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Abstract.
BACKGROUND: DNA methylation is a molecular modification of DNA that is vital and occurs in gene expression. In cancer
tissues, the 5’–C–phosphate–G–3’(CpG) rich regions are abnormally hypermethylated or hypomethylated. Therefore, it is useful
to find out the diseased CpG sites by employing specific methods. CpG sites are highly correlated with each other within the
same gene or the same CpG island.
OBJECTIVE: Based on this group effect, we proposed an efficient and accurate method for selecting pathogenic CpG sites.
METHODS: Our method aimed to combine a L1/2 regularized solver and a central node fully connected network to penalize
group constrained logistic regression model. Consequently, both sparsity and group effect were brought in with respect to the
correlated regression coefficients.
RESULTS: Extensive simulation studies were used to compare our proposed approach with existing mainstream regularization
in respect of classification accuracy and stability. The simulation results show that a greater predictive accuracy was attained in
comparison to previous methods. Furthermore, our method was applied to over 20000 CpG sites and verified using the ovarian
cancer data generated from Illumina Infinium HumanMethylation 27K Beadchip. In the result of the real dataset, not only the
indicators of predictive accuracy are higher than the previous methods, but also more CpG sites containing genes are confirmed
pathogenic. Additionally, the total number of CpG sites chosen is less than other methods and the results show higher accuracy
rates in comparison to other methods in simulation and DNA methylation data.
CONCLUSION: The proposed method offers an advanced tool to researchers in DNA methylation and can be a powerful tool
for recognizing pathogenic CpG sites.
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1. Introduction

DNA methylations occur at cytosine which might affect the modifications of DNA molecules. In this
process, the gene expressions can be regulated without changing the DNA sequences. In particular, the
related gene silencing of DNA methylations is a well-accepted epigenetic mechanism that often occurs at
tumor suppressor genes loci in human cancers [1–5]. Recently, some high-throughput DNA methylation
platforms have generated amounts of DNA methylation data and mostly based on genotyping bisulfite
converted DNA. In this paper, one of the popular platforms, Illumina Infinium HumanMethylation 27K
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array, was used. Additionally, the β-values indicate the methylation status of the CpG sites within the
array while each site’s value is calculated by the average of approximately 30 replicates [6]. Every
individual β-value is a continuous variable between 0 and 1, where zero means unmethylated and one
means methylated.

To date, researchers have selected methylated sites by statistical classification approaches [7–9]. Even
though most of the CpG sites display various degrees of methylation, only a few gene expressions change.
The statistical approaches therefore are difficult to find relevant CpG sites from high-dimensional data,
making the statistical approaches not suitable for methylation data. In order to select CpG sites, different
parameter models were utilized by researchers to represent diverse status of the samples [10]. Methylation
data expresses different features from gene expression data. Firstly, the DNA methylation data has a
group effect feature among CpG sites based on gene groups and CpG island groups. Secondly, the
DNA methylation data values range between 0 and 1. Based on these features, Sun [11] has proposed a
procedure that merged the L1 penalty and squared L2 penalty to select methylated CpG sites.

With the Illumina HumanMethylation 27K array, each gene has about 1–25 correlated CpG sites and
each CpG island has about 2–11 CpG sites. Based on these aspects of DNA methylation data, a L1/2

penalized logistic regression model has been introduced to select potentially diseased pathogenic CpG
sites within one gene. The L1/2 regularization can be represented by Lq (0 < q < 1) regularization and
has exhibited properties for instance unbiasedness, sparsity and oracle [12]. Additionally, the sparsity
of the L1/2 regularization is better than L1 regularization [12–14]. Based on the L1/2 penalized logistic
regression model, we used the proposed network structure (the central node fully connected network)
to describe the two correlated CpG sites’ patterns, one is based on the gene group, whilst the other is
based on the CpG island group. The proposed method is designed to select CpG sites by group effect that
associate with diseases. The aimed method has a finer specificity than present methods, as it for instance
has the potential to select more relevant genes.

