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Abstract: Early-stage mammalian embryos survive within a low oxygen tension environment and
develop into fully functional, healthy organisms despite this hypoxic stress. This suggests that
hypoxia plays a regulative role in fetal development that influences cell mobilization, differentiation,
proliferation, and survival. The long-term hypoxic environment is sustained throughout gestation.
Elucidation of the mechanisms by which cardiovascular stem cells survive and thrive under hypoxic
conditions would benefit cell-based therapies where stem cell survival is limited in the hypoxic
environment of the infarcted heart. The current study addressed the impact of long-term hypoxia
on fetal Islet-1+ cardiovascular progenitor cell clones, which were isolated from sheep housed at
high altitude. The cells were then cultured in vitro in 1% oxygen and compared with control
Islet-1+ cardiovascular progenitor cells maintained at 21% oxygen. RT-PCR, western blotting, flow
cytometry, and migration assays evaluated adaptation to long term hypoxia in terms of survival,
proliferation, and signaling. Non-canonical Wnt, Notch, AKT, HIF-2α and Yap1 transcripts were
induced by hypoxia. The hypoxic niche environment regulates these signaling pathways to sustain
the dedifferentiation and survival of fetal cardiovascular progenitor cells.
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1. Introduction

Cardiovascular progenitor cells (CPCs) have been evaluated for numerous applica-
tions to treat a variety of cardiovascular diseases from congenital heart defects to my-
ocardial infarctions [1,2]. This population of cells is capable of differentiating into the
three cardiac lineages: cardiomyocytes, endothelial, and vascular smooth muscle cells. In
addition to their multipotent capacity, these cells can be harvested on a patient-specific
basis and rapidly expanded to obtain adequate cell numbers for in vitro experimentation
and therapeutic applications [3,4]. To complement these intrinsic qualities in therapeutic
applications, it is essential that we understand how to program these cells during and
throughout both culture and clinical application. The field of stem cell programming
continues to develop to meet these needs.

The microenvironment of a cell includes not only chemical differentiation signals but
also physical differentiation factors such as sheer force, osmolarity, pressure, stretch, and
oxygen tension. These physical factors remain a popular topic for experimentation, as each
factor plays an individual role in controlling differentiation. An optimal method of con-
trolled differentiation is yet to be established; however, recent findings suggest that oxygen
tension regulates differentiation and migratory capacity during fetal development [5].
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Typically, fetal CPCs are cultured under normoxic (21% oxygen) conditions supple-
mented by 5% CO2; however, naturally, these cells develop within low oxygen tension
environments around 1% oxygen. When the maternal decidua arterializes, oxygen tensions
increase to ~5–7%, initiating fetal progenitor cell migration and differentiation. This phe-
nomenon leads us to hypothesize that oxygen tension plays a regulative role in maintaining
fetal cardiovascular progenitor cell survival, migration, and pluripotency [6–10].

Previously, several labs, including our own, have explored preconditioning cells with
short-term hypoxia exposure to evaluate CPC function prior to transplantation. Short-term
hypoxic preconditioning enhanced both pro-survival signaling and invasion ability prior to
therapeutic application [3,11]. Enhanced stem cell properties observed in these cells are the
result of AKT phosphorylation induced by short-term hypoxia [3]. The effects of long-term
hypoxia exposure on fetal Islet-1+ CPCs has not been evaluated, to our knowledge.

The neuregulin/ERBB signaling pathway plays an essential role in cardiac trabecu-
lation, proliferation, and in preventing apoptosis when overexpressed [12]. These down-
stream effects arise from the ERBB induction of PIK3C2B, which asserts its actions through
AKT and MAPK [13]. The wingless tyrosine kinase (Wnt) pathways (non-canonical and
canonical) promote cell fate specification, proliferation, and migration through NFk-B,
which connects Wnt and AKT pathway signaling [14–16]. FAK induces AKT and plays a
role in the regulation of apoptosis, proliferation, transcription, and migration within the
developmental niche [17–19]. Notch functions to regulate differentiation, proliferation, and
cell organization gestationally [20,21]. It has also been shown to maintain a propagative
state in embryonic stem cells without spontaneous differentiation [22]. Notch induces AKT
expression through the upregulation of Hes1 [23]. The Hippo pathway is well established
as a key regulator of organ size and development. Specifically, Yap1 expression and translo-
cation into the nucleus are associated with promoting a proliferative, anti-apoptotic cell
state [24–28]. The nuclear translocation of Yap1 requires PI3K/AKT pathway activation in
order to elicit its survival mechanisms [29,30]. Lastly, hypoxia inducible factors, HIF-1α
and HIF-2α, have also been evaluated to determine their involvement in dedifferentiation
and survival.

