed after 10.5 days. Angiogenesis
continues for 30 days. The large size of tumor domain
reduces tumor growth due to limited oxygen concentra-
tion around the capillary network, and therefore make
right part of the tumor necrotic (Figure 10(a) and
Supplemental Video 14). Incorporation of another par-
ent vessel on right wall (Figure 9(b)) prevents turning
tumor cells to necrotic phase. First branching occurs
after 9 days and first loop is formed after 11 days.
Second loop is produced after 15 days and it takes
30 days for angiogenesis to form final capillary network
(Figure 10(b) and Supplemental Video 15). Tumor
grows eccentric and all tumor cells receive required
oxygen during 90 days of progression.

For the large domain (6mm by 6mm), the chemo-
tactic strength reduces as the produced VEGF needs to
diffuse a longer distance, therefore gradients of VEGF
are weak near parent vessels. Since the chemotactic
strength within the large domain is limited, the strategy
of increasing the tumor density and as a consequence,
the number of tumor cells by five folds is applied to
make the tumor larger and realize how tumor growth
and angiogenesis are impacted. Tumor with initial large
size of 1.5mm in diameter is placed at center of the
large domain (Figure 9(c)). For the configuration with
a single parent vessel, first branches are observed after
6 days and first loop is formed after 8 days.
Angiogenesis also continues for 23 days. Although we
enlarged the tumor and rearranged all sprouts to move
toward the tumor, the capillary network cannot supply
enough oxygen to cells to induce centric tumor growth
and fold around the capillary network. The tumor and
capillary network are shown after 90 days in Figure
10(c) and illustrated in Supplemental Video 16. Finally,
even by adding another parent vessel on right wall
(Figure 9(d)), no necrotic part is observed in the tumor

Table 3. Results of different configurations of tumor and parent vessels.

Configuration no. First branch First loop Vascular
network
and tumor
contact

Angiogenesis
duration

Final
configuration
figure

Supplemental
Video no.

1 1.3 1.833 4 7.833 4-A 1
2 1 2.25 4 7.875 4-B 2
3 1.125 2.9 3.625 6.75 4-C 3
4 0.875 2.5 3.75 6.5 4-D 4
5 2.375 1.875 4.625 8.5 4-E 5
6 2.125 2.125 5 7 4-F 6
7 0.33 1.75 1.875 4.25 8-A 7
8 0.875 2.125 2.875 6.25 8-B 8
9 0.5 1.75 1.042 4.75 8-C 9
10 1.625 3.5 3.125 5.625 8-D 10
11 6.5 11.25 12.25 16.875 8-E 11
12 4.75 10 10.375 15.2 8-F 12
13 5.75 14.25 20.5 26 8-G 13
14 7 10.5 20.25 30 10-A 14
15 9 11 20.5 30 10-B 15
16 6 8 18.125 23 10-C 16
17 6.5 8.5 19 28 10-D 17

Ghazani et al. 1347



site. Branching initiates after 6.5 days adjacent to right
parent vessel and first loop is formed after 8.5 days next
to right parent vessel. Capillaries reach tumor after

21 days but angiogenesis continues for 28 days. Sprouts
on parent vessels could sense VEGF gradient and move
toward the tumor. However, the capillary network

Figure 7. Different configuration of initial conditions in terms of tumor size and position of parent vessels with respect to the
tumor with small domain: (a) initial small tumor with one parent vessel 1 mm away, (b) initial small tumor with one parent vessel
1.5 mm away, (c) initial medium tumor with one parent vessel placed 1 mm away, (d) initial medium tumor with one parent vessel
with 1.5 mm distance to the tumor, (e) initial small tumor with one parent vessel 2.5 mm away, (f) initial medium tumor with one
parent vessel 2.5 mm away, and (g) initial medium tumor with one parent vessel 3 mm away.

