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Abstract: Ship type classification is an essential task in maritime navigation domains, contributing to
shipping monitoring, analysis, and forecasting. Presently, with the development of ship positioning
and monitoring systems, many ship trajectory acquisitions make it possible to classify ships according
to their movement pattern. Existing methods of ship classification based on trajectory include classical
sequence analysis and deep learning methods. However, the real ship trajectories are unevenly
distributed in geographical space, which leads to many problems in inferring the ship movement
mode on the original ship trajectory. This paper proposes a hierarchical spatial-temporal embedding
method based on enhanced trajectory features for ship type classification. We first preprocess the
trajectory and combine the port information to transform the original ship trajectory into the moored
records of ships, removing the unevenly distributed points in the trajectory data and enhancing key
points’ semantic information. Then, we propose a Hierarchical Spatial-Temporal Embedding Method
(Hi-STEM) for ship classification. Hi-STEM maps moored records in the original geographical space
into the feature space and can efficiently find the classification plane in the feature space. Experiments
are conducted on real-world datasets and compared with several existing methods. The result shows
that our approach has high accuracy in ship classification on ship moored records. We make the
source code and datasets publicly available.

Keywords: ship classification; spatial-temporal embedding; feature enhancement; deep learning;
attention

1. Introduction

Ship type classification is an essential task in maritime navigation domains [1–4].
We can analyze ship movement characteristics better by ship types, which contributes
to shipping monitoring, analysis, and forecasting. Ship types can be obtained by some
approaches, such as LRF (Lloyd’s Register Foundation (https://www.lrfoundation.org.uk/,
accessed on 25 November 2021)) or AIS (Automatic Identification System (https://en.
wikipedia.org/wiki/Automatic_identification_system, accessed on 25 November 2021)).
However, the information in AIS will face the following problem: The ship type contained
in the AIS message may not be the real type of the corresponding ship. There are two
reasons for this: (1) Ship type in the AIS message is filled in manually, and some crew
members may fill it in incorrectly. (2) Some ships will deliberately conceal the true type
when carrying out illegal activities, such as smuggling, illegal fishing, illegal operations,
etc. As a result, inferring ship types by their trajectories is an effective way to deal with this
problem. Presently, with the development of ship positioning and monitoring system, it is
possible to classify ships according to the ship’s movement pattern, and researchers have
focused on this [5–9].

There are many general trajectory classification methods that do not only focus on
ship classification. Trajectory classification has been widely studied and applied [10,11]. We
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mainly introduce four kinds of trajectory classification methods. One is based on trajectory
similarity measure methods such as Euclidean Distance [12], Hausdorff Distance [13], Dyn amic
Time Warping Distance (DTW), Longest Common Subsequence (LCSS) Distance, and Fréchet Dis-
tance. Another trajectory classification method is based on trajectory cluster analysis [14–17].
Existing sequence inference models can be also employed in trajectory classification, such
as Dynamic Bayesian Network (DBN) [18], and Hidden Markov Model (HMM) [19] which
incorporate the information from locations and the sequential patterns between adjacent
locations [10]. In recent years, artificial intelligence has been widely used in various
fields [20]. Refs. [21–24] employ deep recurrent neural network for trajectory classification.
Ref. [24] combines feature selection and deep learning for trajectory classification. Ref. [25]
establishes a deep learning-based trajectory classification method under trajectory data
flow. However, there are not many methods for ship trajectory classification. Compared
with general trajectory classification, the proprietary ship classification method takes into
account the uncertain characteristics so as to improve the accuracy of ship classification.

The most critical challenge of ship classification based on trajectory lies in the sparsity
of ship trajectories [26], which is caused by the ship trajectory data acquisition approaches.
Existing data acquisition methods include terrestrial-based AIS (T-AIS) equipment (https:
//www.marinetraffic.com/blog/seven-things-know-ais/, accessed on 25 November 2021)
and a few satellite-based AIS (S-AIS) (AIS was not anticipated to be detectable from space.
Nevertheless, since 2005, various entities have been experimenting with detecting AIS
transmissions using satellite-based receivers and, since 2008, companies such as exactEarth
(https://www.exactearth.com/, accessed on 25 November 2021), ORBCOMM (https://
www.orbcomm.com/, accessed on 25 November 2021), Spacequest (https://www.aac-
clyde.space/who-we-are/our-companies/spacequest, accessed on 25 November 2021),
Spire (https://spire.com/, accessed on 25 November 2021) and also government programs
have deployed AIS receivers on satellites.) Because most ship trajectory data are collected
by T-AIS, it will lead to dense and complete ship trajectories near the shore and sparse
and missing ship trajectories at the far shore [27], which will cause the existing methods to
misjudge the ship type based on the sparse trajectory.

