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Simple Summary: Excessive ham weight losses during dry-curing (WL) result in a loss of marketable
product, hindering the quality of dry-cured hams. Genetic selection for reducing WL requires
individual traceability of hams throughout the dry-curing process and the measurement of WL is
expensive, time-consuming, and can be performed only at the end of seasoning, resulting in long
generation intervals. Infrared spectroscopy provides early, cost-effective, high-throughput predictions
of WL that are highly genetically correlated with the actual measures. This study focused on the
accuracy of genomic prediction models for observed and infrared-predicted WL. Models were tested
on crossbred pigs and their purebred sires in random cross-validation and in a leave-one-family-out
training-validation scheme. Accuracy of prediction of sire genetic merit, estimated from crossbred
training data for actual ham WL, was 0.38, slightly higher than the accuracy attainable by a model
trained on infrared-predicted WL (0.32). While the accuracy of genomic predictions is satisfactory for
both the observed and infrared-predicted WL, the use of infrared predictions results in considerably
lower phenotyping costs, enabling the construction of larger reference populations.

Abstract: Selection to reduce ham weight losses during dry-curing (WL) requires individual trace-
ability of hams throughout dry-curing, with high phenotyping costs and long generation intervals.
Infrared spectroscopy enables cost-effective, high-throughput phenotyping for WL 24 h after slaugh-
ter. Direct genomic values (DGV) of crossbred pigs and their purebred sires were estimated, for
observed (OB) and infrared-predicted WL (IR), through models developed from 640 and 956 cross-
bred pigs, respectively. Five Bayesian models and two pseudo-phenotypes (estimated breeding value,
EBV, and adjusted phenotype) were tested in random cross-validation and leave-one-family-out
validation. The use of EBV as pseudo-phenotypes resulted in the highest accuracies. Accuracies in
leave-one-family-out validation were much lower than those obtained in random cross-validation
but still satisfactory and very similar for both traits. For sires in the leave-one-family-out validation
scenario, the correlation between the DGV for IR and EBV for OB was slightly lower (0.32) than the
correlation between the DGV for OB and EBV for OB (0.38). While genomic prediction of OB and IR
can be equally suggested to be incorporated in future selection programs aiming at reducing WL, the
use of IR enables an early, cost-effective phenotyping, favoring the construction of larger reference
populations, with accuracies comparable to those achievable using OB phenotype.

Keywords: ham quality; infrared spectroscopy; animal breeding; genomic selection; pig

1. Introduction

While dehydration during ham dry-curing is essential for hindering the onset of
anomalous fermentations and ensures the development of the typical sensory attributes, ex-
cessive ham weight losses (WL) lead to a loss of marketable product and impair the quality
of the dry-cured ham [1]. For this reason, WL is one of the traditional breeding goals of the
Italian pig breeds (Large White, Landrace, and Duroc) used to produce Italian protected
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designation of origin (PDO) hams. Currently, according to [2], the breeding program of any
breed and line used for the production of Italian PDO hams must comply with two require-
ments: maintain or increase pig subcutaneous fat thickness, and maintain or improve the
aptitude of the meat to seasoning. Hence, including WL among the breeding goals of the
genetic types intended for PDO ham production has implicitly become mandatory.

Even though WL is moderately heritable [3,4], genetic selection aiming at reducing
WL is challenging because (1) measures of WL require the individual traceability of hams
throughout the dry-curing process, largely limiting the availability of phenotypes, and (2)
phenotyping for WL requires completion of the entire dry-curing process (which lasts at
least 400 days, according to the most recent revision of the San Daniele ham specification [5]),
resulting in long generation intervals and reduced response to selection. To overcome these
limitations, since the early nineties, the Italian pig breeder association (ANAS, Rome, Italy)
implemented an indirect selection for WL in the Large White, Landrace, and Duroc breeds,
based on the ham weight loss after 7 d of salting [6]. This strategy, although successful in
the long term, exploits a moderate additive genetic correlation (~0.65) between the ham
weight loss after 7 d of salting and WL [6] and requires the availability of facilities for ham
processing that can guarantee the traceability of individual hams.

Infrared spectroscopy is the method of choice to enable rapid and non-destructive
prediction of green ham subcutaneous fat quality and monitor its compliance with the
requirements on fat composition dictated by PDO ham specifications [5,7]. This technology,
besides being a potential phenotyping tool for fat quality [8], has also been successfully
used to predict different technological and sensory attributes of dry-cured hams [9,10].
Recently, on-site infrared spectroscopy has demonstrated its effectiveness as a large-scale
phenotyping tool for WL, by enabling early, cost-effective and high-throughput predictions
of WL, based on spectra acquired on hams 24 h after slaughter combined with carcass and
green ham quality traits [3]. The additive genetic correlation between the observed WL
(OB) and its infrared prediction (IR) is positive and high (~0.88) [3]. Such correlation and
the higher heritability of IR compared to OB [3] suggest the incorporation of IR in selective
breeding programs to overcome limitations of WL phenotyping.