2. Methods

2.1. Network-regularization

In this research, n samples were used, D = {(X1, y1), (X2, y2), . . . , (Xn, yn) where Xi =
(xi1, xi2, . . . , xip) is the methylation β-value of the i-th sample and p represents the total number
of CpG sites, the dependent variable yi is a binary variable where 0 implies controls and 1 implies cases.
The logistic regression is:

f (xi, ϕ) =
exp
(
xTi ϕ

)
1 + exp

(
xTi ϕ

) (1)

where ϕ is the regression coefficients. The logistic log-likelihood is defined as:

l (ϕ) = −n−1
n∑
i=1

[yilogf (xi, ϕ) + (1− yi)log(1− f(xi, ϕ))] (2)

ϕ was obtained by minimizing the log-likelihood. In high dimensional application, it is not appropriate to
solve the logistic model directly and may result in overfitting. Hence, the regularization approaches are
employed to aim at the overfitting problem. The sparse logistic regression can be laid out as Eq. (2) when
a regularization term is added:

ϕ∗ = avgmin(−l (ϕ) + P (ϕ)) (3)
where P (ϕ) is the penalty function.
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Fig. 1. a. Previous fully connected network. b. Central node fully connected network.

Lasso (L1) and L2, a well-recognized regularization approach was used in previous methods. The
L2 does not have sparsity and L1 has a sparsity less than Lq (0 < q < 1). Nonetheless, when q lies
closer to zero, results show a sparser Lq and subsequently more challenging to converge. Therefore, some
researchers [12] investigated the properties of Lq (0 < q < 1) regularization and demonstrated the L1/2

regularization is particularly essential and crucial. The performance between Lq penalty and L1/2 has no
significant diversity whereas the L1/2 regularization is much more facile to solve. Accordingly, the L1/2

regularization can be laid out as Lq (0 < q < 1) regularization which exhibits unbiasedness as well as
oracle properties [12–14]. In high-dimensional DNA methylation data, disease-related CpG sites are very
limited and therefore, in practice, the L1/2 penalty methodology would be more significant than the L0,
L1 and L2 approaches. Consequently, the L1/2 penalty was favored in our logistic regression model.

Some methods have been provided in order to tackle highly correlated variables. Elastic net penalty
(L1 +L2) and HLR (L1/2 +L2) emphasizes a grouping effect and tend to smooth the coefficient profiles.
However, the pathway information was neglected in these methods. To merge CpG sites deduction into
the analysis of high-demensional methylation data, we extended a network-based regularization technique
designed for the L1/2 penalty.

The methylation data displays a strong group effect and thus previous research used a fully connected
network (Fc.net) to describe the correlated CpG sites group patterns within a gene. In methylation data,
the group effect of CpG sites is not only present within one gene and present within one CpG island. There
are overlapping parts between groups and these overlapping parts correlate with both parts respectively.
With the different previous network, we set the overlapping part as the central node and connect it
with other correlated parts (Fig. 1). The network not only has the genome information or CpG island
information, but also the two aspects of information integrated into the network. It can better reflect the
relevance of CpG site.

The network information is represented in a graphed structure with p-dimensional Laplacian matrix
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L = {lab}. It is defined as:

l∗ab =


1 if a = b and da 6= 0

−(dadb)−1/2 if a and b are linked with each other
0 otherwise

where da is the total number of connections at vertex a in graph.
The penalty function in Eq. (3) is:

P (ϕ) = λ1||ϕ||−
1

2 + λ2ϕ
TLϕ

(4)

= λ1

p∑
i=1

|ϕi|−
1

2 + λ2

p∑
a=1

∑
a∼b

(
ϕa√
da
− ϕb√

db

)
where || · ||1/2 is a L1/2 norm and a ∼ b illustrate the variables which are linked to the a-th predictor. The
sparsity and smoothness are controlled by the parameters λ1 and λ2.

The effectiveness of the penalty function reduced significantly when two negatively correlated predictors
are interacted; the signs of coefficients are thus predicted and added to the Laplacian matrix to overcome
problem:

l∗ab =


1 if a = b and da 6= 0

−sgn(ϕ∗a)sgn(ϕ∗b)(dadb)
−1/2 if a and b are linked with each other

0 otherwise
(5)

The adaptive net function can be written as:

ϕTL∗ϕ =

p∑
a=1

∑
a∼b

(
sgn(ϕ∗a)ϕa√

da
−

sgn(ϕ∗b)ϕb√
db

)2

Based on |βa| ≈ sgn(β∗a)βa for βa ≈ β∗a, the adaptive penalty function can be written as:

P (ϕ) = λ1

p∑
j=1

|ϕj |1/2 + λ2

p∑
a=1

∑
a∼b

(
|ϕa|√
da
− |ϕb|√

db

)2

(6)

2.2. The coordinate descent algorithm

To solve regularization models, the coordinate descent algorithm adopted as a competent tool. Regarding
the coordinate descent algorithm, we referred to previous research [11,15,16] and Eq. (2) can be linearized
by Taylor series expansion at current estimates ϕ∗:

l∗ (ϕ) ≈ 1

2
n−1

n∑
i=1

wi
(
zi − xTi ϕ

)2
(7)

where zi = xTi ϕ
∗+(yi−f∗(xi))/wi,wi = f∗(xi)(1−f∗(xi)), f∗ (xi) = exp

(
xTi ϕ

∗) /(1+exp(xTi ϕ
∗)).

Next, the estimator:

ϕ∗a =
s(n−1

∑n
i=1wixia

(
zi − z̃(a)i

)
+ λ2g (a) ,λ1)

λ2 + 1
(8)
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where z̃(a)i =
∑

j 6=i xijϕ
∗
j , g (a) =

∑
a∼b

|ϕ∗
b |√
dadb

and s(σ, γ) is an enhanced L1/2 thresholding operator
for the coordinate descent algorithm [12–14].

S (σ, γ) =

{
2
3σ
(
1 + cos

(
2(π−φγ(σ))

3

))
if |σ| >

3
√
54
4 (γ)

2

3

0 otherwise
(9)

where φγ (σ) = across((γ/8)(|σ|/3)2/3).

3. Results and discussion

3.1. Analyses of simulated data

The performance of the proposed simulation study quoting the simulation from Teschendorff et al. [17]
and Su and Wang [11] was analyzed and evaluated. There were 600 groups, which were divided into
100 groups, 150 groups and 7 sets of 50 groups in accordance to their number of CpG sites. Each group
comprised of at least 1 CpG site up to 9 CpG sites reciprocally. In total, there were 2500 CpG sites.

First, we simulated variables with the group effect ranging between 0 and 1. So we performed an
inverse logit transformation on a multivariate normal distribution variable to represent the β-values of the
i-th CpG site in the g-th group.

xi,g =
exp (ti,g)

1 + exp (ti,g)
, ti,g ∼2Nsg (µ,σ) (10)

where sg is the size of group, i.e. 1 6 sg 6 9. In this simulation model, we set µ = (−1, . . . ,−1)T , xi,g
ranging between 0 (unmethylated) to 1 (completely methylated). The relationship of CpG sites within
group is shown by σ. The covariance matrix σ is presented as follows:
(1) σ = ρ|a−b|, ρ = 0.2, 0.5, 0.7.
(2) σ = ρ for a 6= b and and σ =1 for a = b, ρ = 0.2, 0.5, 0.7.
The first condition is autoregressive (AR) model, and the second condition is compound symmetric

correlation model. We set three different correlation coefficients ρ = 0.2, 0.5 and 0.7 for all conditions [18,
19].

Second, given the regression coefficients ϕ based on previous research, ϕg = (ϕ1,g, . . . , ϕpg,g)
T is the

coefficient of CpG sites within the g-th group. After that, one group from each of the 9 different groups
was selected to set the regression coefficients. At this step, there were 45 CpG sites which have been
assigned the regression coefficients value. The regression coefficients ϕk,g are presented as:

ϕk,g =

{
sg
−0.5(−1)kδ, for all k = 1, . . . , sg if sg is even number

sg
−0.5δ, for all k = 1, . . . , sg if sg is odd number

(11)

when δ is the strength of the true signals. The other sets of regression coefficients were set to 0.
In the simulation models, there were 45 pathogenic CpG sites in a total of 2500 CpG sites. Lastly, the

yi is given by Bernoulli distribution. For each simulation set, there were 200 cases and 200 controls.
There were nine simulation conditions based on different parameters, for instance the strength of the true
signals.

