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ABSTRACT Escherichia coli is an important cause of bacterial infections worldwide,
with multidrug-resistant strains incurring substantial costs on human lives. Besides
therapeutic concentrations of antimicrobials in health care settings, the presence of
subinhibitory antimicrobial residues in the environment and in clinics selects for anti-
microbial resistance (AMR), but the underlying genetic repertoire is less well under-
stood. Here, we used machine learning to predict the population doubling time and
cell growth yield of 1,407 genetically diverse E. coli strains expanding under expo-
sure to three subinhibitory concentrations of six classes of antimicrobials from sin-
gle-nucleotide genetic variants, accessory gene variation, and the presence of known
AMR genes. We predicted cell growth yields in the held-out test data with an aver-
age correlation (Spearman’s r ) of 0.63 (0.36 to 0.81 across concentrations) and cell
doubling times with an average correlation of 0.59 (0.32 to 0.92 across concentra-
tions), with moderate increases in sample size unlikely to improve predictions fur-
ther. This finding points to the remaining missing heritability of growth under anti-
microbial exposure being explained by effects that are too rare or weak to be
captured unless sample size is dramatically increased, or by effects other than those
conferred by the presence of individual single-nucleotide polymorphisms (SNPs) and
genes. Predictions based on whole-genome information were generally superior to
those based only on known AMR genes and were accurate for AMR resistance at
therapeutic concentrations. We pinpointed genes and SNPs determining the pre-
dicted growth and thereby recapitulated many known AMR determinants. Finally, we
estimated the effect sizes of resistance genes across the entire collection of strains,
disclosing the growth effects for known resistance genes in each individual strain.
Our results underscore the potential of predictive modeling of growth patterns from
genomic data under subinhibitory concentrations of antimicrobials, although the
remaining missing heritability poses a challenge for achieving the accuracy and pre-
cision required for clinical use.

IMPORTANCE Predicting bacterial growth from genome sequences is important for a
rapid characterization of strains in clinical diagnostics and to disclose candidate
novel targets for anti-infective drugs. Previous studies have dissected the relation-
ship between bacterial growth and genotype in mutant libraries for laboratory
strains, yet no study so far has examined the predictive power of genome sequence
in natural strains. In this study, we used a high-throughput phenotypic assay to mea-
sure the growth of a systematic collection of natural Escherichia coli strains and then
employed machine learning models to predict bacterial growth from genomic data
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under nontherapeutic subinhibitory concentrations of antimicrobials that are common
in nonclinical settings. We found a moderate to strong correlation between predicted
and actual values for the different collected data sets. Moreover, we observed that the
known resistance genes are still effective at sublethal concentrations, pointing to clini-
cal implications of these concentrations.

KEYWORDS antimicrobial resistance, deep learning, high-throughput assay, machine
learning, whole-genome sequencing

E scherichia coli is a dominant bacterial species in the lower intestine of humans and
other endotherms, as well as within a range of environmental niches (1). Over

recent decades, the rising frequencies of E. coli strains that are resistant to multiple
antimicrobials in both the clinic and the environment have become a source of serious
concern for human and livestock health (2). A remarkably broad and flexible genetic
repertoire spanning both the core and the accessory genome appears to underlie the
rapid spread of multidrug-resistant E. coli. To diagnose and understand this spread, we
must accurately and exhaustively estimate how the variants in this genetic repertoire,
individually and in combination, affect E. coli growth under exposure to the range of
antimicrobial concentrations that the species encounters in nature and in the clinic.

The use of the E. coli gene knockout (KO) library has captured the effect of the com-
plete loss of many individual genes in the K-12 genome on growth in sublethal antimi-
crobial concentrations (3, 4). Combined with mechanistic modeling, such data can
guide our understanding of some of the K-12 antimicrobial resistance (AMR) defense
systems. However, natural E. coli strains have an open pangenome, which results in a
very high level of population diversity (5). The genome of K-12 may not represent this
diversity well, given that the phylogroup of K-12 only harbors ;20% of genes across
the pangenome for known E. coli strains and a similar fraction of the single-nucleotide
diversity present in the species (6, 7). As a result, most AMR effects likely evade detec-
tion in K-12 screens, while those that are detected often have little or no effect in other
backgrounds. Genome-wide association studies on broader panels of clinical and envi-
ronmental E. coli strains could successfully estimate moderate or large AMR effects of
common variants of all types (8). However, rare, weak, and background-dependent
AMR effects are challenging to detect and measure. Linkage also means that some
detected variants, although they may serve as diagnostic biomarkers for AMR, provide
little molecular understanding of AMR itself. Moreover, these methods examine the
association of the presence/absence of variants with the phenotype in isolation from
the rest of the variants, thus neglecting potential effects of interactions between var-
iants (9).

Machine learning methods incorporate genomic variants into a single prediction
framework that can capture the background dependency of AMR effects. In recent
years, the number of machine learning models for predicting AMR from whole-ge-
nome sequencing data has risen sharply (10–13). Ensemble models that combine
results from multiple weak learners into one model proved superior to other models
(14). So far, most studies have focused on qualitative AMR data sets with strains classi-
fied as resistant or susceptible to diagnostic antimicrobial concentrations or MICs, and
models are judged based on how accurately this binary classification is recalled. The
limited scope means that much of the underlying biological variation has been
obscured (reviewed in Liu et al. [12]). As a result, published approaches have mostly
captured common and large AMR effects, which represent already well-understood
aspects of AMR biology, while the impact of rare, weaker, or background-dependent
contributions on bacterial growth under AMR treatment has generally been neglected
(12). Furthermore, the evolution of antimicrobial resistance in nature is likely driven by
antimicrobial concentrations that are much lower (,1%) than the MIC or the diagnos-
tic concentrations used in the clinic (15). Antimicrobials can reach high local concentra-
tions downstream of production plants and sewer outlets (16), but are diluted to a
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100-fold below the MIC in many environmental and wild animal niches where E. coli is
more frequent (15–17). It is therefore entirely conceivable that the natural selection for
AMR resistance at subinhibitory concentrations may be driven partially, or even largely,
by effects other than those controlling resistance at diagnostic concentrations.

Here, we employed machine learning models to quantitatively predict the popula-
tion doubling time and cell growth yield of .1,400 E. coli strains at subinhibitory anti-
microbial concentrations from genomic data with no prior information on the resist-
ance mechanism. We quantified the contribution of both known AMR determinants
and genetic variants previously not known to affect AMR, disclosing the general impor-
tance of cell wall biosynthesis. Despite the unprecedented scale of the study and the
low measurement error, the best model predictions were limited to an average correla-
tion (Spearman’s r ) of 0.63 (ranging from 0.36 to 0.81 across antimicrobial treatment
conditions) for growth yield and 0.59 (ranging from 0.32 to 0.92 across antimicrobial
treatment conditions) for doubling time across antimicrobials. The unaccounted herit-
ability of antimicrobials resistance is therefore substantial, underscoring the challenge
of fully explaining AMR in an enormously diverse bacterial species in which most
causal variants are rare or only rarely affect AMR.