The adoption of genomic selection might increase the effectiveness of selective breed-
ing practices aimed at decreasing WL [11,12]. In pig populations, the accuracy of genome-
enabled prediction of breeding values declines rapidly over generations, and a periodical
collection of phenotypes is needed to retrain and update genomic prediction models [13–15].
Incorporation of IR into genomic selection programs for WL in place of OB would facilitate
the periodical phenotype collection at virtually no additional costs and the creation of
larger reference populations for training and validation of genomic models. However, the
feasibility of developing genomic selection strategies based on IR depends on the accuracy
of selection. The accuracy of genomic predictions for WL has never been investigated
before, and no reports are available on the comparison between the predictive ability of
genomic models trained on actual observations of a trait or on its infrared predictions in
pigs. Hence, the objectives of this study were to assess the accuracy of genome-enabled
predictions of OB and IR and to evaluate, relative to models trained on OB, the ability of
genomic models trained on IR to predict phenotypes or breeding values for WL.

2. Materials and Methods
2.1. Phenotypes

Phenotypes were collected in a population of crossbred finishing pigs (CB) generated
by the nucleus boars of the C21 Goland sire line (Gorzagri, Fonzaso, Italy) in the sib-testing
program of the line. Since 2001, the breeding goal of the sire line includes traits related
to the quality of dry-cured hams [4]. Details on the sib-testing program, parental lines,
and farming conditions were described in [4]. Pigs were all raised on the same fam and
slaughtered in the same commercial slaughterhouse under standardized conditions in
batches of about 70 animals each. Age at slaughter was ≥270 days, and body weight was
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≥160 kg (on average 167 ± 15 kg), in compliance with the main Italian PDO dry-cured ham
specifications [5,7].

A measure of WL at the end of dry-curing (368 ± 4 days) was obtained for the left
ham of 1888 CB slaughtered between December 2015 and July 2017. Of these pigs, 1624
had also a record of visible-infrared spectra acquired from the green ham subcutaneous fat
and were used to develop near-infrared prediction models for WL. Infrared predictions
of WL were obtained by a parametric regression model, namely Bayes B, implemented
in the BGLR package [16] of the R software [17], as described in detail by [3]. Briefly, the
prediction model included the following explanatory variables: (1) on-site visible-infrared
spectra, acquired from the transversal section of subcutaneous fat of the green ham with
a LabSpec®5000 (ASD Inc., Boulder, CO, USA) working over the spectral range between
350 and 2500 nm, and equipped with a fibre-optic contact probe; (2) sex; (3) carcass traits
(weight, backfat depth and lean meat content of the carcass and total weight of the green
hams); (4) green ham quality traits (subcutaneous fat depth and linear scores for round
shape, subcutaneous fat thickness and marbling).

To obtain the IR for the 1624 CB with available data on OB, a set of prediction models
was developed by excluding all the pigs of a given slaughter batch from the training set
used to obtain model solutions and by applying the model solutions to calculate the IR
for the batch that was left out. The process was repeated until the IR was obtained for the
pigs of all slaughter batches (n = 25). Such a procedure mimics the scenario under which
models are applied in practice, where predictions for new slaughter batches come from
models trained on data of previous batches. It also minimizes the risk of overestimating
the accuracy of IR and of the corresponding genomic prediction accuracy. While in a
random cross-validation setting (where animals from the same batch can be assigned to
both the training and testing set) the correlation between IR and OB was 0.79 [3], under
these more restrictive circumstances the correlation between IR and OB was 0.65. Finally,
a model trained on the entire dataset (n = 1624) was applied to a large dataset extracted
from the historical database of the sib-testing program of the Goland C21 sire line to obtain,
retrospectively, IR for all animals with no record on OB. The dataset included records of
carcass traits, green ham quality traits, and spectral variables for 8048 CB. Hence, a total of
9672 records of IR were available for this study.

2.2. Pseudo-Phenotypes Used for Genomic Predictions

Genomic prediction models were investigated following a multiple-step genomic
evaluation approach, where pseudo-phenotypes considered for the estimation of genomic
prediction equations were phenotypes pre-corrected for fixed effects (yadj) or estimated
breeding values (EBV). Estimates of fixed effects and EBV for OB and IR were obtained by
solving univariate animal models using REMLF90 of the BLUPF90 family of programs [18].
Complete pedigree information, since the foundation of the C21 line, was available for all
CB with phenotypic records and their purebred sires (PB), whereas only the parents and
grandparents were known for the dams of the CB. Sires and dams of the CB, being animals
of different pig lines, were unrelated. The univariate animal model was as follows:

y = Xb + Za + e, (1)

where y was a vector of phenotypes for OB or IR; b was a vector of unknown non-genetic
(fixed) effects which included sex (female and castrated male) and slaughter batch effects;
a was a random vector of unknown animal additive genetic effects assumed to follow a
normal probability density a ~ N(0, Aσ2

a ), where A and σ2
a denote the pedigree-derived

relationship matrix and the additive genetic variance, respectively; X and Z were incidence
matrices relating b and a, respectively, to y; e was a vector of random residuals with
e ~ N(0, Iσ2

e ), where I and σ2
e denote an identity matrix of appropriate order and the

residual variance, respectively.
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The pre-corrected phenotypes for OB and IR were obtained as follows:

yadj = y − X
^
b (2)

where
^
b are model solutions for b of the univariate animal Model (1). Accuracies of EBV

were computed as:

rBV,EBV =
√

1 − PEV/σ2
g (3)

where PEV is the prediction error variance and σ2
g is the estimated additive genetic variance

of the trait.

2.3. Genotyping and Genomic Quality Control

High-density genotypes (GeneSeek GGP Porcine HD 50 K array, Neogen Co., Lansing,
MI, USA) were available for all PB. Genotypes at 8826 SNP, obtained using the GeneSeek
GGP Porcine LD 9 K array (Neogen Co., Lansing, MI, USA) according to the manufacturer’s
protocol, were available for 1029 CB, spanning four generations. Of these pigs, 640 had a
record on OB and were offspring of 57 PB, and 956 had a record on IR and were offspring
of 104 PB. Sire families with records on both OB and IR were 53.

Genotypes of CB were subsequently imputed to the GeneSeek GGP Porcine HD 50 K
array using Fimpute v. 2.2 [19]. All genotypes were subjected to quality control using
PLINK v. 1.9 software (http://www.cog-genomics.org/plink2 (accessed on 22 March 2022)).
SNP located on sex chromosomes, exhibiting call rate < 0.9 or minor allele frequency < 5%
were discarded. After editing, a total of 29,559 SNPs were retained for the development
of genomic prediction models. No DNA samples with call rate < 0.9 or animals with
parent-progeny genotype conflicts were detected. Hence, all the genotyped animals were
available for the analyses.

2.4. Development of Genomic Prediction Models

Imputed genotypes at the 29,559 SNPs were used as predictors of the pseudo-phenotypes.
Five Bayesian regression models were fitted to the data using the BGLR package [16] in the
R software [17]: Bayesian ridge regression, Bayes A, Bayes B, Bayes C, and Bayesian Lasso.
The general model for genomic prediction expressed in matrix notation was:

y = 1µ + Wg + e (4)

where y is a vector of pseudo-phenotypes (yadj or EBV), µ is the model intercept, g is a vector
of unknown marker allele substitution effects, W is a matrix of observed marker genotypes
(coded as the number of copies of the B allele as defined in the Illumina genotyping
system nomenclature) for each individual and each marker, and e is a vector of random
residual effects.

The prior distribution assigned to g differed depending on the model, with values of
the hyper-parameters corresponding to BGLR default settings [20]. A total of 500,000 Gibbs
samples were generated to estimate the parameters of the models, with a burn-in period
of 100,000 samples, and a thinning of 100 samples. When the EBV was used as a pseudo-
phenotype, EBV accuracies that were computed in the first step using Equation (3) were
used as weighting factors [21]. For all models, the predicted direct genomic values (DGV)
were computed using the following equation:

DGVi =
p

∑
j=1

wij ĝj (5)

where p is the number of SNPs; wij is the genotype, coded as for Model (4), of animal i
at SNP j; and ĝj is the allele substitution effect for SNP j that was estimated by solving

http://www.cog-genomics.org/plink2
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Model (4). The estimated allele substitution effects were used to calculate the DGV of the
CB in the testing set and those of their PB.

2.5. Model Training and Validation Scenarios

As data for OB and IR were available for CB only, all models were trained on CB
pseudo-phenotypes. Performance of models in prediction was then assessed using data
either from CB or PB. In validation, CB were used primarily to investigate the sensitivity
of model accuracy to different validation schemes, as well as the accuracy attainable with
different pseudo-phenotypes. As the focus individuals in a breeding program addressed
to the enhancement of WL are the purebred candidates, the predictive performance of
models was evaluated also for the PB to mimic the circumstances under which models are
applied in practice. This gave rise to nine different training-validation scenarios which are
summarized in Table 1. While scenarios 1 and 2 aimed at comparing the accuracy attainable
by models trained on different OB pseudo-phenotypes, scenario 3 was used to mimic a
more realistic situation, where a reference population of CB is used to provide prediction
equations of the genetic merit of PB for OB. Scenarios 4 to 6 investigated the ability of
models trained on IR pseudo-phenotypes to predict yadj or EBV for IR. In a real genomic
selection program for WL, IR would be a proxy variable for OB. Hence, the performance of
models trained on IR and predicting pseudo-phenotypes for OB was assessed in scenarios
7 to 9. The accuracy estimated in these scenarios can be used to compare the efficiency of
genomic selection based on IR with the one of genomic-aided selective breeding targeting
OB directly. In particular, scenario 9 represents the reference for the application of models
in practice.