Figure 8. Different configuration of tumors after 90 days of progression in different tumor sizes and position of parent vessels with
respect to tumors in small domain: (a) final configuration of small tumor with one parent vessel placed 1 mm away, (b) final
configuration of small tumor placed 1.5 mm away from parent vessel, (c) final configuration of medium tumor with one parent vessel
1 mm away, (d) final configuration of medium tumor with one parent vessel 1.5 mm away, (e) final configuration of small tumor with
one parent vessel 2.5 mm away, (f) final configuration of medium tumor with one parent vessel 2.5 mm away, and (g) final configuration
of medium tumor with one parent vessel 3 mm away.
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could not supply sufficient oxygen to all parts of
tumor, therefore a heterogeneous growth of tumor is

observed in this configuration (Figure 10(d) and
Supplemental Video 17).

The number of tumor cells is plotted versus time to
compare the trends of tumor growth for different archi-
tectures of parent vessels, initial tumor and size of
domain (Figure 11(a)). The results confirm that the pat-
tern of tumor growth, when it is fed sufficiently by ves-
sels, obeys the power law of tumor growth, reported by
others55,56 and proved in Ghazani et al.41 A variety of
different growth patterns is observed depending upon
their conditions. The diversity of patterns of tumor
growth is mainly resulted from gradients of oxygen in
microenvironment which dictates biased growth of
tumor toward oxygen source and drop of proliferating
rim of the tumor. Rapid initial growth rate in first days
is due to sufficient space available for cells to grow
inside the tumor. When the cells continue proliferation,
they are packed inside tumor which increases the den-
sity of tumor and enforces the movement toward prolif-
erating rim. Thereby, the rate of tumor growth becomes
proportional to the rate of growth in proliferating rim.
The larger the tumor diameter, the higher the rate of
tumor growth, demonstrated by the increase in slope of
growth curve over time (Figure 11(a)). For quiescent
state of the tumor, growth is paused for several days
but reinitiates once it is fed by new capillaries. This dis-
continuity is more obvious in asymmetric conditions of
the far tumor in the presence of only one parent vessel.
In this condition, a necrotic part is formed in the tumor
site and the number of tumor cells stays unchanged for
several days. However, the growth is recovered after

Figure 9. Different configuration of initial conditions in terms
of tumor size in large domain: (a) initial medium tumor with five
sprouts on one parent vessel, (b) initial medium tumor in the
presence of two parent vessels with five initial sprouts on each
vessel wall, (c) initial large tumor with five sprouts on one parent
vessel, and (d) initial large tumor in the presence of two parent
vessels with five initial sprouts on each vessel wall.

Figure 10. Different configuration of tumors after 90 days of progression with different tumor sizes: (a) final configuration of
medium tumor with five sprouts on one parent vessel, (b) final configuration of medium tumor in the presence of two parent vessels
with five initial sprouts, (c) final configuration of large tumor with five sprouts on one parent vessel, and (d) final configuration of
large tumor in the presence of two parent vessels with five initial sprouts.
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receiving enough oxygen. Moreover, for the tumor in
large domain in the presence of one parent vessel, the
slope of growth curve is less than other conditions given
the existence of necrotic part and limited oxygen source
for tumor cells.

The number of ECs in the domain for 90 days for
different configurations of tumor-vessel is shown in
Figure 11(b). The trend of variations in number of ECs
is identical for all configurations. The rate of increase
in number of ECs is slow in first days but increases
during sprouting and branching. When the capillary
network reaches the tumor, the rate of increase in num-
ber of ECs reduces until angiogenesis stops. There is no
change in number of ECs after entry of branches into
the tumor. Number of ECs is highest in the large
domain with two parent vessels. Density of ECs in
small tumor configuration is higher than large tumor
because ECs have more space near the tumor to branch
and anastomose.