RESULTS

To predict E. coli growth at subinhibitory concentrations of antimicrobials, we used
.1,400 clinical, commensal, and environmental E. coli strains from major globally circu-
lating clones in the TransPred project (www.github.com/matdechiara/TransPred). We
used available whole-genome sequence information and data on the population dou-
bling time and cell growth yield of each isolate when clonally expanding as observa-
tions in our prediction framework. We selected three subinhibitory concentrations of
six bacteriostatic and bactericidal antimicrobials effective against E. coli as measure-
ment contexts.

In E. coli, resistance to diagnostic concentrations of the antimicrobials used here occurs
mainly through the horizontal transfer of plasmid-borne accessory genes that vary in
presence/absence across strains. We therefore first probed how well we could predict
growth at subinhibitory antimicrobial concentrations from the pangenome with linear,
gradient-boosting, and neural network regressors. The pangenome was composed of
47,717 genomic features with unique presence-absence distributions of gene families
across our strains. Based on gene presence-absence data, our best-performing predictive
models for each class of models attained means of 0.53 (range, 0.13 to 0.79) and 0.40
(range, 0.01 to 0.85) of Spearman’s r for growth yield and doubling time, respectively, in
held-out test data (Fig. 1). The correlations between predicted and actual values from the
best-performing model were all significant across antimicrobials and conditions com-
pared to the median correlation value computed for randomized data sets (see Fig. S1 in
the supplemental material). The observed improvements in Spearman’s r values when
we compared predicted value with randomized values were, on average, 0.35 (range,
0.07 to 0.65) for population doubling time and 0.54 (range, 0.12 to 0.71) for growth yield
(Fig. S1). In 6 out of 12 conditions with antimicrobial treatment for growth yield and dou-
bling time, respectively, the measures monotonically improved with increasing antimicro-
bial concentrations. This pattern is likely due to the higher fraction of between-strain vari-
ation explained by genetics, i.e., a higher broad-sense heritability, at these concentrations
(Fig. 1). Among predictive models, in 6 out of 38 conditions, the lasso regressors were
superior (Fig. 1). Neural networks consistently performed more poorly than other models,
suggesting that with the current sample size, the incorporation of complex feature inter-
actions did not improve predictions. The gradient-boosting regressor outperformed lasso
and neural networks for 32 out of 38 conditions (Fig. 1), underscoring the suitability of
these models for genome-based prediction of AMR, as reported previously (11, 18, 19).
Henceforth, we employed the gradient boosting regressors for the downstream analyses.

Prediction error rates for the training data sets were lower than those for the test
data sets, (Fig. S2), and many plausible causes could be responsible, including that the
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number of predictors features vastly exceeds the sample size. Feature importance anal-
ysis revealed that only ,0.02% of genome features were consistently picked by the
models across cross-validation data sets, ruling out feature selection as an effective
means for reducing the number of predictors (Fig. S3A). Moreover, using dimension
reduction for reducing the number of predictors led to higher overfitting and lower ac-
curacy (Fig. S3B). We therefore conclude that many predictor features, each of low im-
portance, contribute to prediction accuracy and therefore that all information, without
reduction, should be used for training models for best performance.

Despite a large data set, even the best-performing model failed to explain, on aver-
age, 44% of the variance across conditions when only taking accessory gene variation
into account. This performance was obtained after accounting for measurement var-
iance. The average Spearman’s r between bootstrapped replicates was 0.76 (standard
deviation, 0.14; see Materials and Methods) across antimicrobial concentrations and
measurements, showing low levels of environmental variation and stochastic noise.
Thus, most of the unexplained variation is genetic in nature and reflects a missing her-
itability. Conceivably, accessory genes that are too rare, too weak, or too dependent
on the presence of other variants that are too rare to be captured by our models could
account for some of this missing heritability. Such genetic effects stand a larger chance
of being captured if the sample size is increased. We therefore examined whether
moderate variations in sample size substantially impact prediction accuracy by down-
sampling the strains included in the predictor data set. We trained the models on ran-
domly generated subsamples of our data set at different sizes and examined the

FIG 1 The performance (Spearman’s r , y axis) of the best-performing predictive models of each model type (colors) for 6 antimicrobials (panels, x axis) at
3 concentrations (x axis) and under the control condition of no antimicrobial treatment (no AB) for doubling time (top row) and growth yield (bottom
row). The performance was assessed as the magnitude of correlation (Spearman’s r ) between the predicted and real data in the test data set. Numbers 1,
2, and 3 represent low, medium, and high subinhibitory concentrations of antimicrobials, respectively. Values are corrected for the measurement errors.
Error bars for the gradient boosted and lasso regressors correspond to 95% confidence interval computed from Spearman’s r values for four cross-
validation data sets. Error bars for the neural network shows 95% confidence interval computed from Spearman’s r values for 10 independent runs of the
best-performing models on the test data sets.
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performance of the trained on the same held-out test data set. Figure S4 reveals that
for the majority of conditions the performance of the models tends to level out with
increasing training sample size. We only detected monotonic improvement with
increasing sample size for 6/19 (doubling time) and 6/19 (growth yield) conditions
(Fig. S4A and S4B). These findings show that predictions are unlikely to improve sub-
stantially with moderate increases in sample size. Furthermore, the missing heritability
is accounted for either by accessory genes whose effects can only be captured by vast
increases in sample size or by genetic effects other than those associated with acces-
sory genes (see Discussion).

We pursued the latter hypothesis by asking to what extent predictions of growth at
subinhibitory antimicrobial concentrations improved by including the presence and
absence of individual SNPs in the core and noncore E. coli genomes. We included
879,037 SNP features in training data set for training gradient-boosting models (Fig. 2).
The inclusion of SNP information improved the pangenome-based prediction for 12/19
and 9/19 conditions for population doubling time and growth yield, respectively. The
average prediction improvement over the pangenome-based prediction was 5.5%
(range, 0.8% to 12%) for population doubling time and 6.9% (range, 0.7% to 21%) for
growth yield. Because the SNP input matrix retains information on the presence and
absence of genes, as we have examined SNPs in the accessory genome as well, the pre-
diction accuracy of models based on SNPs alone could not be strictly evaluated. We
conclude that SNPs whose effects are sufficiently common and strong to be captured
by modeling on sample sizes of .1,400 genotypes only accounts for a small fraction of
the missing heritability of AMR in our data set.