We repeated simulations 100 times for each condition. We then used the 10-fold cross-validation
(CV) approach in the training set in order to tune the optimal regularization parameters of the Lasso,
Elastic-Net (Enet), L1+ Fc.net, L1/2, HLR (L1/2 + L2), L1/2+ Fc.net. Note that, the Enet, L1+ Fc.net,
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Table 1
The total area under the averaged ROC curves (AUC) and MSE for all models

δ σ ρ Lasso Enet L1+ Fc.net L1/2 HLR (L1/2 + L2) L1/2+ Fc.net
AUC MSE AUC MSE AUC MSE AUC MSE AUC MSE AUC MSE

1 AR(1) 0.2 0.806 0.273 0.847 0.238 0.850 0.239 0.809 0.260 0.853 0.254 0.860 0.197
1 AR(1) 0.5 0.871 0.213 0.885 0.206 0.888 0.197 0.856 0.225 0.933 0.161 0.954 0.116
1 AR(1) 0.7 0.898 0.187 0.906 0.185 0.909 0.175 0.917 0.169 0.942 0.149 0.962 0.101
2 AR(1) 0.2 0.806 0.273 0.860 0.237 0.866 0.220 0.809 0.260 0.869 0.213 0.921 0.155
2 AR(1) 0.5 0.871 0.273 0.889 0.237 0.903 0.220 0.918 0.167 0.953 0.134 0.975 0.085
2 AR(1) 0.7 0.898 0.187 0.904 0.177 0.912 0.168 0.917 0.169 0.953 0.133 0.970 0.089
2 CS 0.2 0.852 0.226 0.879 0.207 0.889 0.193 0.820 0.257 0.893 0.197 0.936 0.139
2 CS 0.5 0.899 0.181 0.913 0.163 0.919 0.157 0.895 0.182 0.961 0.128 0.969 0.097
2 CS 0.7 0.924 0.162 0.927 0.157 0.934 0.147 0.915 0.171 0.957 0.125 0.979 0.080

Fig. 2. The ROC curve of every model.

HLR (L1/2 + L2) and L1/2+ Fc.net methods have two-dimensional parameter surfaces in the 10-CV
approach. Afterwards, the logistic regressions with the estimated tuning parameters were employed
to build different classifiers. Lastly, the attained classifiers were adopted to the test set for further
classification and prediction.

Figure 2 shows the receiver operating characteristic curve (ROC curve) for every model. The green



H.-K. Jiang and Y. Liang / Penalized logistic regression based on L1/2 penalty S167

Table 2
The AUC of real data for each method

Lasso Enet L1+ Fc.net(gene) L1/2 HLR (L1/2 + L2) L1/2+ central node Fc.net
Pre 0.798 0.886 0.921 0.803 0.908 0.946
Post 0.762 0.898 0.934 0.771 0.923 0.948

Fig. 3. The histogram of correlation between CpG sites.

solid line (L1/2+ Fc.net) is closer to the upper left corner in the system than other line. So the effect
of L1/2+ Fc.net is at optimal for the other algorithm in each model. Table 1 shows the total area under
the averaged ROC curves and the MSE of every model respectively. From Table 1 it can be seen that
L1/2+ Fc.net also has a very good performance within all models. In general, our proposed enhanced
L1/2 model achieved preponderant accuracy rates in all models in comparison to the other methods (the
Lasso, Enet, L1+ Fc.net, L1/2 and HLR (L1/2 + L2)).

3.2. Analyses of real data

To further evaluate the effectiveness of our proposed method, in this section, we examined the DNA
methylation (ovarian cancer) data generated from Illumina Infiniumm HumanMethylation 27K Bead-
chip [20]. The data is accessible from NCBI (http://www.ncbi.nlm.nih.gov/).

The data was generated by llumina Infiniumm HumanMethylation 27K Beadchip that contains 22727
CpG sites. We first removed samples which were low in BS conversion efficiency or low in CpG coverage.
After that, a total of 207 genes contained more than 3 CpG sites and 295 CpG islands contained more than
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Table 3
The top 20 CpG sites and the corresponding genes selected from the comparison between pre-treatment and normal control cases