Table 1. Training-validation scenarios used for the genomic regression models.

Scenario
Training 1 Validation 2

Trait Pseudo-Phenotype Pigs Trait Pseudo-Phenotype Pigs

1 OB yadj CB OB yadj CB
2 OB EBV CB OB EBV CB
3 OB EBV CB OB EBV PB
4 IR yadj CB IR yadj CB
5 IR EBV CB IR EBV CB
6 IR EBV CB IR EBV PB
7 IR yadj CB OB yadj CB
8 IR EBV CB OB EBV CB
9 IR EBV CB OB EBV PB

1 Models for observed (OB) and infrared-predicted (IR) ham weight loss were trained either on the pre-corrected
phenotype (yadj) or on the estimated breeding value (EBV) of crossbred pigs (CB); 2 The prediction equation
obtained from the analysis of the training set was applied to genotypes of CB or of their purebred sires (PB) to
predict the pseudo-phenotype. The accuracy in predicting yadj (for CB) or EBV (for CB and PB) was assessed as
the correlation between the predicted and the observed pseudo-phenotype in the validation set using either a
5-fold cross-validation or a leave-one-family-out validation procedure.

2.6. Random Cross-Validation

Each of the 9 scenarios investigated was initially considered in a 5-fold random cross-
validation procedure. Data on CB (n = 640 for OB, n = 956 for IR) were randomly split
into five data segments of equal size. In each fold, four data segments (training set) were
used to train the Bayesian models and to obtain solutions for allele substitution effects,
whereas the remaining segment served as a validation set in which pseudo-phenotypes
were predicted, according to (5), using solutions of models resulting from the analysis of
the training set. The validation set was made of the CB not included in the training set (for
scenarios 1, 2, 4, 5, 7, and 8) or PB (for scenarios 3, 6, and 9).
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2.7. Leave-One-Family-Out Validation

Despite being the most used method for evaluating the predictive ability of models,
random cross-validations can lead to optimistic estimates of model accuracy, as the training
set may include close relatives of the individuals of the validation set. This is not an
ordinary condition in a real genomic selection program. In those programs, selection
is based on the DGV predicted from allele substitution effects estimated from data of
a reference population not including full-sibs or offspring of the breeding candidates.
For this reason, the prediction performance of models was also assessed in a leave-one-
family-out validation procedure (LOFO). This approach mimics, as far as possible, the
circumstances under which models are applied in practice. In the LOFO, a Bayesian Ridge
Regression model was trained on pseudo-phenotypes for OB or IR excluding at each round
the members of a sire family from the training set. The estimated allele substitution effects
obtained at each round were then used to calculate the DGV of the PB and of each CB of
the family that was excluded from the training set.

The EBV used as pseudo-phenotypes in the LOFO were obtained by a bivariate
analysis using Model (1) for both traits. The bivariate analysis included 1888 records
for OB and 9672 records for IR. The use of the bivariate analysis increased the number
of sire families for which EBV of both traits were available (n = 104). In this case, pigs
included in the calculation of genomic model accuracy comprised also genotyped CB with
no phenotypic record on OB. The number of CB with EBV available to compute model
accuracy was 735 and 995 for OB and IR, respectively.

2.8. Evaluation of the Predictive Performance of Models

Correlations between pseudo-phenotypes (yadj or EBV) and DGV for animals in the
validation sets were used as measures of model accuracy and to evaluate and compare the
predictive performance of models. In the analyses that used yadj as a pseudo-phenotype, the
ratio of the accuracy to the square root of the heritability of the trait [22,23] was computed
as a measure of relative accuracy (i.e., the realized accuracy as a fraction of the maximum
theoretical accuracy). When the EBV were used as the pseudo-phenotypes, the correlation
between EBV and DGV is a non-biased estimate of accuracy [21,24,25].