FIG 2 The performance (Spearman’s r , y axis) of the best-performing gradient-boosted regressor model of each predictor feature sets (colors) for 6
antimicrobials (panels, x axis) at 3 concentrations (x axis) and under the control condition of no antimicrobial treatment (no AB) for doubling time (top row) and
growth yield (bottom row). The performance was assessed as the magnitude of correlation (Spearman’s r ) between the predicted and real data in the test data
set. The values are corrected for the measurement errors. Numbers 1, 2, and 3 represent low, medium, and high subinhibitory concentrations of antimicrobials,
respectively. Error bars correspond to 95% confidence interval computed from Spearman’s r values for four cross-validation data sets.
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The current standards for predicting antimicrobial resistance at diagnostic concen-
trations rely on detecting the presence of known resistance genes, together called the
resistome (20). We therefore evaluated how well models based exclusively on the
known resistome performed compared to models that used more complete genome
information. We found that predictions of models using only the resistome data better
predicted the cell growth yield than the population doubling time under 13/18 antimi-
crobial treatment conditions, suggesting that antimicrobial resistance genes generally
enhance the cell growth yield more than they reduce the population doubling time
(Fig. 2). This is attributable to the fact that growth yield values have a broader range
than that of doubling time (Fig. S4A), resulting in a stronger signal-to-noise ratio and
consequently a better performance of predictive models. The prediction performance
worsened for 16/19 growth yield and 16/19 doubling time conditions when we used
the resistome alone; that is, the models achieved a worse prediction performance than
what the best-performing models achieved using the complete genome information,
i.e., considering all SNPs and gene presence-absence variations (Fig. 2). We conclude
that E. coli growth at subinhibitory antimicrobial concentrations is generally predicted
best from whole-genome data. Furthermore, our results overall indicate that, across
different data sets, gradient-boosting regressors yielded Spearman’s r values with an
average of 0.59 (range, 0.30 to 0.92) for population doubling time and 0.63 (range, 0.36
to 0.81) for growth yields (Fig. 2).

AMR in clinical contexts is diagnosed as growth or lack of growth at high MICs. To
explore to what extent antimicrobial resistance at subinhibitory concentrations and
MIC is predictable from the same genomic features, we labeled our strains as “resist-
ant” or “susceptible,” based on the distributions of predicted doubling times and
growth yields (Fig. S5A and B) (see Materials and Methods). We next measured how
well these labels recalled and predicted those assigned for the same strains grown at
higher MICs. Our results showed that resistance sensitivity labels assigned based on
growth yield at subinhibitory concentrations captured those assigned at high MICs
with accuracies that differ substantially between antibiotics. The average recall rates
were 0.78 (for ceftriaxone [CTX]), 0.84 (for ciprofloxacin [CIP]), and 0.73 (for trimetho-
prim [TRIM]), and the average precisions were 0.87 (for CTX), 0.35 (for CIP), and 0.89
(for TRIM) (Fig. S5C). Labels assigned based on population doubling times at MICs cap-
tured labels at higher concentrations less well, with average recall rates of 0.72 (for
CTX), 0.28 (for CIP), and 0.08 (for TRIM) and average precisions of 0.74 (for CTX), 0.21
(for CIP), and 0.27 (for TRIM) (Fig. S5C). Resistance to diagnostic concentrations of CTX
and TRIM, which is known to be determined mainly by the presence of certain accessory
resistance genes, was better predicted by inferred growth measures at subinhibitory than
resistance to CIP, which is held to be primarily driven by chromosomal mutations in core
E. coli genes (Fig. S5C). We compared the performances of best-performing prediction
models for growth yield at subinhibitory concentrations with those of previous machine
learning models that were trained on large-scale pangenomes and binary phenotypic
labels (resistant versus susceptible) (18). Subinhibitory concentration-based models for
growth yield values attained 89% of reported precision and 76% of reported recall for
TRIM and 95% of reported precision and 99% of reported recall for CTX, compared to
those of the best-performing predictive models in Moradigaravand (18). This shows that
for particular groups of antimicrobials, E. coli growth yields predicted at subinhibitory
antimicrobial concentrations can capture AMR phenotypes at diagnostic concentrations
very well.

We next sought to understand which gene presence and absence variation contrib-
uted to predicting E. coli growth (see Materials and Methods). We first identified genes
important to population doubling time and growth yield in the absence of antimicro-
bials. We found 16 (growth yield) and 14 (population doubling time) genomic features
(individual genes and sets of gene presence-absence variations) that the gradient-
boosting models consistently used for prediction (Fig. 3A and B). Shapley additive ex-
planation (SHAP) plots confirmed that the presence of 12/16 (growth yield) and 3/14
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(doubling time) of these features was associated with better growth (Fig. 3A and B).
None of these genomic features were shared between growth yield and doubling
time, consistent with these being genetically distinct aspects of E. coli growth. Most of
the detected genes lacked an annotated function or were annotated as mobile genetic
elements and/or phage genes. A few features (2/14 for cell doubling time and 7/16 for
growth yield) cooccurred across strains, i.e., Pearson’s r . 0.90 for their associations with
each other), excluding an extensive effect of the linkage between genetic features (Fig. 3A
and B). The majority of identified genes, i.e., 12/16 and 12/14 of features for growth yield
and doubling time, respectively, were also distributed across clades in a manner that was
associated with the population structure (P value from association, .0.05). Among features
not linked with population structure for doubling time, we identified only a copy of
the metabolism gene encoding tRNA-guanine transglycosylase (Fig. 3A). For growth
yield, we identified three copies of the glycotransferase and polysaccharide translocation
channel gene (kpsD) (21), all of which are implicated in cell wall biosynthesis, to be signifi-
cantly independent from population structure (Fig. 3B).

We next extracted the gene presence and absence features that predicted growth
at subinhibitory antimicrobial concentrations and found between 141 and 99 accessory
genes whose presences were always consistently utilized by models to predict growth
across 18 antimicrobial treatment conditions for growth yield and doubling time,
respectively. The distribution of most of these genes (114/141 for growth yield and 89/
99 for doubling time, with a P value of ,0.01 from Scoary) were at least somewhat
linked with the population structure, making the latter a possible cause for their associ-
ation to AMR. Among the genes with no significant lineage association, we found