This paper establishes a hierarchical spatial-temporal embedding method based on
enhanced trajectory features for ship type classification. First, through preprocessing,
we transform the original ship trajectory with uneven distribution into moored records,
which reduces and enhances semantic information. Furthermore, we propose a ship
moored records classification method called Hi-STEM, a Hierarchical Spatial-Temporal
Embedding Method, which maps the moored records from the original space into feature
space, with spatial and temporal information remaining. We employ semi-supervised
learning to embed the ports of moored records, enhancing the semantic information of
ports. Hi-STEM uses recurrent neural networks to capture the sequence information of
moored records. The original trajectory’s spatial and temporal information is retained
by using hierarchical embedding, and the same type of trajectories is clustered in the
feature space.

Our contributions are as follows:

• We establish a framework for ship classification based on ship moored records. In this
way, we introduce the port information, which increases the features of the trajectory
and reduces the problem of uneven data distribution.

• We propose a spatial-temporal sequence classification method called Hi-STEM. Hi-
STEM processes the temporal and spatial information simultaneously and uses the
attention recurrent neural network to improve the classification accuracy of sequences.

• We verify the effectiveness and the robustness of our method on real-world datasets.
The results show that our method can arrive over 80% accuracy on ship classification
of four categories, beyond the naive deep neural network approach.

• We arrange the datasets for ship classification, which contains information such as
ship type, the ship moored records, and port basic properties. Details of datasets
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and source code can be obtained at the website https://github.com/taos123/Ship_
Classification_Moored (accessed on 25 November 2021).

The rest of the paper is assigned as follows: In Section 2, we introduce the materials
and methods in this paper. In Section 3, we present the detail of the experiments and show
the results. Moreover, we demonstrate trajectory visualization analysis. We conclude our
work and give the future work in Section 4.

2. Materials and Methods

In this section, we will introduce the details of the hierarchical spatial-temporal em-
bedding method based on enhanced trajectory features for ship type classification. Our
method consists of two components: First, we will describe the datasets used in this paper
and introduce how to preprocess origin ship trajectories to obtain ship moored records.
Second, we will introduce a spatial-temporal sequence classification method, Hi-STEM,
which infers the ship type according to the moored records considered both spatial and
temporal information.

2.1. Data Preprocessing

Due to the limitation of trajectory acquisition devices, there are a lot of redundant
points in the original trajectory. Some of these points are meaningful, such as a ship staying
in a port. However, some of the points have low information. These points will cause
too many points in the whole trajectory and bring a certain amount of noise. Therefore,
before the work of trajectory classification, we extract the critical position points in the
trajectory. We believe that the behavior of ships calling at the port has more obvious
semantic characteristics than sparse navigation. Therefore, we first extract the behavior of
ships calling at the port from the ship trajectory, which we call ship moored records. To
obtain the moored records of ships, we used two data sets. We employ real-world ship
movement data collected from AIS (Automatic Identification System), which captures the
movement of ships worldwide. There are many critical problems in vessel movement
trajectory data, such as forging identity, cheating GPS location, going into the dark, etc. We
clean the original data to solve the format problems and then extract the locations of the
trajectories follow as [26].

On the other hand, we also use the information of all ports in the world, which is
crawled from World Port Index (https://msi.nga.mil/Publications/WPI, accessed on 25
November 2021), including the location, name, country, and other basic information of
the port. The port data includes 3665 ports information. The calculation process of ship
moored record includes two main processes, which is shown in Figure 1.