Prediction of tumor cells number by
artificial neural network

Artificial neural networks have a structure similar to
the human brain, which have been widely used in can-
cer therapy applications.57,58 The brain, as an informa-
tion processing system, is made up of key structural
elements called neurons. Artificial neural networks also
contain a set of interconnected neurons, called layers.59

To create these layers, these neurons are connected by
activation (stimulus) functions. In practice, a limited
number of functions are used as activation functions,
and neural network researchers often prefer to use non-
linear stimulus functions such as Gaussian or tangent
hyperbolic as activation functions.60 Neural networks,
despite their diversity, have a similar structure. A neural
network consists of three layers of input, hidden and
output layers. The input layer only receives information
and acts as an independent variable. Therefore, the

Figure 11. The number of tumor cells and ECs over the course of 90 days of tumor growth: (a) the number of tumor cells versus
time over the course of 90 days. Different trends of tumor growth are observed in initial days of simulation for different
configurations of tumor microenvironment. Overall, the tumor size increases over time with an increasing curve slope. For the far
tumor, the oxygen concentration is not sufficient for proliferation of tumor cells, leading to a hypoxic condition. This implies a
discontinuity in tumor proliferation for some days. Also one part of the tumor away from blood source becomes necrotic and (b)
the number of ECs in the capillary network for 90 days. The number of ECs at first days of growth increases slowly but the rate
increases during vascular branching toward the tumor. The rate of increase in the number of ECs then slows down due to a
decrease in branching and anastomosis. Lastly, angiogenesis stops completely and the number of ECs remains unchanged.

1350 Proc IMechE Part H: J Engineering in Medicine 235(11)



number of input neurons depends on the nature of the
problem and depends on the number of independent
variables. The output layer also acts as a dependent
variable, and the number of neurons depends on the
number of dependent variables.

Neural networks with radial basis function are
widely used to nonparametric estimation of multidi-
mensional functions through a limited set of educa-
tional information. Radial neural networks with fast
and comprehensive training, are interesting and efficient
networks which have received special attention.61–63

Hartman et al.64 proved that the networks with radial
basis function are very powerful approximators. It
requires sufficient number of neurons in the hidden
layer to make it able to approximate any continuous
function with certain accuracy. The interesting aspect is
that these networks have this property only with one
hidden layer. Radial-based networks derive the most
inspiration from the statistical techniques of pattern
classification, and their major advantage is the classifi-
cation of patterns that have nonlinear space. The main

RBF architecture consists of a two-layer network such
as Figure 12.

The hidden layer establishes a nonlinear adaptation
between the inputs and plays an important role in con-
verting nonlinear patterns into linear discriminant pat-
terns. The output layer produces the weighted sum of
the linearized patterns along with a linear output. If the
RBF is used to approximate the function, such output
would be useful; but if patterns need to be classified,
then a sigmoid function can be applied to the output
nerves to produce output values of 0 or 1. As can be
seen from the description above, the unique feature of
this network is the process that is performed in the hid-
den layer. The output of the RBF network can be cal-
culated by equation (29).

F xð Þ=
Xp
j=1

wjf x� uj
		 		� �

ð29Þ

Where wj is the weights of each neuron and uj are the
centers of the function of each neuron. The famous
function in radial networks is a Gaussian or exponen-
tial function as follows:

f x� uj
		 		� �

= e
�

x�ujk k
sj

� �2

ð30Þ

In this equation sj is the spread value which is extracted
experimentally. The initial size of tumor and distance
between tumor and parent vessel are as the inputs of
the network and the number of tumor cells is as the out-
put of network. The initial size of tumor, and distance
between tumor and parent vessel, calculated in Section
3, have been used as training inputs in the RBF. The
schematic of the proposed neural network to predict
the tumor volume is represented in the Figure 13.

In this figure R is the number of elements in the
input vector, p23 1 is the input vector which is made of
two elements including initial size of tumor and dis-
tance between tumor and parent vessel. Also Q1 shows

Figure 12. Structure of radial basis function.