These pathways not only regulate survival, proliferation, migration, and differenti-
ation but also play roles in fetal development, which ties them to hypoxic regulation. In
this study, we demonstrate the involvement of these pathways in the hypoxic niche and
suggest a potential interconnected pathway that maintains the survival of dedifferentiated
cardiovascular progenitor cells through the upregulation of the PI3K/AKT pathway by
Notch, non-canonical Wnt, and FAK pathways.

2. Results
2.1. Cardiovascular Progenitor Cell Characterization

Fetal CPCs from both normoxic and hypoxic sheep were harvested for this study.
Monoclonal cell populations were expanded and grouped based on their expression of
Islet-1, c-KIT, CD105, and SSEA-4 via flow cytometry (Figure 1). Islet-1 is a known marker
of early lineage, multipotent CPCs. The expression of SSEA-4 is representative of the
invasiveness of the cells in this population. The cardiovascular progenitor clones chosen
for this study were selected based on the triple positive expression of Islet-1, c-kit, and
SSEA-4, as stemness and invasiveness enhance therapeutic potential.

2.2. Wnt, Notch, and FAK Function Synergistically to Promote Cell Survival

Pathways that have been previously connected to hypoxic regulation in other models
were evaluated in Islet-1+ early CPC clones following long term hypoxia exposure. These
pathways include NRG/ERBB, HIF-1α, non-canonical Wnt, Notch, and FAK. Using RT-
PCR, we found that NRG and ERBB expression remained unchanged, suggesting that
this pathway does not play a role in long-term hypoxic regulation (Figure 2A). Neither
HIF-1α, which has been demonstrated to increase in short-term hypoxia [3,11], or its
downstream regulator PDK3 were affected by long-term hypoxia (Figure 2B). The non-
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canonical Wnt pathway has an active role in promoting cell survival and preventing
apoptosis. In our hypoxia model, non-canonical Wnt5a expression increased 98-fold, while
concurrently, the expression of Wnt11, a member of the canonical Wnt pathway, was
inhibited 0.36-fold (Figure 2C). Canonical Wnt signaling downregulation attenuates cell
fate specification. Increased Notch signaling fosters cellular growth and survival [20,21].
Here, despite low oxygen tensions, Notch signaling was induced, suggesting enhanced
survival in cardiovascular progenitor cells cultured in hypoxic conditions (Figure 2D).
The expression of FAK, MAPK1, and PKC transcripts was upregulated following hypoxic
conditioning (Figure 2E). Interestingly, these genes, as well as NOTCH1, promote AKT
signaling activation. The upregulation of the PI3K/AKT pathway could also explain the
lack of HIF-1α induction, as AKT is known to counter these effects in cardiomyoblast
populations [29].
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Figure 1. Fetal cardiovascular progenitor cells were isolated, monoclonally expanded, and evaluated
using flow cytometry to analyze the expression of cardiovascular progenitor cell markers and the
phenotypic population prevalence. A shift in the dark peak demonstrates the positive presence
of each indicated protein. The percentages in the top right of each graph indicate the cell count
percentage positive for each protein.