3. Results and Discussion
3.1. Descriptive Statistics and Genetic Parameter Estimates

Descriptive statistics for the available phenotypes of OB and IR and their genetic
parameter estimates are summarized in Table 2. On average, OB was 27.8 ± 2.4%, indicating
that hams lose almost 30% of their initial weight during dry-curing, in agreement with
previous reports on Italian dry-cured hams [1]. Values of IR averaged 26.5% and exhibited
a lower variability (SD = 1.8%) when compared with OB. The difference between the means
of the two traits can be ascribed to a small bias in the infrared predictions, whereas the lower
variability of IR compared with OB was expected, IR being a trait predicted with imperfect
accuracy. For similar reasons, lower values of both additive genetic and residual variances
were expected for IR than for OB. Although the additive genetic variance of IR was 35%
lower than that estimated for OB, the heritability (h2) for IR was higher (h2 = 0.39 for IR,
h2 = 0.31 for OB) as a consequence of a low residual variance in IR relative to OB (47% of the
residual variance of OB). These results are consistent with previous estimates reported for
the same pig population [3] and are not surprising, as the heritability of infrared predictions
has been reported to be either lower or higher than that of the corresponding measured
trait [8,26].
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Table 2. Descriptive statistics, additive genetic variance (σ2
a ), residual variance (σ2

e ), and heritability
(h2) for observed ham weight loss (OB) and its infrared spectroscopy prediction (IR).

Trait n Mean SD Min Max σ2
a σ2

e h2 ± SE

OB, % 1888 27.8 2.4 20.1 38.2 1.468 3.237 0.312 ± 0.053
IR, % 9672 26.5 1.8 19.5 34.1 0.961 1.513 0.388 ± 0.031

3.2. Accuracy of Genomic Predictions Assessed in Random Cross-Validation

The accuracies of the genomic predictions obtained for the investigated traits are
summarized in Table 3. The five Bayesian models used in this study exhibited similar
predictive accuracies. The consistency of results across models, which assumed different
prior probability densities for the allele substitution effects [16], may indicate the absence
of genomic regions with large effects on the investigated traits or may depend on the size
of the dataset used. According to [27], different models tend to show similar predictive
ability when the phenotypic variation in the traits is affected by many loci of small effect.
This hypothesis is supported by results of genome-wide association studies on ham weight
loss after 7 d of salting, which detected a genomic region with the largest effect explaining
less than 4% of the genetic variance of the trait [28]. In addition, other studies detected no
significant association between ham weight loss after 7 d of salting and SNP genotypes [29].
Regardless of the assumed prior density for the allele substitution effects, in studies using
real data the difference in the prediction performance across models is generally small and
smaller than that observed in simulation studies [30,31]. In simulation studies (e.g., [27]),
where the size of the dataset is not a limiting factor, mixture models performing variable
selection (e.g., Bayes B and Bayes C) show better predictive performance than other models.
However, when the number of data records is small relative to the number of regression
parameters to be estimated, insufficient information from the data restricts the Bayesian
learning process. Even though different Bayesian models may lead to quite different
estimates of individual allele substitution effects, predictive abilities across models are
often very similar when assessed in cross-validation procedures [32].

Table 3. Correlations (±SE) between direct genomic values (DGV) and pre-corrected phenotypes
(yadj) or estimated breeding values (EBV) for observed (OB) and infrared-predicted (IR) ham weight
loss estimated in the 5-fold cross-validation for different models.

Type of DGV 2 Correlation with
Model 1

BRR BA BB BC BL

of CB for OB yadj of CB for OB 0.170 ± 0.035 0.172 ± 0.035 0.171 ± 0.038 0.172 ± 0.036 0.173 ± 0.034
of CB for OB EBV of CB for OB 0.708 ± 0.023 0.709 ± 0.023 0.708 ± 0.024 0.707 ± 0.023 0.709 ± 0.023
of PB for OB EBV of PB for OB 0.937 ± 0.004 0.937 ± 0.004 0.937 ± 0.004 0.937 ± 0.004 0.938 ± 0.004
of CB for IR yadj of CB for IR 0.277 ± 0.028 0.276 ± 0.028 0.276 ± 0.030 0.276 ± 0.028 0.276 ± 0.027
of CB for IR EBV of CB for IR 0.689 ± 0.008 0.689 ± 0.008 0.689 ± 0.008 0.689 ± 0.008 0.689 ± 0.008
of PB for IR EBV of PB for IR 0.914 ± 0.003 0.913 ± 0.003 0.913 ± 0.003 0.912 ± 0.004 0.913 ± 0.003
of CB for IR yadj of CB for OB 0.210 ± 0.020 0.210 ± 0.020 0.207 ± 0.020 0.208 ± 0.020 0.210 ± 0.021
of CB for IR EBV of CB for OB 0.520 ± 0.017 0.520 ± 0.016 0.519 ± 0.017 0.519 ± 0.017 0.521 ± 0.016
of PB for IR EBV of PB for OB 0.675 ± 0.014 0.675 ± 0.014 0.673 ± 0.013 0.671 ± 0.014 0.677 ± 0.014

1 BRR: Bayesian Ridge Regression; BA: Bayes A; BB: Bayes B; BC: Bayes C; BL: Bayesian LASSO; 2 CB: crossbred
pigs; PB: purebred sires of crossbred pigs.