Figure 13. Schematic figure of RBF network designed for estimation number of tumor cells.
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the number of neurons in the hidden layer, Q2 repre-
sents the number of neurons in the output layer, a1
demonstrates the output of basic radial layer, and a2
demonstrates the output of RBF networks.
Additionally, n1 is determined by dot product between
weights and bias vectors in hidden layer, and n2 is the
summation of weights vectors and bias in output layer.
As it is shown in Figure 13, there are nine neurons in
the hidden layer and one neuron in output layer. (IW)
and (b1) are the values of neuron weights and bias in
hidden layer, respectively. Also, (LW) and (b2) are the
values of neuron weights and bias in the output layer
which are listed in Table 4.

By substituting the above values in equation (31), for
every input value (p), the network is able to predict the
output values as follows:

output= LW½ �13n3 e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi
k=1

IWj kð Þ�p kð Þð Þ2
r

� b1½ �n31

� �
2

2
64

3
75
n31

0
B@

1
CA+ b2

ð31Þ

In this equation, j represents the j-th row of weight
matrix in the hidden layer, k shows the k-th element of
weight vector and the input vector, i is the number of
elements in the weight vector, and n is the number of
neurons in layer 1. Also, in this network the value of
spread is considered to be s=1. By considering the
above equation and substituting any desired value for
tumor distance and initial tumor size in the specified
range of acceptable inputs as described in Table 4, the
number of tumor cells can be estimated after 90 days of
growth. Hence, in order to evaluate the accuracy of the
predicted values by equation (31), four arbitrary inputs
are given to the network as test inputs and the results

of the network are compared to the corresponding
results of the mathematical model. The error of the
RBF network is demonstrated in Table 5.

The results indicate the high accuracy of the network
which is 95%. Using the proposed neural network, the
number of tumor cells are predicted at different dis-
tances of tumor and the parent vessel in Figure 14. The
distance is varied between 1 and 2.5 and the curves for
both small and medium tumors are depicted.

According to these results, increasing the distance
between tumor and parent vessel leads to a decrease in
the number of tumor cells. Also, the rate of decrement
for the number of tumor cells in short distances between
(1 and 1.5mm) is less than longer distances (1.5–2.5mm).

Discussion and conclusion

A new multiscale age-structured cell cycle model
coupled with a discrete agent-based angiogenesis
method is proposed. Four different phases of tumor
cells were incorporated to model cell cycle, including
two proliferative phases, quiescent phase and necrotic
phase. Different tumor-parent vessel arrangements
were simulated in configurations where initial tumor
has grown to such a certain size that existing vascula-
ture is unable to provide required oxygen. The scenario
demonstrates the situation when tumor induces angio-
genesis with the focus on dynamic features of tumor
cells and capillary network, population, and density of
tumor cells, and sprouting and angiogenesis. In addi-
tion to mathematical modeling, an artificial neural net-
work is adopted to be trained for available results to
propose an overall formulation for the mathematical
model. This formulation would be useful in determin-
ing the final number of tumor cells in the domain.

Table 4. Parameters of RBF network used for prediction of tumor cells number.

Numbers N1 N2 N3 N4 N5 N6 N7 N8 N9

Input
values

[S, 1] [S, 1.5] [S, 2] [S, 2.5] [M, 1] [M, 1.5] [M, 2] [M, 2.5] [M, 3]

Target
value

4.65E + 6 4.56E + 6 3.95E + 6 3.73E + 6 6.80E + 6 6.65E + 6 5.85E + 6 5.00E + 6 4.56E + 6

IW [1, 1] [1, 1.5] [1, 2] [1, 2.5] [2, 1] [2, 1.5] [2, 2] [2, 2.5] [2, 3]
LW 26.42E + 6 11.3E + 6 211.1E + 6 3.23E + 6 3.15E + 6 22.16E + 6 2.58E + 6 0 21.17
b1 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832
b2 5.12E + 6

Table 5. Error percentage between exact and prediction values.