2.3. FAK and Notch Directly Upregulate PI3K/AKT in the Hypoxic Niche

AKT signaling activation is associated with enhanced proliferation and survival.
Notch regulation of AKT signaling stems from the induction of Hes1, which directly
activates AKT and its downstream effectors [21,23]. Similarly, the increased expression of
FAK, MAPK, and PKC observed in the hypoxic niche promote AKT-dependent survival
and resistance to oxidative stress [19]. To further elucidate the mechanism by which the
AKT signaling pathway is induced, we confirmed the upregulation of several additional
transcripts in the AKT signaling pathway via RT-PCR. For example, CCND1 and SOD2
were upregulated in CPCs cultured in hypoxia (Figure 3A,B). These genes are associated
with increased cell cycle activity and the protection against reactive oxygen species released
during oxidative stress, respectively [18,19]. Next, we assessed AKT phosphorylation via
Western blot (Figure 3C,D). The hypoxic niche increased the ratio of phosphorylated AKT
relative to its non-phosphorylated counterpart, confirming an activation of AKT signaling.
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 Figure 3. (A) Real time polymerase chain reaction data evaluating AKT pathway activity. (B) Agarose
gel confirmation of rt-PCR products. (C) ProteinSimple analysis showing the phosphorylated
AKT/AKT ratio. (D) The corresponding ProteinSimple automated Western blot quantifying AKT
expression. Data are reported as the mean ± SEM, * p < 0.05, *** p < 0.001.

The AKT pathway promotes survival through many downstream effectors including
Yap1, a member of the Hippo pathway. The phosphorylation of Yap1 results in cyto-
plasmic retention and eventually apoptosis or degradation. The nuclear translocation of
non-phosphorylated Yap1 allows downstream targets to fulfill their role of driving cell
proliferation and enhancing cell survival [30]. In response to hypoxia, CPCs presented with
an increase in Yap1 gene expression (Figure 4A,B). While an increase of Yap1 expression
was observed via RT-PCR, phosphorylated Yap1 was statistically unchanged, according to
Western blotting, contrary to what we hypothesized (Figure 4C,D). In long-term hypoxia,
the levels of phosphorylated/inactive Yap1 are not significantly elevated, suggesting that
active Yap1 continues to enter the nucleus and promote cell survival.
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2.4. Islet-1+ Cardiovascular Progenitor Cells Remain Dedifferentiated under Long-Term
Hypoxic Conditions

HIF-2α is a known regulator of OCT4, SOX2, and Nanog expression in embryonic
stem cells subjected to hypoxia through the nuclear translocation and activation of hypoxic
response elements [6,31,32]. The long-term cell culture of CPCs corroborated this data, as
verified by PCR analysis and predicted by Ingenuity Pathway Analysis (IPA) (Figure 5A,B
and Supplemental Figure S1). HIF-2α, OCT4, SOX2, and Nanog were upregulated in hypoxic
Islet-1+ cell clones and indicate that long-term hypoxia induces the dedifferentiation of
fetal CPCs. Nanog transcript levels were found to decline following subsequent exposure
to normoxic conditions (Supplemental Figure S2). Nestin is a known stemness marker
in progenitor cells [33] and was elevated under hypoxic conditions. Similarly, CXCR4
was upregulated in hypoxic conditioning, suggesting increased stemness [34]. Long-term
hypoxia induced c-Kit expression and maintained Islet-1 expression, as shown by flow
cytometry (Figure 5C–E). SSEA-4, typically known as a marker of invasiveness [35], was
not induced, suggesting that fetal cells in a hypoxic niche stay harbored in said niche.

2.5. Cell Cycle Progression and Migration Are Unaffected by Long Term Hypoxia

To assess whether cell cycle progression is impacted by long-term hypoxic conditions,
we conducted cell cycle analysis by flow cytometry. A representative tracing of both
normoxic and hypoxic populations can be seen in Figure 6A,B. The data were quantified
using a Dean-Jett-Fox model. As shown in Figure 6C–E, no significant difference was
identified when comparing cell cycle progression in normoxic and hypoxic CPCs. Changes
in oxygen tension similarly had no effect on invasion, suggesting that the upregulated
signaling pathways did not affect the invasive capacity of fetal CPCs.
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Figure 5. (A) PCR quantification representing the hypoxia inducible factor pathway fold changes of
hypoxic cells compared to the normoxic controls. (B) IPA prediction of dedifferentiation pathway
activity. POU5F1 exists as an alternative name for OCT4. (C–E) Quantification of flow cytometry
data showing cell count and pie chart percentages of the representative isolated cell clones. Data are
reported as the mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001.
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3. Discussion