Figure 1. The demonstration of trajectory preprocess. The inputs include ship trajectories and port
information. After the stop points detection and port matching, the output are ship moored records.

 https://github.com/taos123/Ship_Classification_Moored
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Stop points detection is a crucial step of moored records calculating [28]. We calculate
the stop point according to the operation state of the ship. We illustrate the calculation
method with a specific example which is shown in Figure 2. First, we calculate the running
speed of the ship. When the running speed of the ship is lower than a certain threshold for
a certain period, it is considered that there is a stopping state.

(a) (b)

Figure 2. An example of ship point detection. Different colors lines correspond to different navigation
states in the figure. (a) Ship Speed Variation Curve; (b) Ship Movement Trajectory.

Finally, we match the stop point with the ports to obtain the final moored records.
For each stop point, we compare the point with all port locations and set a threshold. In
practice, we set the threshold as 10 nautical miles by experience. If the distance between
the stopping point and the port is less than the threshold, the ship is considered to be
mooring at the port. If the distance between the stopping point and multiple ports at the
same time is less than the threshold, we choose the port with the smallest distance as the
stopping position.

By trajectory preprocess, the form of data has changed. We give a formal description.
x, y, t→ s, h, t. Where s denotes the port that the ship moored. h denotes the behavior of
moving ships in s, which is defined as stay behavior in this paper. t is the occurrence time
of stay behavior.

2.2. Hierarchical Spatial-Temporal Embedding Method for Ship Classification

In this section, we introduce the hierarchical spatial-temporal embedding method for
ship classification. For each moored record, we need to consider both spatial-temporal
information and sequence information. To deal with it, we propose a spatial embedding
method to enhance spatial semantic information through an unsupervised learning method,
which will map ports into vector space. At the same time, we also introduce how to use the
temporal information of moored records by the temporal embedding function. An attention
recurrent neural network is employed for sequence classification. We will describe these
steps in detail below. The overall structure of our method is shown in Figure 3.

2.2.1. Spatial-Temporal Embedding

The ports that moored records contained represent the movement preference of the
moving ships, which is an essential factor in differentiating the ship types. In ship navi-
gation, the port is functional. Therefore, we hope to obtain the semantic information of
the port to enhance the trajectory features. As mentioned in the domains of the natural
language process, we can employ semi-supervised learning on the large-scale corpus to
obtain word vectors that project words of the same meaning to similar vectors [29,30].
In the trajectory processing method, we also use many trajectory data to obtain the port em-
bedding vector. For example, cargo transportation generally has the trajectory of movement
from the port of cargo export, through the port of cargo import, and finally back to the port
of cargo export; the passenger ship from the passenger terminal through the tourist resort
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and finally back to the passenger terminal. Of course, the actual situation of the moored
records will be more complex than the above examples. Nevertheless, a large number
of the moored records contain position information we can learn from. So we design an
unsupervised learning spatial information representation method, which employs the
structural information in moored records to learn the similar relationship between ports.

Figure 3. Overall structure of hierarchical spatial-temporal embedding method based on enhanced
trajectory features for ship classification.

We construct the set of ports represented by a one-hot representation approach. In the
preprocessing, we have used set S = {s1, s2, · · · , sl} to represent all the ports, where
l is the size of the port set. An L-dimensional vector is used to represent all si such as
[0, 0, · · · 1 · · · 0, 0], where one is located on ith element and the rest are zero. Let l(si) denotes
the one-hot representation of si. For each port, the first and the last points adjacent to the
original moored records are selected to form a corpus pair, where are the selected center
port and the adjacent port sets. We extract from the moored records T = (s1, s2, · · · , sn)
from the moored record sets T as a location and its context. The training sample can be
extracted as Equation (1).

si ∼< si−1, si+1 > (1)

In the above equation, si is the port of moored records T and < si−1, si+1 > are the
context of si with context length 1. Let v(s) denotes the ports vector and F() denotes a
measurement equation. A learning network is built to learn the information coding of
trajectory points. The neural network is used as the learning network of trajectory point
information coding. A port and its context, which are also called corpus, are the input and
the output of the learning networks for training. Both the input and output use the unique
hot coding of ports. We can train a simple neural network parameter W with training data
sample si, si−1, si+1. The parameter v(s) of the neural network is the embedded port vector
we need. Finally, we extract the last layer vector of the learning network as the information
coding of trajectory points and use the representation. The whole process of acquiring
position vector is the optimal solution of Equation (2).