FIG 3 Feature importance in gradient-boosted regressor models for (A) growth yield and (B) doubling time in the absence of antimicrobials. Features are
predictive gene family features, which are sorted according to their average ranks across models trained on four cross-validation subsets. Box plots show
the Shapley additive explanations (SHAP) value, i.e., the effect of the presence or absence of the genes on the response features of doubling time and
growth yield. Bar plots show the frequency of the gene families in the pangenome. Asterisks indicate the significance of P values for independence from
population structure, computed by Scoary, at 0.05 (*) and 0.01 (**) levels. The matrix shows pairwise association between the presence of hits, where the
color density shows the strength of association and colors show the direction of the Pearson correlation. The sequences of the gene families are provided
in GitHub directory of the project.
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many known AMR gene families (Table 1 and Table S2). The presence of aacA-aphD
and neo (kanamycin [KAN]), cat (chloramphenicol [CAM]), tet (tetracycline [TET]), and
dfrI and dfrV (TRIM) resistance genes consistently predicted a higher growth yield in
the presence of the expected drug, and the presence of aacA and aphD (KAN) and tet
(TET) also consistently predicted a shorter population doubling time under the corre-
sponding condition (Table 1 and Fig. 4). Our analysis also identified other gene families
linked with resistance genes, e.g., the tetracycline repressor gene tetR for TET resistance
and the alcohol dehydrogenase frmA gene for CTX resistance (Table 1). Being carried
on plasmids that contain AMR genes also explains why genes required for plasmid
transmission and replication and phage or transposons-linked genes predicted growth
in some antimicrobials. Most notably, the tnpA encodes the transposase for transposon
Tn3 and has been reported in full or truncated forms downstream of diverse plasmid
backgrounds containing blaCTX-M gene family (22).

The overlap between genomic features that were used to predict growth in differ-
ent antimicrobial treatment conditions was low (average Jaccard distances of 0.02 and
0.04 for growth yield and cell doubling time gene features, respectively). Among the
few genes whose presence predicted tolerance to multiple antimicrobials, we found
well-known resistance genes, e.g., the amino 39-glycosyl phosphotransferase (neo)
gene and tetA, reflecting extensive coresistance, which in some cases is due to genetic
linkage (Table 1). We used the SHAP values to quantify the impact of known resistance
genes on the growth of each strain (Fig. 4). The presence of the tetracycline efflux
pumps gene family tet improved the growth yield with 2.8%, 4.9%, and 12.1% of the
total population range and reduced the cell doubling time with, on average, 10.3%,
14.0%, and 19.5% of the total population range for three increasing subinhibitory con-
centrations of the antimicrobial (Fig. 4). The impact of the presence of these genes is
already noticeable at low tetracycline concentrations.

The two dihydrofolate reductase genes dfrI and dfrV both improved the growth
yield under trimethoprim exposure, with average contributions of 3.04% and 5.10% of
the total population range, respectively, but had only small effects on cell doubling
time (Fig. 4). We examined the growth yield increases associated with dfrI and dfrV
genes for different combinations of the presence and absence of the genes at three
concentrations (Fig. S6). At all concentrations, the effect of either resistance gene on
growth yield remained the same (for dfrI) or decreased slightly (for dfrV) in the pres-
ence of the other resistance gene (Fig. S6). The fitness interaction between resistance
genes suggests a slight negative epistasis, consistent with the diminishing return of
beneficial genes and variants reported in E. coli lab strains (21). The presence of the
chloramphenicol acetyltransferase gene, cat, improved the growth yield by 3.8%,
10.1%, and 13.0% of the total population range at low, moderate, and high concentra-
tions of chloramphenicol, respectively, but only marginally reduced the doubling time
(5.5% at the highest concentrations) (Fig. 4). Similarly, the KAN resistance aminoglyco-
side phosphotransferase gene family aacA-aphD individually improved the growth yield
by 3.6%, 16.3%, and 27.5% at low, moderate, and high kanamycin concentrations, respec-
tively, but reduced the doubling time only slightly and only at the highest concentration
(Fig. 4). Similarly to aacA-aphD, the presence of the neo gene increased the growth yield
at intermediate and high concentrations, but at .1% of the effect of aacA-aphD (Fig. 4).
The presence of the transposase tnpA gene, reflecting the impact of the linked with var-
iants of blaCTX-M, was associated with an increased growth yield of 17 to 22% of the total
population range across antimicrobial concentrations, but it had a consistently detrimen-
tal impact on the cell doubling time (Fig. 4). Overall, our predictions indicated that known
resistance genes contribute mostly to growth yield rather than to doubling times.
Moreover, the results provided quantitative measures of the growth effects of known
AMR resistance genes for each strain.

While the contribution of gene presence-absence variation to AMR is relatively well
understood, the contribution of SNPs is much less explored. Our analysis detected 67
synonymous, 17 nonsynonymous, and 9 intergenic significant variants (see Materials
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and Methods) on the predicted cell doubling time and growth yield. We detected
known resistance determination mutations for CIP, including four variants, i.e., S83L,
D87H, D87N, and D87Y, in the quinolone resistance-determining region of gyrA and
one variant (S80I) in the parC gene (23). Besides CIP, the gyrA and parC mutations
turned out to be somewhat predictive of the growth yield in subinhibitory concentra-
tions of the other antimicrobials (Table S3). Given that our collection includes multi-
drug-resistant clinical strains, this observation indicates how the extensive coresistance
for antimicrobials cause the presence of resistance variants for one antimicrobial to be
predictive of resistance against other antimicrobials (see Discussion). Other nonsynony-
mous predictive mutations were found in genes encoding membrane and capsule pro-
teins. These include an O-antigen of wzxC gene, a multitransmembrane protein with
enormous sequence diversity that flips oligosaccharide substrates. Mutations that
change O-antigen synthesis can have a significant effect on growth (24). The mem-
brane protein genes with significant nonsynonymous mutations included the nanC
(25) and ytfQ (26) genes, both of which are implicated in environmental nutrient
uptake. The presence of membrane and capsule production genes in the SNP- and
gene-based analysis suggests a key role for these genes in growth or stress response
to antimicrobial treatment, although the causative link needs to be demonstrated in
forward genetic experiments.

Pangenomes show a wide range of sizes across species, with the accessory genome
comprising 16% to 97% of the total for well-sampled genomes across bacterial species
(27). We therefore examined whether variation in pangenome sizes would affect pre-
diction, which informs about whether our models would be predictive in other bacte-
rial species. In doing so, we repeated the prediction of growth yields at subinhibitory
antimicrobial concentrations for simulated pangenomes with increasing accessory ge-
nome size and for increasing population size. As anticipated, the prediction error and
the extent of overfitting monotonically decreased as population size increased
(Fig. S7A), although a level of overfitting existed at all population sizes tested. The
monotonic effect of decreasing pangenome size, and potentially an effect of the back-
ground noise from uncorrelated genes, on improving prediction could also be seen.

FIG 4 The contribution of the presence of known resistance genes and tnpA gene to the prediction of growth yield and doubling time, as measured by
SHAP values. The tnpA gene was found to be linked with the extended-spectrum beta lactamase (ESBL) blaCTX-M gene. Box plots in red and blue correspond
to distribution of the effect of the presence and absence of features on growth-related features in each sample, respectively. The numbers above the box
plot pairs show the difference between the medians of boxplots for the presence and absence under each condition divided by the range of values for the
condition, which were turned into percentages. The numbers were used as proxies for the fitness effects of the resistance genes and the associated
resistance gene for tnpA.