Short-term hypoxic culture beneficially impacts CPCs such that survival and in-
vasiveness are enhanced via AKT activation and SDF-1α sensitization [3]. Hypoxia
inducible factors appear to be at the forefront of short-term hypoxic survival, as they
interact with hypoxia response elements on the DNA and upregulate transcripts asso-
ciated with survival [11,32]. We report here that the long-term maintenance of CPCs
under hypoxic conditions promotes stemness and a state of dedifferentiation. These
adaptations are the direct result of the upregulation of several interconnected signaling
pathways. The long-term hypoxic response and the mechanisms associated with cell
survival differ from the response to short-term hypoxia in early-stage CPCs. Accord-
ing to our research, there exists a common theme of AKT upregulation that connects
both short- and long-term hypoxia, but it seems that differences arise when evaluating
hypoxia inducible factors. Short term hypoxia results in the upregulation of HIF-1 and
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downstream survival molecules such as BCL2 and HMOX [3]. This current research
suggests that long term hypoxic culture deals with survival through differing pathways
including non-canonical Wnt, FAK, Notch, and Yap. HIF-2α and its downstream dedif-
ferentiation factors are unique to long-term hypoxia and may need additional time and
stress to activate dedifferentiation. OCT4, SOX2, and Nanog transcripts are not elevated
in short-term hypoxic CPCs [3,36].

The hypoxic fetal microenvironment, as well as long-term culture under hypoxic
conditions in vitro, regulates survival and dedifferentiation pathways. Non-canonical Wnt,
Notch, FAK, AKT, and Yap signaling contributes to cell survival despite incredibly low
oxygen tensions. The pathways discussed here interact to assert an anti-apoptotic state,
reduce oxidative stress, and promote viability despite the altered nutrient intake of the cell
in the hypoxic niche. Often, these pathways are uncontrollably upregulated in the cancer
microenvironment, leading to unfettered proliferation, anti-apoptosis, and survival [10,37].
In contrast, the long-term hypoxic developmental niche maintains a level of control despite
the low oxygen tension stressor of the microenvironment.

HIF-2α remains upregulated, leading to the increased expression of hypoxic re-
sponse elements and the transcription of genes responsible for SOX2, OCT4, and Nanog.
The reexposure of hypoxic cells to a normoxic niche downregulated Nanog expres-
sion, confirming the level of control hypoxia has over dedifferentiation. These adapta-
tions suggest that hypoxia promotes dedifferentiation in fetal ovine CPCs [6]. Dedif-
ferentation could potentially broaden the multipotency of fetal CPCs, thereby widening
their potential for therapeutic applications. The exact lineage staging must be further
evaluated in order to fully understand the possibilities of long-term hypoxia in stem
cell reprogramming.

We have elucidated five different pathways that contribute to sustaining a dedif-
ferentiated survival state in fetal cardiovascular progenitor cells when subjected to a
long-term hypoxic niche. In Figure 7, we propose and support a mechanism by which
these pathways interconnect with a network identified using IPA [38–75]. These interac-
tions influence the endpoints of hypoxic regulation and are connected either directly or
indirectly acting through intermediates such as Hes1, FAK, and NFk-B [50,61,69,73]. Notch
and AKT both interact with Hes1 to activate genes that regulate antiapoptosis, oxidative
resistance, and dedifferentiation [73–75]. Yap1 and FAK influence AKT, achieving the same
goals [40]. NFk-B interacts with non-canonical Wnt, Notch and AKT [61,69,73] Under-
standing the role of individual signaling pathways that function together in maintaining a
dedifferentiated survival state provides insight into cellular adaptation to hypoxia. This
information is relevant both in organismal development and as a potential pretreatment
for therapeutic application.