Small tumor with
distance 1.75

Small tumor
with distance 2.25

Medium tumor
with distance 1.25

Medium tumor
with distance 2.75

Exact value 4.18E + 06 3.88E + 06 5.79E + 06 4.42 + E06
Prediction value 4.39E + 06 4.1E + 06 6.03E + 06 4.73E + 06
Error percentage 5 5.6 4.1 7
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As stated in Young,65 genetic mutations are not the
only reason behind tumor cells growth. Many environ-
mental conditions affect tumor growth and can strongly
influence the growth of a tumor in oncoming days.
With the knowledge of the trend and response of a
tumor in subsequent days of growth, it would be possi-
ble to suppress and hinder tumor growth. Anti-angio-
genesis therapeutics have attracted much attention in
recent years. Angiogenesis as the pivotal part of growth
of a solid tumor is being studied whether experimentally
or numerically. Clinicians are seeking a way to hinder
angiogenesis in order to reduce nutrients of the tumor
and suppress the growth and metastasis. Prediction of
behavior of a tumor in subsequent days in different
positions in relation to the tumor will help clinicians
better manipulate the therapeutic implementations.

In this study, effects of density of a tumor prior to
angiogenesis, number of initial sprouts, and distance of
the tumor and parent vessels are investigated.
Moreover, to understand the effects of size of the tissue
where tumor appears and also in vitro assay cultures,
two different domain sizes are studied.

It is demonstrated that the smaller the initial size of
the tumor, the stronger the gradient of angiogenic fac-
tor is needed to produce sprouts directing straight
toward the tumor. The rate of tumor growth for small
tumor is less than the rate for large tumor, probably
due to a weaker strength of angiogenic chemoattractant
gradients. It is also shown that the longer the initial dis-
tance of tumor cells to parent vessels, the higher the
density of initial tumor is needed to induce sprouting at
distant points of vessels.

Even for the configuration of one single parent vessel
next to small tumor, if the number of sprouts is adequate
and capillary network forms properly, part of the tumor
that is not faced to the vessel may receive enough nutrients
and oxygen to grow in proliferation state unconditionally.
Also the smaller the distance of the tumor to the vessel, the
more centric the growth of the tumor.

Approved by many animal models and studied by
Folkman,40 it is stated that when a tumor placed in

distances far away from a parent vessel, for example,
2.5 and 3mm away, it may take much longer time for
the vascular network to fully grow and reach the
tumor. In this study, it is also concluded that when a
tumor is moved in the distances of 2.5 and 3mm away
from a parent vessel, not only a bigger tumor is
required to induce sprouting and subsequent angio-
genesis phenomenon but also it will take much longer
time in comparison to closer distances to tumor to
form a vascular network of blood vessels including
blood flow.

The RBF neural network provides a comprehensive
formulation to be used in prediction of final tumor sta-
tus in the domain. Based on this formula, the curves for
the final number of tumor cells as a response of a tumor
in the domain are plotted against tumor-parent vessel
distance. As the results demonstrate, beyond a certain
distance, both small and medium tumors weaken and
the intensity of tumor cell number decrement increases.
This gives us the sense that a tumor is strongly depen-
dent upon vascular network such that in farther dis-
tances where vasculature growth is delayed, tumor
becomes smaller.

All in all, as it is stated in Perfahl et al.37 and Grogan
et al.,38 the geometry of domain in which tumor grows
is pivotal and this new hybrid model enables us to mon-
itor growth of a tumor and predict final architecture of
the network in different circumstances. Anti-angiogen-
esis therapeutics are proved to be effective modalities in
preventing devastating growth of a tumor and our
model again pinpoints the momentous role of angiogen-
esis in fatal growth of a tumor. Future studies can
enrich our model by introducing dynamic tumor net-
work, lymphocytes, stromal cells, and other nutrients
such as glucose into the model. Moreover, since blood
vessels in tumor-induced neovasculature is tortuous
and badly vascularized, smeared representation of neo-
vasculature can be a tool to model patient-specific
angiogenesis models which can be combined with the
present model to achieve better outcomes for clinical
purposes in the future studies.

Figure 14. Number of tumor cells evolution vs distance for small and medium initial tumors.
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