Benkwitz-Bedford et al.

July/August 2021 Volume 6 Issue 4 e00346-21 msystems.asm.org 10

https://msystems.asm.org


When we decreased the pangenome size by 100 times, the true detection rate of the
causative genes remained in the same range (49%, 46%, and 48% for gene acquisition
values of 1027, 1028, and 1029, respectively); however, an increase in sample size
improved the detection rate (48%, 59%, and 61% for sample sizes of 200, 400, and 600,
respectively) (Fig. S7B). Moreover, for a selective advantage as low as 0.5 of the causa-
tive gene, the correlation between predicted and actual values on the test data set
was positive, irrespective of other pangenome parameter values. The value of 0.5 is
greater than the estimated selective advantage for the resistance gene under 15 out of
19 treatment conditions for growth yields in Fig. S5A (see Materials and Methods).
These results show that the predictive model remains applicable to a broad range of
scenarios for pangenome evolution.

DISCUSSION

In this study, we adopted a reverse genetics approach and applied three different
machine learning models to predict bacterial growth and doubling time from genomic
data under a range of growth conditions in natural E. coli strains. We focused on inter-
preting features of machine learning models to advance a mechanistic understanding
of the genetic repertoire for growth under antimicrobial treatment.

Our results suggest different genetic repertoires for growth yield and doubling
time. We note that growth yield in our study does not represent the total change in
population size from start to end of growth, and henceforth it should not be seen as
the efficiency with which the limited resource, i.e., carbon and energy, is utilized.
Rather, the growth yield is an aggregate measure of growth, influenced by the dynam-
ics of the growth rate along the entire growth curve, both in early and later phases of
growth. Because an expanding cell population changes its own environment, by con-
suming nutrients and secreting by-products of metabolism, the genetic factors influ-
encing growth have different weights on the growth rate at different time points. One
example is nutrient uptake, in which low-affinity transporters are active at high nutri-
ent concentrations and influence the growth rate at early stages of growth, while high-
affinity transporters are active at low nutrient concentrations and influence the growth
rate at later stages (28). Similarly, secretion of acidic metabolites generated by the tri-
carboxylic acid (TCA) cycle leads to an accelerating acidification of the surrounding
environment as a colony expands (29). The local pH change affects the proton gradient
across the membrane and thus the various processes that are driven by this gradient,
including the activity of proton symporters and antiporters, e.g., major facilitator super-
family (MFS), multiantimicrobial extrusion protein (MATE), and resistance-nodulation-
division (RND) transporters (30). At acidic pH, the proton gradient breaks down to the
extent that drug export driven by proton influx becomes impossible, and the cell
instead relies on ATPase efflux pumps and will consume energy in these processes.
The growth at early and late stages, and consequently the cell doubling time and the
growth yield, may therefore often be defined by different genetic factors.

We concluded that tree-based models were superior to standard fully connected
neural network models for AMR prediction from genomic variants, confirming previous
successful applications of ensemble-boosting classifier and regressor methods for
inferring AMR phenotype and pathogenicity from genomic data in Gram-negative
strains (11, 13). The superiority of ensemble-boosting methods to neural network mod-
els in genome-based AMR prediction tasks may be due to the nature of genomic data
sets, in which predictive genomic features, particularly known AMR determinants, are
individually meaningful and complex interactions between predictors are absent. For
the purposes of routine and effective clinical use, these models still require interpret-
ability, as the mechanisms and patterns that the model uncovers are important for
practical applications. Our findings revealed how the interpretability of features could
provide an understanding of the model when local explanations of each prediction
were combined. Using this approach, we measured the marginal effect of biomarkers
on prediction across different combinations of allelic status. Due to our modest sample
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size, we limited our analysis to known resistance determinants. However, the rapid
increase in genomic data will allow future studies to extend the approach to infer fit-
ness effects for many genomic variants with moderate to weak effects. Such analysis
allows not only comparing the relative importance of resistance genes across condi-
tions but assessing the average contribution of a gene across many genomic back-
grounds, which is infeasible and laborious in the lab. The data-driven approach is also
superior to experimentally assessing the fitness effects of genes in individual lab strains
over the course of the evolution, since this approach accounts for various genetic back-
grounds through which the gene is passed. By computing the average fitness effect
and the extent of variation around that average, our approach becomes doubly valua-
ble when considering the average effect in the presence or absence of other genes
with an effect.

Antimicrobial resistance research has been largely focused on clinical strains and
therapeutic antimicrobial concentrations. Therefore, the contribution of subinhibitory
antimicrobial traces, released as a result of anthropogenic interventions in the environ-
ment, to the rise of resistance has not been sufficiently studied (31, 32). Prior evidence
suggests that many types of plasmid resistance do not emerge de novo during treat-
ment (33). Thus, a patient or animal is either infected with the susceptible bacterium,
without any resistance developing during treatment, or they are infected with the re-
sistant strain and the antimicrobial treatment mainly causes an enrichment of a preex-
isting resistance gene or mutation. Our results demonstrated that the impact of resist-
ance genes is detected at subinhibitory concentrations. Therefore, the fitness effects
appear to outweigh the fitness cost at low antimicrobial concentrations. This finding
further supports the idea that the ability of most resistance genes to confer high-level
resistance at a low fitness cost shields the selective dynamics of mutants at low drug
concentrations, which leads to the selection and fixation of resistance variants (34).
The result calls for the extension of the selection window in resistance stewardship
programs to include subinhibitory antimicrobial concentrations, specifically the mini-
mum selective concentration (MSC), in environmental sites (32, 35).

Despite attainment of strong average correlations of 0.63 and 0.59 between predic-
tions for growth yield and population doubling time, respectively, there remains a
large gap to perfect prediction. We do not attribute the low heritability to gene expres-
sion variation. The reason is that the variation, irrespective of the nature of the varia-
tion, i.e., environmental or stochastic, is expected to be captured in measurement
errors, which we have accounted for in our models. Several other factors may explain
the low heritability. Some studies have suggested a possible role for sequence-inde-
pendent determinants of resistance, e.g., epigenetics, in the development of resistance
to antimicrobials, particularly at subinhibitory concentrations (36–38). Another possible
explanation is the role of rare variants or variants with weak fitness effects that remain
to be discovered (39). These could be either common alleles with moderate effects or
rare alleles with large effects. The latter has been reported for lab colony pools, where
around 10% of resistance to rifampin was caused by numerous rare mutations (40).
Furthermore, low-effect mutations differing from classic high-effect drug resistance
have been identified to drive streptomycin resistance at subinhibitory levels in
Salmonella enterica (41). Hence, capturing the information of rare genetic variants,
including variant types caused by genomic rearrangements and insertion sequence
movements (e.g., Di Gregorio et al. [42]), for the genome-based prediction of resistance
remains a challenge (43). The total heritability may also be increased by genetic inter-
actions (39) at inter- or intragene levels (44), which limits genome-based AMR predic-
tion accuracy in small- to moderate-sized genomic data sets (43).