Cardiovascular progenitors are currently being evaluated for their potential use in
novel therapeutic applications following physical differentiation protocols involving
sheer force, transmural pressure, and oxygen tension [3,4]. These physical differenti-
ation factors can potentially introduce unwanted differentiation in multipotent stem
cells, hindering their efficacy for regenerative applications. Long-term hypoxia could
potentially augment therapies at the pre-treatment stage and broaden the therapeutic po-
tential of progenitor cells by maintaining multipotency. The new information provided
in this study addresses the impact of the microenvironment on differentiation while
contributing to our understanding of stem cell potential for therapeutic applications.
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Figure 7. (A) Proposed interconnected pathway that regulates the dedifferentiated survival state
found in hypoxic fetal cardiovascular progenitor cells. Each individual pathway is color-coordinated:
AKT—Red, Notch—Green, HIF-2α—Blue, Wnt—Pink. (B) Dashed lines represent indirect interac-
tions and solid lines represent direct interactions in the interactive network generated using IPA
software (Qiagen).

4. Materials and Methods
4.1. Animal Selection

The high altitude long-term hypoxic sheep were housed at Barcroft Laboratory, White
Mountain Research Station, Bishop, CA, USA (altitude 3820 m; PaO2 60 ± 2 mmHg)
beginning at 30 days gestation. The pregnant females were transported from altitude prior
to delivery and subsequently sacrificed at sea level. Fetal atrial tissue was harvested for the
study. For the control group, pregnant females were reared at sea level for the entirety of
gestation and sacrificed near term, comparable to the long-term hypoxic group. The body
and organ weights of the long-term hypoxic fetuses did not differ significantly from the
normoxic controls. These studies were approved by the IRB and the Animal Care and Use
Committee of Loma Linda University, Loma Linda, California under protocol #8110004 on
4 December 2013.

4.2. Cell Isolation

Islet-1+ cardiovascular progenitor cell clones were isolated from 5 fetal Suffolk sheep,
as previously described by our laboratory [76]. Briefly, atrial cardiac tissue from either
normoxic or hypoxic fetal sheep was broken down into 1 mm3 sections which were then
digested by collagenase (Roche Applied Science, Indianapolis, IN, USA) for 2 h at 37 ◦C.
The cardiac tissue suspension was next filtered through a 40µm cell strainer to isolate CPCs.
The resultant cardiovascular progenitor populations were clonally expanded after diluting
cells to 0.8 cells per well in a 96-well plate. These monoclonal populations were evaluated
for their expression of cardiovascular progenitor cell markers, including Islet-1, c-kit, and
SSEA-4, to verify the desired CPC lineage. Cell clones expressing these three markers were
used for all of the experiments once monoclonally expanded.

4.3. Hypoxic Cell Culture

The monoclonal populations that were isolated from hypoxic sheep were continuously
cultured exclusively under hypoxic conditions when expanded in vitro. Hypoxic CPC
clones were maintained in a separate 37 ◦C incubator under 5% CO2 and 1% oxygen. The
normoxic/control CPCs arising from normoxic sheep were only cultured under normoxic
conditions with 5% CO2 and 22% atmospheric oxygen. The culture media and cell expan-
sion procedures remained the same between the normoxic and hypoxic cell clones, and all
of the clones were analyzed at low passage.
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4.4. Quantitative RT-PCR

The normoxic and hypoxic cell lines were trypsinized and stored in RNAProtect
(Qiagen, Valencia, CA, USA) until RNA isolation could proceed with the RNeasy Mini
Kit (Qiagen, Valencia, CA, USA). RNA quality and quantity were assessed using a Nan-
odrop 2000 spectrophotometer (Thermo Fischer Scientific, Rochester, NY, USA) and gel
electrophoresis. cDNA was prepared using 2µg of RNA and Superscript III, following
the manufacturer’s instructions (Life Technologies, Carlsbad, CA, USA). Quantitative real-
time polymerase chain reaction (qRT-PCR) was performed using Go-Taq qPCR Mastermix
(Promega, Madison, WI, USA) and the iCycler iQTM5 PCR Thermal Cycler (Bio-Rad, Her-
cules, CA, USA), following a protocol of 94 ◦C for 10 min and 45 cycles of 94 ◦C for 15 s,
58 ◦C for 60 s, and 72 ◦C for 30 s. RT-PCR products were run on 2% agarose gels with
a low mass ladder (Invitrogen, Carlsbad, CA, USA) to confirm the amplification of the
appropriate gene. Primers were designed using the National Center for Biotechnology
Information Primer-BLAST program and purchased from Integrated DNA Technologies
(Coralville, IA, USA). Primer sequences can be found in Table S1.