While EBV of CB for OB and IR were predicted with comparable accuracy (scenarios 2
and 5), the ability of the models to predict the CB pre-corrected phenotypes was higher for
IR than for OB (scenarios 4 and 1, respectively). Regardless of the model used, prediction
accuracies of CB yadj for IR were 65% greater than for OB and were 25% less variable. Such
across-trait variation in prediction accuracy might be explained by the combined effect
of differences in trait heritability, size of the training set (765 vs. 512 individuals for IR
and OB, respectively), and precision of the estimated effects used in the pre-correction
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of phenotypes resulting from different data availability (9672 vs. 1888 records for IR and
OB, respectively).

The investigated genomic models provide a prediction of the additive genetic com-
ponent of the phenotype, which accounts for 31 and 39% (i.e., the heritability) of the
phenotypic variation in OB and IR, respectively. If the true values of the additive genetic
component were known and used in the prediction of the phenotype, the accuracy would
be maximum and equal to the square root of the trait heritability (i.e., 0.56 and 0.62 for
OB and IR, respectively). Then, by assuming that the estimated heritabilities are precise,
the prediction accuracies of CB yadj for OB and IR were 31 and 44%, respectively, of the
maximum theoretical accuracy (scenarios 1 and 4), indicating that allelic content at the
SNPs explained a higher proportion of variation in IR than in OB.

While being just satisfactory when yadj was predicted, accuracies were much higher
(0.71 and 0.69 for OB and IR, respectively) when genomic models predicted EBV (scenarios
2 and 5). In agreement with our results, several studies have reported that the choice of the
pseudo-phenotype may affect accuracies of genomic predictions to a greater extent than the
selection of the modeling approach [32], as the ratio of genetic signal to noise may differ
across different pseudo-phenotypes [33].

Traits already targeted by genomic selection strategies in pigs were summarized by [12]
and include production traits (i.e., loin depth, backfat thickness, carcass weight, average
daily gain), functional aspects (i.e., leg score, health traits), meat quality (i.e., pH, marbling,
intramuscular fat) and maternal traits (i.e., total number of born, stillborn, pre-weaning
mortality, piglet survival). To our knowledge, the performance in prediction of genomic
models for WL has never been investigated before and accuracies presented in this study
are comparable with those reported for other traits already targeted by genomic selection
programs [12], indicating that genomic selection for WL might be successfully implemented.

The availability of IR offers the opportunity of overcoming difficulties arising from
phenotyping for OB which is mandatory when the prediction of genetic merit is provided
by pedigree-based methods. Even in a genomic selection framework, phenotyping is
essential for the development of prediction equations and for their required periodical
update. Hence, assessing the relationship between genomic predictions for IR and pseudo-
phenotypes of OB (scenarios 7, 8, and 9) was an important objective of this study. For models
trained on yadj for IR, the correlation between the prediction and yadj of OB (scenario 7)
was slightly greater than that for models trained on yadj for OB (scenario 1). Conversely,
the use of the EBV for IR in model training (scenario 8), compared to the use of the EBV
for OB (scenario 2), resulted in a 25% lower correlation between the DGV and the EBV for
OB. Such inconsistency may be attributed to the difference in the predictive accuracy of
IR and OB arising from the training on different pseudo-phenotypes. While the genomic
predictions of EBV were of similar accuracy for IR and OB, predictions of yadj were much
more accurate (+65%) for IR than for OB.

Accuracies in the prediction of the EBV of the purebred animals were investigated in
scenarios 3, 6, and 9. In the breeding program of the investigated boar line, the genetic eval-
uation of purebred breeding candidates relies on the phenotypic information provided by
their paternal CB half-sibs generated by the C21 nucleus boars. Under such circumstances,
where all members of a sire purebred family acquire identical EBV, assessing the ability
of genomic models to predict the EBV of the purebred breeding candidates is challenging
because of the moderate accuracy of the EBV that must be predicted. Hence, validation of
the genomic models in scenarios 3, 6, and 9 focused on the PB (i.e., the C21 nucleus boars)
for which the accuracy of the EBV is high (on average 0.75 for IR and 0.72 for OB).

In the random cross-validation, prediction accuracies for the EBV of PB were much
higher and less variable than those for the EBV of CB and greater than 0.90 when models
were trained and validated within trait (scenarios 3 and 6). Such difference in the predictive
accuracies of the EBV for CB and PB can be ascribed to the characteristics of the cross-
validation procedure which favored the predictive ability of the models for the EBV of PB.
Indeed, at each round of the cross-validation, approximately 80% of the progeny of each
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PB was in the training set used to obtain the model solutions leading to the prediction of
the EBV of the PB. For the CB, the data of the animals in the validation set were omitted
from the training set, weakening to a greater extent than for the PB the link between
the information used for model building and the EBV to be predicted. As expected, the
ability of models trained on the EBV for IR to predict the EBV for OB of the PB (scenario 9,
r = 0.675) was lower than that exhibited by models trained on the EBV for OB (r = 0.937).
This loss in accuracy (−28%) was equal to that detected for the EBV of CB.