Enet L1 + Fc.net (gene) HLR (L1/2 + L2) L1/2 + central node Fc.net
cg1100973 cg0237448 cg2079283 cg15616083 cg02505409 cg21493583 cg11804789 cg06409153
(MARCO) (PRF1) (PTPRCAP) (PAGE2) (ANGPTL4) (CRIPT) (CST7) (ABCA5)
cg0498897 cg2007009 cg04988978 cg27303882 cg06521852 cg00201234 cg24505527 cg05923103
(MPO) (S100A8) (MPO) (MYL4) (HRIHFB2122) (FBLN2) (NKIRAS2) (RNF11)
cg2079283 cg2706761 cg0996492 cg05294455 cg08694544 cg09638834 cg15853125 cg09497789
(PTPRCAP) (CYP4F3) (KCNE1) (ADORA1) (RTBDN) (RAET1L) (TIAM1) (SPAG17)
cg0996492 cg0435376 cg11009736 cg13626881 cg15853125 cg14861570 cg08694544 cg13626881
(KCNE1) (MS4A6A) (MARCO) (ADORA1) (TIAM1) (MMD) (RTBDN) (ADORA1)
cg0652185 cg0224062 cg14360917 cg11412582 cg21608192 cg09964921 cg07607462 cg11412582
(HRIHFB2122) (PLCB2) (SP2) (HOXB5) (XYLT1) (KCNE1) (UBR1) (HOXB5)
cg0013453 cg0619637 cg03801286 cg01405107 cg09497789 cg04988978 cg20792833 cg15736165
(UBASH3A) (TREM1) (KCNE1) (IGLL1) (SPAG17) (MPO) (PTPRCAP) (BNC1)
cg1436091 cg21126943 cg06521852 cg10494770 cg20792833 cg14319409 cg14027234 cg05105069
(SP2) (CEACAM6) (HRIHFB2122) (SNRPN) (PTPRCAP) (GLRA1) (CD248) (TCEAL7)
cg2193281 cg0020123 cg21517055 cg24993443 cg06409153 cg26838900 cg00201234 cg07376232
(CSTA) (FBLN2) (MGC11271) (BRDG1) (ABCA5) (LRRC15) (FBLN2) (AMICA1)
cg0097486 cg2746119 cg00201234 cg04398282 cg13626881 cg23490074 cg04988978 cg21493583
(FCGR3B) (FXYD1) (FBLN2) (ABCA5) (ADORA1) (C19orf2) (MPO) (CRIPT)
cg2151705 cg0529445 cg00134539 cg14027234 cg2193281 cg17231524 cg06183267 cg03856723
(MGC11271) (MYL4) (KCNQ2) (CD248) (CSTA) (MGC39606) (AFF3) (PRKACA)

Fig. 4. The boxplot of correlation between CpG sites.

3 CpG sites in the data; samples with error were removed. Lastly, there were 156 controls case samples
(Healthy sample), 120 pre-treatment case samples and 122 post-treatment case samples. For these three
cases, we calculated the maximum correlation of CpG sites in each group (gene and CpG island).

Figure 3a–c shows the histogram of maximum sample correlation between CpG sites within genes in
control, pre-treatment and post-treatment case where Fig. 3d–f shows the histogram of maximum sample
correlation between CpG sites within CpG islands in control, pre-treatment and post-treatment cases.
Figure 4 shows the boxplot of maximum sample correlation between CpG sites in gene or CpG islands.
Based on Figs 3 and 4, the results show that most CpG sites within the same group have high correlation
in pre-treatment case samples and post-treatment case samples whereas the control case samples only
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Table 4
The top 20 CpG sites and the corresponding genes selected from the comparison between post-treatment and normal control
cases