4.5. Western Blot

The cells were detached via a cold trypsin protocol, as previously described by our
laboratory [3], and stored in a solution of RIPA buffer, protease inhibitor cocktail, sodium
fluoride, sodium orthovanadate, and 0.5M EDTA. This cell solution was agitated for 2 h
at 4 ◦C and subsequently centrifuged at 14,000× g and aliquoted for quantification using
the Micro BCA Protein Assay Kit (Thermo Fischer, Waltham, MA, USA). These aliquots
were run on an automated, gel-free Western blot system (ProteinSimple Wes, San Jose, CA,
USA) to quantify specific protein expression across our cell lines. The antibodies used can
be found in Table S2.

4.6. Flow Cytometry

The CPCs were cultured, trypsinized, and aliquoted for flow cytometry to evaluate
the expression of cardiovascular progenitor cell markers including Islet-1, C-kit, CD105,
and SSEA-4. The trypsinized cells were washed with 1X PBS (Life Technologies, Grand
Island, NY, USA) containing 0.5% BSA (Research Products International Corp, Mount
Prospect, IL, USA) and 2mM EDTA (Sigma Aldrich, St. Louis, MO, USA). The treated
CPCs were fixed with 4% paraformaldehyde (PFA) (Sigma Aldrich, St. Louis, MO, USA),
permeabilized in 0.1% Tween-20 (Sigma Aldrich, St. Louis, MO, USA), blocked in 0.6 M
glycine (Sigma Aldrich, St. Louis, MO, USA) solution containing 10% BSA (Research
Products International Corp, Mount Prospect, IL, USA), and stained for cardiovascular
progenitor cell lineage markers. Once stained, the CPCs were analyzed in a MACSQuant
analyzer (Miltenyi Biotec, Auburn, CA, USA). Data quantification was accomplished using
FlowJo 10.7 (Ashland, OR, USA). UltraComp eBeads (Life Technologies, Grand Island, NY,
USA) were used to compensate, following the manufacturer’s directions.

4.7. Cell Cycle

Cells were aliquoted into 250,000 cell lots and stored in 70% ethanol, at −20 ◦C
overnight. These cells were then incubated in RNase A (Fisher Scientific, Pittsburg, PA,
USA) for 60 min at 37 ◦C. Propidium iodide was used to stain the samples prior to cell
cycle analysis via a MACSquant analyzer (Miltenyi Biotec, Auburn, CA, USA). The data
were analyzed on FlowJo v10.7 (Ashland, OR, USA) using the Dean-Jett-Fox model cell
cycle analysis tool.

4.8. Transwell Invasion Assay

The upper chambers of Corning HTS Transwell® plates (8.0-µm pore size, Venlo Lim-
burg) were coated with Cultrex® basement membrane extract (Trevigen, Gaithersburg, MD,
USA). Fetal cardiovascular progenitor cells were suspended in starvation media composed
of 98.5% Iscove’s Modified Dulbecco’s Medium with GlutaMaxTM (Life Technologies,
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Carlsbad, CA, USA), 1.0% insulin-transferrin-selenium (Life Technologies, Carlsbad, CA,
USA), and 0.5% fetal bovine serum (Thermo Scientific, Waltham, MA, USA) and plated
on the coated wells at 50,000 cells per well. The lower chamber contained cardiovascular
progenitor cell growth media with stromal cell-derived factor-1α (SDF-1α, Life Technolo-
gies, Carlsbad, CA, USA), a chemoattractant, at a concentration of 100 ng/mL. The cells
were incubated for 48 h at 37 ◦C, dissociated, stained with calcein AM (BD Biosciences, San
Jose, CA, USA), and analyzed using a FLx900TM microplate fluorescence reader (BioTek
Instruments, Winooski, VT, USA).