The accuracy estimates obtained in the random cross-validation procedures are op-
timistic, as individuals closely related (e.g., full and half-sibs) to the animals requiring
a prediction may end up in the training set which is unrealistic in a real genomic selec-
tion scenario. Family-based linkage disequilibrium enhances the prediction ability of
genomic models when compared with circumstances where only population-wide linkage
disequilibrium supports the predictive strength of models.

3.3. Model Accuracy in a Leave-One-Family-Out Validation Scheme

Results obtained in the LOFO training-validation scheme are reported in Table 4.
For OB, the correlation between DGV and yadj of CB (scenario 1) was 0.23, indicating a
moderate ability of the model to predict the phenotypic variation in OB. This estimate
was higher than the one (r = 0.17) obtained for the same scenario in the random cross-
validation. In the random cross-validation procedure, the training set for OB consisted on
average of 512 animals, as 20% of the data were removed at each round and used for model
validation. The training sets in the LOFO scheme were of greater size than in the random
cross-validation as animals of only one sire family (on average 35 pigs) were discarded
from the training set. This explains the increase in the predictive ability of the models
detected in the LOFO procedure.

Table 4. Correlations (r) between direct genomic values (DGV) and pre-corrected phenotypes (yadj)
or estimated breeding values (EBV) for observed (OB) and infrared-predicted (IR) ham weight loss
estimated in the leave-one-family-out validation 1,2.

Type of DGV 3 Correlation with n r 95% CI p-Value 4

of CB for OB yadj of CB for OB 640 0.229 0.154–0.301 <0.001
of CB for OB EBV of CB for OB 735 0.447 0.384–0.505 <0.001
of PB for OB EBV of PB for OB 57 0.383 0.136–0.585 <0.01
of CB for IR yadj of CB for IR 956 0.224 0.163–0.284 <0.001
of CB for IR EBV of CB for IR 995 0.437 0.385–0.486 <0.001
of PB for IR EBV of PB for IR 104 0.396 0.220–0.547 <0.001
of CB for IR yadj of CB for OB 606 0.156 0.077–0.233 <0.001
of CB for IR EBV of CB for OB 995 0.351 0.295–0.405 <0.001
of PB for IR EBV of PB for OB 104 0.318 0.134–0.481 <0.001

1 DGV were obtained from solutions for allele substitution effects estimated with a Bayesian Ridge Regression
genomic model; 2 n: number of animals used to compute the correlation; 95% CI: 95% confidence interval of the
correlation; 3 CB: crossbred pigs; PB: purebred sires of crossbred pigs; 4 p-value for the null hypothesis H0: r = 0.

The correlation between DGV and EBV of CB for OB (scenario 2) was 0.45. This
correlation is an estimate of model predictive accuracy under more restrictive training-
validation conditions than those of random cross-validation. The correlation was 0.71 when
the predictive accuracy was assessed with random cross-validation, where animals of each
sire family were randomly assigned to the training and validation set. In the LOFO, data
of full-sibs and paternal half-sibs of the animals allocated to the validation set did not
contribute to the development of the genomic prediction equation. The breakage of the
family-based linkage disequilibrium caused by the LOFO explains the decrease in accuracy
detected in such a validation scheme. This result indicates also that the increase in the size
of the training set occurring in the LOFO was not able to compensate for the loss in EBV
prediction accuracy due to the absence of close relatives in the training set.
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In the population investigated in this study, purebred candidates are selected based
on the performance of their CB relatives generated in the sib-testing program, thus no
phenotypes for ham quality traits are available for purebred pigs. Under these circum-
stances, the genetic merit of purebred breeding animals has to be predicted using a training
population of CB only. The correlation between DGV and EBV of PB for OB in scenario 3
corresponds to the accuracy of models predicting the genetic merit of purebred animals
from a reference population of CB exhibiting no close additive genetic relationships with
the PB, thus representing the most realistic scenario. For OB, the correlation between DGV
and EBV of PB was approximately 0.38, indicating that the model can predict the genetic
merit of the PB sires with a small loss in accuracy when compared to that achieved for the
CB (0.45).

When the model was trained and tested on the IR (scenarios 4–6), accuracies detected
in the LOFO scheme were consistent with those obtained for a model trained and tested
on OB (scenarios 1–3). As expected, accuracies obtained in scenarios 7–9 were lower than
those obtained in scenarios 1–3 and 4–6 (Table 4). The greatest decrease in accuracy was
for yadj (−32%). The correlation between DGV for IR and EBV of PB for OB (scenario 9)
approximates the accuracy of a genomic prediction model trained on IR phenotypes to
predict the EBV of PB for OB. The estimated correlation was 0.32, just 15% lower than the
one achieved when the model was trained on EBV for OB (r = 0.38, scenario 3).