Besides the limitations of predictions, our results also showed the extent to which
association of biomarkers with population structure and coresistance may constrain
the application of ensemble models. The population structure association of predictive
features causes the performance of the trained machine learning model to depend on
the lineages included in the training data set. Comprehensive and large-scale genomic
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sampling is always required to mitigate the above effects. The extensive coresistance is
caused by coselection of resistance determinants, which brings together resistance
determinants for different drugs in the same genomic context. In natural settings, bac-
terial populations are exposed to a combination of antimicrobials, anti-infective
agents, and heavy metals, all of which select for multidrug resistance (45). Coselective
potential has been reported for a number of antimicrobials, e.g., CIP and TRIM, in mi-
crobial communities treated with subinhibitory concentrations of antimicrobials (46).
For TRIM, coselection occurs as a consequence of sharing the same genomic context,
i.e., class 1 integrons, of the dhfr gene with resistance genes for other antimicrobials.
The presence of coselection between strains may improve the predictive model per-
formance by providing further predictive signals in the data set that can be utilized by
the model. However, coselection complicates the robust identification of a universal
biomarker genes, as the models misidentify noncausative resistance genes as bio-
markers. These challenges pose an issue for clinical diagnostic applications of genome-
based machine learning frameworks.

Deriving a genotype-phenotype map for E. coli strains from diverse sources has im-
portant implications for understanding and predicting the dynamics of the population
on epidemiological timescales and across environmental and clinical sites. Moreover,
such a genotype-phenotype map may directly inform on potential novel targets. The
successful application of machine learning methods provides the motivation for these
methods to be employed in future studies to predict other clinically relevant traits,
such as transmissibility, host preference, and horizontal gene transfer rate. These
endeavors would meaningfully improve infectious disease diagnostics.

MATERIALS ANDMETHODS
Strains and genomic data. We used data for 1,407 E. coli strains, which were collected, sequenced,

and growth phenotyped in the ongoing TransPred project and that are available online as part of an
expanding resource (www.github.com/matdechiara/TransPred). The strains were recovered from diverse
human settings, including hospital- and community-onset infections, food, wild animals, and wastewater
treatment plants. All TransPred sequencing was performed at the Wellcome Sanger Institute with a 450-
bp insert size on Illumina HiSeq 2500 machine with paired-end reads with a length of 100 bp. For the
purpose of predicting phenotypes from genomic information, we assembled the paired-end reads of
these strains using an in-house Velvet-based (47) assembly and improvement pipeline (48). These de
novo assemblies were annotated with Prokka (49). Codes and other intermediate files are available at
www.github.com/dmoradigaravand/TransPred_ML.

Genomic and phylogenetic analysis. For the purpose of identifying genomic variants that are used
by models for predictions of growth at subinhibitory antimicrobial concentrations, we mapped the short
reads against the K-12 E. coli reference genome (accession number NZ_CP032667) with SMALT v0.7.4
(https://www.sanger.ac.uk/tool/smalt-0/). A threshold of 30 was used for mapping, and SNPs were sub-
sequently called and annotated using SAMtools mpileup (50) and BCFtools (51). We removed SNPs at
heterogeneous mapping sites in which the SNP was present in less than 75% of the reads at the site, as
done previously (52).

To reconstruct the pangenome of the whole collection, we fed the output of Prokka into Roary (53) and
used the default identity threshold of 95% to identify orthologous gene families. We utilized Scoary (54)
with default parameters to compute the association between predictive accessory genes that were identi-
fied by the model and continuous growth features, i.e., population doubling time and cell growth yield, at
each antimicrobial concentration. Since Scoary works on binary response features, we first binarized the
continuous response variables according to the median value for each growth feature. We used the worst
pairwise-computed P value in Scoary to reject the significance of phylogenetic signal, i.e., the association of
the variant with the population structure (www.github.com/AdmiralenOla/Scoary). For the identified predic-
tor genes that were found to be unlinked with the population structure, we further characterized resistance
gene families. In doing so, we conducted a BLAST search with the default E value of 10 using the AMR genes
in the Comprehensive Antibiotic Resistance Database (CARD) (55). To examine whether the predictor genes
are tightly linked with any known AMR gene, we screened 200 bp downstream and upstream of the predic-
tor genes for the presence of known AMR genes in CARD. We also explored the functions of top-hit genes
that were identified by the predictive models by performing a BLASTX search against the NCBI protein data-
base. AMR determinants were identified using ARIBA (56) with the default similarity threshold. The output of
ARIBA was then turned into a presence/absence matrix.

Growth at subinhibitory antimicrobial concentrations.We used the population doubling time and
growth yield data generated for the strains studied in the TransPred project (www.github.com/
matdechiara/TransPred). The data capture the population doubling time and cell growth yield after 8 h
of growth of 1,407 E. coli strains. Each colony grows on top of a solid matrix composed of LB medium, in
which one of three sublethal concentrations for each of six antimicrobials, namely chloramphenicol

Machine Learning-Based AMR Prediction from Genomes

July/August 2021 Volume 6 Issue 4 e00346-21 msystems.asm.org 13

http://www.github.com/matdechiara/TransPred
http://www.github.com/dmoradigaravand/TransPred_ML
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP032667
https://www.sanger.ac.uk/tool/smalt-0/
http://www.github.com/AdmiralenOla/Scoary
http://www.github.com/matdechiara/TransPred
http://www.github.com/matdechiara/TransPred
https://msystems.asm.org


(CAM; 0.5 mg/ml, 1 mg/ml, or 2 mg/ml), ciprofloxacin (CIP; 0.002 mg/ml, 0.004 mg/ml, or 0.008 mg/ml),
kanamycin (KAN; 4 mg/ml, 8 mg/ml, or 16 mg/ml), tetracycline (TET; 0.3 mg/ml, 0.6 mg/ml, or 1.25 mg/ml),
and trimethoprim (TRIM; 0.125 mg/ml, 0.25 mg/ml, or 0.5 mg/ml), had been embedded. Colonies were
deposited as initially isogenic populations at initial population sizes of ;100,000 cells, with 1,536 colo-
nies deposited in systematic colony arrays on each plate, using robotics. A total of 384 of these colonies
were identical controls used to correct for spatial bias between and within plates. For each concentra-
tion of each antimicrobial, each strain was cultivated as six biological replicates on different plates.
Population expansion for each colony was followed by counting cells at 10-min intervals using the Scan-
o-matic framework v2.0 (29). From each colony growth curve, the population doubling time and the
total cell growth yield after 8 h were extracted. Experiments included automated transmission scanning
and signal calibration in 10-min intervals, as described previously (29). The absolute population doubling
times and growth yields were log2 transformed and normalized to the corresponding measures of adja-
cent controls on each plate, while data for missing or misquantified (growth curves heavily affected by
technical artifacts, such as growth medium background features, evaporation, light source failures, or
colonies expanding into each other, as reflected in abrupt peaks, collapses and other local irregularities
in the measured light transmission) colonies were discarded. The median of these logged and normal-
ized values across biological replicates for each lineage was retained and used as the continuous
response variable in the machine learning setting. The accession number and the median and standard
deviation of cell growth yield and population doubling time values for each strain is provided in
Table S1 in the supplemental material.