4.9. Ingenuity Pathway Analysis

We input our genetic regulation data into Ingenuity Pathway Analysis (Qiagen, Valen-
cia, CA, USA) to evaluate and assess potential and known pathway interactions between
the targeted survival and dedifferentiation pathways. IPA assembled a network of direct
and indirect pathway interactions that we used to validate our proposed mechanism of
hypoxic regulation. The networks were generated through the use of IPA (QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis).

4.10. Statistical Analysis

We used a two-tailed, paired t-test to compare the mean of all normally distributed
data and a Wilcoxon matched-pairs signed rank test to compare the mean of all non-
normally distributed data. For cell cycle and migration, samples in each group were
pooled and a two-tailed, unpaired t-test was used for normally distributed data, whereas a
Mann-Whitney U test was used to compare the mean of all non-normally distributed data.
Prism version 7 was used for all statistical analysis, and all data are represented as the
mean ± the standard error of the mean. p-Values < 0.05 were considered to be statistically
significant.

5. Conclusions

The generation of the mitotically stable cell lines of ovine fetal cardiovascular progeni-
tors that are characterized by long-term hypoxia-induced enhancements in stemness has
the potential to be of great importance for creating sheep models for human cell/tissue
engineering and regenerative medicine. The latter are aimed at cardiovascular therapies
and cardiosurgical treatments of a variety of cardioangiopathies [3,4]. In addition, the
establishment of permanent cardiovascular stem cell clones that exhibit augmented stem-
ness properties as a result of expressing the genotypic and phenotypic traits related to
their tissue-specific genomic, epigenomic and proteomic profiles could also be valuable
for the generation of nuclear donor cells for modern assisted reproductive technologies
(ARTs) such as cloning sheep and other mammalian species by somatic cell nuclear transfer
(SCNT) [77–79]. Future work in these areas is needed to address these possibilities.
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AKT Ak Strand Transforming
BCL2BSA B-Cell Lymphoma 2Bovine Serum Albumin
CCND-1 Cyclin D1
c-Kit KIT Proto-Oncogene: Receptor Tyrosine Kinase
CPC Cardiovascular Progenitor Cell
CXCR4 CXC Chemokine Receptor 4
DNA Deoxyribonucleic Acid
EDTA Ethylenediamine Tetra-Acetic Acid
ERBB Epidermal Growth Factor
FAK Focal Adhesion Kinase
HES1 Hes Family BHLB Transcription Factor 1
HIF-1 Hypoxia-Inducible Factor 1
HIF-2 Hypoxia-Inducible Factor 2
HMOX Heme Oxygenase
IPA Ingenuity Pathway Analysis
IRB Institutional Review Board
ISL-1 Islet-1
MAPK Mitogen Activated Protein Kinase
MYC MYC Proto-Oncogene
Nanog Nanog Homeobox
NFKB Nuclear Factor Kappa Light Chain Enhance of Activated B Cells
NRG Neuregulin
OCT4 Octamer-Binding Transcription Factor 4
PBS Phosphate Buffered Saline
PDK Pyruvate Dehydrogenase Kinase
PIK3C2B Phosphatidylinositol-4-Phosphate 3-Kinase C2 Domain Containing Beta Polypeptide
PIK3CA Phosphatidylinositol-4,5-Bisphosphonate 3-Kinase Catalytic Subunit Alpha
PKCPOU5F1 Protein Kinase CPou Domain, Class 5, Transcription Factor 1
RELA V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A
RIPA Radioimmunoprecipitation Assay
RNA Ribonucleic Acid
RT-PCR Reverse Transcription Polymerase Chain Reaction
SDF-1 Stromal Cell Derived Factor 1
SOD2 Superoxide Dismutase 2
SOX2 SRY-Related HMG Box
SSEA-4 Stage Specific Embryonic Antigen 4
Wnt Wingless Tyrosine Kinase
Yap1 Yes1 Associated Transcriptional Regulator
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