Enet L1 + Fc.net (gene) HLR (L1/2 + L2) L1/2 + central node Fc.net
cg23580000 cg09626634 cg06653796 cg12243271 cg17682828 cg25554036 cg11093356 cg04836428
(ADCY7) (EBI2) (LIME1) (CFI) (FXYD7) (WFS1) (DDX19A) (DTNA)
cg06653796 cg22988566 cg10986043 cg10467098 cg02713563 cg23125689 cg12711814 cg10777851
(LIME1) (WFDC10B) (TCAP) (Bles03) (TRAPPC6A) (CD81) (ENO1) (CD200)
cg10986043 cg24335895 cg23580000 cg19573166 cg06653796 cg04232649 cg12906740 cg00636639
(TCAP) (COX7A1) (ADCY7) (SLC22A17) (LIME1) (CCNG1) (NUDT15) (MRRF)
cg13379236 cg19573166 cg13379236 cg15096140 cg15489301 cg25410053 cg14838256 cg17133388
(EGF) (SLC22A17) (EGF) (MYO1B) (AKR1B10) (ZIC3) (SRD5A2L) (C3orf28)
cg03547797 cg15096140 cg03547797 cg05767404 cg11093356 cg24643262 cg23002907 cg14275779
(GAS2) (MYO1B) (GAS2) (C1orf150) (DDX19A) (BMX) (RBMS2) (PLEKHH3)
cg05135288 cg13745870 cg05135288 cg05004940 cg03547797 cg26200585 cg02964389 cg07389922
(RHOT2) (SPATA12) (RHOT2) (C20orf195) (GAS2) (PRX) (PSMD9) (C17orf81)
cg20357806 cg00134539 cg12006284 cg23506842 cg20630655 cg14132995 cg23917399 cg19514928
(PPBP) (UBASH3A) (WT1) (PTPN7) (RNUT1) (SLC35A2) (TNFAIP8) (TMEM56)
cg12006284 cg16853982 cg20357806 cg23917399 cg10986043 cg13056210 cg09119665 cg05798972
(WT1) (ACTN2) (PPBP) (SPATA12) (TCAP) (MXRA5) (PNMA1) (PPARBP)
cg21640749 cg10467098 cg24335895 cg09626634 cg02497758 cg04499381 cg17682828 cg00096922
(CD300LF) (Bles03) (COX7A1) (EBI2) (MAFB) (CXorf9) (FXYD7) (DLX5)
cg12243271 cg13247990 cg21640749 cg23917399 cg25919221 cg13435792 cg09816912 cg04232649
(CFI) (MLCK) (CD300LF) (TNFAIP8) (CA6) (C12orf46) (MARCKS) (CCNG1)

show a significant correlation.
Table 2 shows the AUC for each method from real data analysis. In real data, the enhanced L1/2 model

also achieved higher accuracy rates. Tables 3 and 4 show the top 20 selected CpG sites for all methods. We
further validated the chosen genes from the GeneCards Database (http://www.genecards.org). In Table 3,
when comparing pre-treatment cases with controls, the algorithm L1/2+ central node Fc.net (gene and
CpG island) found various genes (TIAM1 [21,22], CST7 [25], TCEAL7 [23,24] and RNF11 [26]) that
were not found by L1+ Fc.net (gene) and Enet. Likewise, HLR (L1/2 + L2) was unable to find these
genes (CST7, TCEAL7 and RNF11) where these genes (TIAM1, CST7, TCEAL7 and RNF11) were
found to be correlated with cancer in previous research. On one hand, all methods were able to find genes
(MPO [27,28], PTPRCAP [29]); on the other hand, network penalty methods were able to find genes
(CD248 [31] and HOXB5 [32]). In Table 4, our algorithm L1/2+ central node Fc.net (gene and CpG
island) also found genes (CD200 [30], SRD5A2L [34], ENO1 [33]) which have not been found in L1+
Fc.net(gene) and Enet. Additionally, gene CD200 and gene SRD5A2L also proved to be related to cancer.
The L1+ Fc.net and L1/2+ central node Fc.net (gene and CpG island) algorithm, which has gene and
island network information, also found gene (TNFAIP8 [35]) which was not found by Enet/HLR.

4. Conclusion

In biological molecular research, the analysis of DNA methylation may be a new practice for cancer re-
search. In this paper, we used the enhanced L1/2 penalized logistic regression model to extract divergently
methylated CpG sites between healthy controls and ovarian cancer cases. We constructed the central node
fully connected network which combines with genome information and CpG island information. We have
advanced the corresponding coordinate descent algorithm suited for real DNA methylation data. This
method not only has the L1/2 penalty sparser than L1, it also has more CpG sites relationship information.
In real data, we used ovarian cancer samples with over 20,000 CpG sites. Even though the quantity of the
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selected CpG sites was less than previous methods, more corresponding CpG sites within genes selected
were potentially associated with cancers. Therefore, by comparing to traditional methods, our method
clearly achieved a higher predictive accuracy. Therefore, the proposed method offers an advanced tool to
researchers in DNA methylation and can be a powerful tool for recognizing pathogenic CpG sites.
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