The doubling time represents the minimal population doubling time achieved during the growth
phase. The time that cell populations can sustain this rapid growth is typically short and occurs early, after
1.5 to 2 doublings. Before this phase, many cells remain in the lag phase that precedes reentry into the cell
cycle, while after this phase, resources (in our case, carbon/energy) become insufficient to support maximal
cell division for all cells in a population. The cell growth yield represents the total change in population size,
from the start of the experiment to the 8-h time point at which we extract the yield. We note that the cell
growth yield does not represent the total change in population size from start to end of growth, because
cells often have not yet reached their maximal cell number at the 8-h time point.

Machine learning to predict growth at subinhibitory antimicrobial concentrations based on the
genome. We calculated features from the genome to use as predictors in the models. These predictors
included (i) pangenome gene presence, a predictor matrix that contains a binary indicator of gene pres-
ence in the strain from Roary for each accessory gene and for each E. coli strain; (ii) SNPs, a matrix that
includes distinct encodings for alternative nucleotides and for the absence of the site compared with
the reference genome; and (iii) the resistome (20), a predictor matrix that contains a binary indicator of
the presence of an AMR determinant from CARD in the strain (55).

We applied three classes of machine learning methods on predictor matrices, a lasso-regularized regres-
sion model (57), a gradient-boosting regressor ensemble model (58), and a feed-forward residual neural
network (59). The models were trained on 80% of the input data set, with 4-fold cross-validation for tuning
hyperparameters, and evaluated on a 20% random held-out data set. For the lasso regression and gradient-
boosted regressor models, we utilized the Scikit-learn package (60) and the functions “linear_model.Lasso”
and “Ensemble.gradientBoostingRegressor,” respectively. We first measured the strength of the correlation
between the predicted and actual data using the Spearman’s rank correlation coefficient (Spearman’s r ) for
four cross-validation data sets. We then conducted a one-sample Student’s t test on the distribution of coef-
ficient values (Spearman’s r ) for the validation data in four cross-validation data sets and retained models
with a significantly positive coefficient value (P , 0.05). This step ensured that predicted values are posi-
tively linked with actual data, irrespective of the training data set. We then picked the hyperparameter set
that yielded the minimum average value of the mean absolute error (MAE) estimates across four cross-vali-
dation data sets as the best-performing model.

The hyperparameter values for the best-performing model on the training/validation data set were
then used to first train a model on the training data set and to examine its performance on the test data
set. We reported the coefficient (Spearman’s r ) of the correlation between the predicted values and
actual value on the test data set as the performance of the model. We defined the strength of correla-
tion based on Spearman’s r values as defined previously (61).

We used a grid search approach to find optimum values for the hyperparameters. The lasso model
was tuned by finding the value for the penalty term by testing values (1025, 1024, 1023, 1022, and 1021).
We tuned the gradient-boosted regressors by finding the optimal values for key parameters, including
tree depth (1–3), number of iterations (30, 60, or 100), and subsample size (1 or 0.8). The subsample pa-
rameter designates the fraction of samples used during the training of the model in each iteration.
Subsample values of less than 1.0 result in stochastic gradient boosting. Manual inspection of error in
runs over iterations revealed that models began to overfit after 100 generations for the response vari-
able. We therefore limited the iteration numbers to values smaller than 100.

To develop the neural network, we used the Keras library (62) and trained fully connected feed-for-
ward networks. We split the input data into test (20%), validation (20%), and training (60%) data sets,
and tested n = 2, 4, or 6 hidden layers, and n = 20, 40, or 60 neurons per layer, which were screened
jointly. We also examined the inclusion of a drop-out value of 0.2. The Adam algorithm was used for an
adaptive learning rate optimization. Models were trained for at most 100 epochs, with a batch size of 32.
We employed the “EarlyStopping” feature in the Keras library to terminate the training if the validation
loss did not improve after 200 epochs. Moreover, we examined the inclusion of a “skip connection” fea-
ture in the model, which skips some layer in the neural network and feeds the output of the first layer as
the input to the last layer. The skip connection has been suggested to mitigate the problem of vanishing
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gradients, and therefore, to speed up the learning process (63). Since the neural networks may yield dif-
ferent results across training runs, we repeated the training for each model specification 10 times and
retained the models with a positive correlation between predicted and actual data in the training data
set across all 10 runs. We then selected the model with the smallest value for the average MAE in the val-
idation data set across 10 runs as the best-performing model.

Among different parameters for the neural networks, only the inclusion of the skip connection consis-
tently improved the training accuracy, and other parameters appeared less effective. The inclusion of early
stopping did not always improve the performance of models or the extent of overfitting, i.e., the difference
between the error rate for training and test data set. The inclusion of the feature in the model was found to
yield better validation MAE loss for ;47% of the neural network models. Details of the performance of
lasso, gradient-boosted regressor, and neural network models with hyperparameter values in the grid
search space are provided in the GitHub directory (www.github.com/dmoradigaravand/TransPred_ML).

To account for the effect of measurement variations on prediction accuracy, we first computed the
mean and standard deviation across six measurements for each strain under each condition. We then
drew a sample from a normal distribution with the computed mean and standard deviation for the
measurements for each sample. We repeated the process for all samples and created a sampled data
set. We then measured Spearman’s r for correlations between the response feature values used for
training the models and the sampled data. We repeated the process 100 times and calculated the mean
of Spearman’s r values. We amended prediction performance values by dividing the correlation coeffi-
cient (Spearman’s r ) from predictions by the calculated mean Spearman’s r for the sampled data.

We examined the effect of applying a dimension reduction preprocessing step to reduce the num-
ber of predictors. To this end, we first computed the principal components for the training data set and
used these to transform the predictors in the test data set. We then used the new features for prediction.
We conduced predictions with the gradient-boosting regressor models as detailed above. We screened
a range of values for the number of PCs to examine the effect on both prediction accuracy and the
extent of overfitting.