For traits in the same range of heritability (from 0.3 to 0.4, e.g., average daily gain,
backfat thickness, lean %, feed conversion rate, ultrasound muscle depth), when GBLUP
or Bayesian regression models were trained on a reference population of size comparable
to or greater than that of our population and validated on animals born after a cut-off
date, accuracies of prediction of phenotype (adjusted for fixed effects) ranged from 0.1 to
0.4 [34–36], in line with our results. In those studies, as the training and validation set were
defined based on a cut-off date of birth of the genotyped animals, pigs in the validation set
had close relatives in the training set [37], representing a more favorable condition than the
one investigated in the current study. To the best of our knowledge, no studies investigated
the accuracy of models trained on one trait with the aim to predict the pseudo-phenotype
of a different trait.

The IR records for each slaughter batch were generated through infrared prediction
models trained on phenotypes from other batches. Therefore, the accuracy of such models
has been deliberately reduced in order to mimic the conditions under which models
are applied in practice. Compared to the random allocation of samples to the training
set reported by [3], this procedure has weakened the correlation between IR and OB,
which dropped from 0.79 [3] to 0.65 in the current study. However, despite the moderate
phenotypic relationship between IR and OB, the additive genetic correlation between
the two traits was large and positive. In particular, it was 0.85 in the current study, not
significantly different from the estimate (0.88) obtained by [3]. Such favourable genetic
correlation confirms the potential of IR as an indicator trait for OB in pig breeding programs
aiming at decreasing WL and can explain the results obtained in scenario 9. Despite the
limitations to the accuracy of the infrared prediction models imposed by our procedure and
the breakage of the family-based linkage disequilibrium generated by the LOFO procedure,
the results of this study confirm that genomic selection for WL would benefit from the use
of IR phenotypes in the development of genomic prediction models.

Genomic selection in animal breeding programs is expected to exert a beneficial
impact on two key aspects: the length of the generation interval and the accuracy of
selection. In pigs, improvements of the rate of genetic progress through a reduction of
the generation interval are usually limited, given the short generation intervals (<2 years)
that the traditional breeding programs can reach [12], but traits such as WL, for which
OB phenotypes are collected 13–14 months after slaughter, would benefit considerably
from the adoption of genomic selection, as it would reduce the generation interval by
approximately 50%. In addition, in pigs, the accuracy of the DGV tends to decline rapidly
due to rapid generation turnover, and periodical phenotype collections, especially in
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animals related to selection candidates, are likely to be needed to update genomic prediction
models [14,15,32]. Routine phenotyping for OB is currently unfeasible and periodical
phenotyping is expensive and requires the completion of the seasoning period, with delays
in the updating of genomic prediction models. In addition, when the target is the prediction
of PB genetic merit for CB animals, as in our case, an increased number of training animals
with phenotypes is needed. Under these circumstances, the use of IR in place of OB in
model training results in a reduction of the phenotyping costs, favoring the construction of
larger reference populations, greater flexibility in the collection of phenotypes, and faster
updates of the prediction models, with only a minimal impact on model accuracy compared
to the use of OB phenotypes.

4. Conclusions

The main aims of this study were to investigate the accuracy of genomic predictions of
WL phenotypes or pseudo-phenotypes achieved using IR or OB in the training of genomic
models and to assess the loss in accuracy when the prediction of OB was obtained from
models trained on IR.

Accuracies of genomic predictions of OB and IR were moderate to high in a random
cross-validation setting and decreased by a similar extent in the leave-one-family-out
scenario, indicating that genomic predictions of IR or OB may be exploited in selective
breeding aiming at reducing WL in dry-curing. However, despite limitations imposed to
the accuracy of the infrared predictions, the moderate size of the reference population used
in model training, and the penalizing conditions due to the leave-one-family-out procedure,
the accuracy of selection guaranteed by genomic-predicted EBV for IR exhibited just a
minimal loss when compared to that observed for models trained on actual measures of WL.
The use of IR in place of OB facilitates periodical model retraining, enables higher flexibility
in phenotype collection at reduced costs, while maintaining accuracies comparable to
those achieved with measures of WL. In the view of implementing IR in genomic selection
for WL, periodical model retraining, based on new samples, must be envisaged not only
for the genomic prediction tools but also for infrared prediction models. Future studies
should elucidate how frequently infrared prediction models must be retrained to keep the
predictive ability of genomic models based on IR at the optimal level. Implementation of
IR would have a limited impact on the running costs of either an existing genomic selection
program or an established traditional breeding program focused on ham quality while
making the genetic improvement of WL feasible.
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