Prediction of resistance and susceptibility labels at therapeutic concentrations. We examined
whether the population doubling time and growth yield predicted at subinhibitory antimicrobial con-
centrations reflected antimicrobial resistance at near-diagnostic MICs well. To do this, we used the phe-
notypic data reported in a previous study (18) on the resistance and susceptible labels, which was avail-
able for three drugs (CTX, CIP, and KAN), and a subset of 200 strains. In that study, we empirically
measured whether each strain could grow at near-diagnostic MICs and labeled them accordingly as re-
sistant and susceptible at therapeutic concentrations of antimicrobials. We then trained the gradient-
boosted regressor models on a training/validation data set, excluding the 200 strains, and used the
tuned model to predict cell yield and doubling time for the 200 strains with known phenotypic labels,
i.e., resistant and susceptible. The distribution of growth-related features was bimodal, corresponding to
resistant and susceptible strains, with modes separated more as the concentrations of antimicrobials
increased (Fig. S5A). To convert continuous predicted values into binary values, we first fitted a bimodal
distribution on predicted values with the expectation-maximization algorithm implemented in the
“normalmixEM” function in the mixtools R library (64). We then used the posterior distributions for the
fitted distributions to assign resistance and susceptible labels, assuming the distribution with a smaller
mean corresponds to the susceptible subpopulation, as shown in an example in Fig. S5B. Since the algo-
rithm may lead to different results, we repeated the fitting for 500 times and chose the fitted distribu-
tions in the majority of runs.

We then assigned labels as follows:

label xð Þ ¼ resistant if P xjD1ð Þ.P xjD2ð Þ
susceptible otherwise

�

where D1 and D2 are parameters of the normal distributions of the two mixture components and
mD1

.mD2
. We then measured precision (fraction of true-positive instances among the retrieved instan-

ces) and recall (fraction of retrieved true-positive instances among the true-positive instances) to assess
the performance of classification.

Extracting genomic features important to growth at subinhibitory antimicrobial concentrations.
We adopted global and local approaches to compute the importance of genomic features for predic-
tions in the gradient-boosted regressor tree models. In the global approach, we used the feature impor-
tance calculator (feature_importances) as part of the Scikit-learn package, where genomic feature impor-
tance was computed during the optimization of the weak learner in the boosting process. Here, the
importance value for a genomic feature corresponds to the fraction of samples for which the tree will
traverse a node that splits based on the feature. These values were averaged across all of the trees dur-
ing the iterations. In order to identify the features that most robustly contributed to prediction, we
included only features that were selected by all models across four cross-validation training/validation
data sets.

The local explanation approach employed the concept of Shapley additive explanations (SHAP),
derived from coalitional game theory. The concept helps to explain the feature importance for the out-
put for each sample. The SHAP method is an additive feature attribution method in which predictor fea-
ture values of data points serve as players in a coalition. A player is an individual accessory genome fea-
ture. The Shapley value of a feature value is defined as the contribution of the predictor to the payout,
i.e., prediction, which is weighted and integrated over all possible feature value combinations. Shapley
values are computed by introducing each feature, one at a time, into a conditional expectation function
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of the model’s output, fx Sð Þ ¼ EhfðXÞjdo Xs ¼ xsð Þi, and attributing the change produced at each step to
the feature that was introduced, then averaging this process over all possible feature orderings. Here, S
denotes the set of predictor features on which we are conditioning, X is a random variable representing
the model’s input predictor features, and x is the model’s input vector for the prediction. We used the
“TreeExplainer” function to explain the fitted tree as implemented previously (65), available in www
.github.com/slundberg/shap.

Besides single predictors, the SHAP method allows to simultaneous determination of the growth
effect for the combination of multiple resistance gene predictors. We obtained such combined effects of
specific antimicrobial genes for TRIM, for which we identified two well-characterized resistance genes,
dfrI and dfrV, on growth yield. In doing so, we measured SHAP values for single resistance genes in dif-
ferent contexts resulting from four combinations of the presence and absence of TRIM resistance genes,
i.e., dfrI and dfrV.

To assess the prediction importance of SNPs, we first extracted the global importance values for SNP
predictors consistently used by the gradient-boosting regressor model, as detailed above. Since we
included SNPs in both the core and accessory genomes, we specifically tested whether the presence of
a base pair substitution at the site, and not the presence/absence of the site, accounts for the impor-
tance of the feature in the predictive model. To this end, we conducted an analysis of variance (ANOVA)
test to examine the significance of the association between the presence of each nucleotide substitution
and the growth-related dependent variable. We repeated the process for every base alteration for SNP
sites that were found to be important by the gradient-boosting model across all cross-validation training
data sets.

Pangenome simulation. To assess the impact of pangenome and population parameters on predic-
tion, we simulated pangenome evolution under different combinations of the evolutionary constraints
of gene gain/gene loss ratio and population size. We then used the pangenome data to predict the
simulated growth yields, with increasing values for the penetrance of a causal allele. We simulated pan-
genomes using the Simurg package in R (66). To simulate different evolutionary scenarios and trait distri-
butions, we first used a range of values for population size (N = 200, 400, and 600). We assumed an
open pangenome model for bacterial pangenome evolution, in which the number of gene families
increases with the addition of new genomes (67, 68). We therefore varied only the rate of gene acquisi-
tion (� = 1027, 1028, or 1029), which tunes the increase in pangenome size, to create different pange-
nome matrices. The gene acquisition values of 1027, 1028, and 1029 correspond to accessory genome
size of 77%, 23%, and 1% of the pangenome, respectively. We kept the rate of gene loss (g) at a constant
value of 10211. This resulted in pangenomes of various sizes. We then randomly drew an accessory gene
with a frequency in the range of 0.45 to 0.55 and labeled them causal. We assigned continuous growth
values to strains using a distribution after fitting a normal curve with the mean values of m and a stand-
ard deviation of s to a realistic distribution, i.e., the distribution of growth yield values in the absence of
drug treatment (Fig. S5A). For strains lacking the causal gene, growth values were randomly drawn from
the baseline normal distribution with a mean value of m, whereas for strains harboring the causal gene,
random growth values were drawn from a normal distribution that had a mean value of m 1 ls , where
l corresponds to the selective advantage of the resistance gene. We screened a wide range of values for
l (0, 0.05, 0.1, 0.25, 0.5, 1, 1.5, 2, 5, and 10). We tuned and tested gradient-boosting regressors with 100
iterations and default parameters on the predictor and dependent data sets.

In order to compare simulation and actual results, we estimated the value for l under antimicrobial
treatments. To this end, we first fitted a bimodal mixed distribution to growth yield and doubling time
distributions for each condition (Fig. S5A), as mentioned above, and then measured the difference
between the means of normal distributions for susceptible and resistance subpopulations, as the experi-
mental l for the condition.

Data availability. The sequence data for the strains have been submitted to the European
Nucleotide Archive (ENA) under the study accession number PRJEB23294.
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