p(v(si)|C(si, s)) = ∏
l′∈C(si ,s)

s
(
v(si)|v

(
s′
))

= ∏
s′∈C(si ,s)

exp{v(si) · v(s′)}
∑s′′∈C(si ,s) exp{v(s′′) · v(s′)}

(2)

where v(si) represents the port vector representation and C(si, s) is the context of si.
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The temporal information is also an important factor for inferring ship type with
the moored records. Generally, the temporal information in the original trajectory data
is usually represented by a positive integer, which represents the period from a fixed
starting point to the time when the trajectory point is collected. However, this kind of time
information cannot be directly processed. We formed a point for temporal information
processing which processes the original temporal information into a representation that can
extract temporal periodicity and is relatively homogeneous with spatial information. Let
us use the following steps to first extract the year, month, day, hour, minute, and second
information in the time information, as follows:

t→ ty, tM, td, tH , tm, ts (3)

Gaussian distribution is used to project time. Let us take component Y of time in the
year as an example. There are two reasons that we project time: (1) due to all element
values of the space embedding vector are in [0, 1], the corresponding element of time vector
should also be in [0, 1]. (2) The input of neural network should be continuous, not discrete.
The treatment method is shown by the following formula.

vty = G(ty)

=
1√
2π

exp

(
−

ty
2

2

)
(4)

In the same way, we can deal with the component of time in a month, day, hour,
minute, and second. Finally, we splice the spatial embedding vector v(s) and the temporal
embedding vector v(t) to form the vector represented by the trajectory point v(p).

2.2.2. Spatial-Temporal Sequence Classification

At the same time, we need to consider the influence of moored records sequence
information on ship classification results. Because the moored records data collected from
the real world are affected by the movement of the objects and the adoption rate of the
acquisition equipment, the trajectory data is often indefinite, so we need to consider the
information of the port on each time node and judge the category of the ship by synthesizing
this information. We combine recurrent neural networks model and moored records port
to embed information in different periods of the records.

We take LSTM as the example in Hi-STEM. A common LSTM unit is composed of
a cell, an input gate, an output gate and a forget gate. The cell remembers values over
arbitrary time intervals and the three gates regulate the flow of information into and out
of the cell. LSTMs were developed to deal with the exploding and vanishing gradient
problems that can be encountered when training traditional RNNs. For the trajectory
T = {p1, p2, · · · , pk} ,and let ht−1 denote the last state, ht denotes the current state and h̃t
denotes the candidate state. We can use the recursion formula as follows.

ft = σg

(
W f v(pt) + U f ht−1 + b f

)
it = σg(Wiv(pt) + Uiht−1 + bi)

ot = σg(Wov(pt) + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcv(pt) + Ucht−1 + bc)

ht = ot ◦ σh(ct)

(5)

In the training process, the initial values are c0 = 0 and h0 = 0 and the operator ◦
denotes the Hadamard product. The subscript t indexes the time step. v(pt) is input vector
to the LSTM units. ft is the forget gate’s activation vector. it is the update gate’s activation
vector. ot is the output gate’s activation vector. ht is the hidden state vector also known as
the output vector of LSTM units. ct is cell state vector. W, U, and b are weight matrices and
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bias vector parameters that need to be learned during training. σg is a sigmoid function. σc
is a hyperbolic tangent. In this way, we can obtain the RNN output every time. GRU and
Bi-LSTM are also employed in Hi-STEM.

The attention mechanism is introduced in Hi-STEM, which highlights the information
of critical ports in the moored records when classifying the ships to improve the classifica-
tion accuracy. When considering the influence of ports in different periods of a sequence
on the results of ship classification, we will face the following problems: many different
categories of moored records have a large number of coincidence sub-sequence, which leads
to difficulty in distinguishing such moored records with repeated sub-sequence. In this
regard, our strategy is to highlight the influence of different parts of moored records on
the classification results in the process of classification to reduce the difficulty of the same
moored records sequence on the classification results. To achieve those ideas, we introduce
the attention mechanism in Hi-STEM. The core idea is to highlight the impact of the key
port on the classification results in the process of trajectory classification to improve the
accuracy of classification [31,32]. In this process, we need to consider how to determine the
key ports in the moored records. In this regard, we introduce a corresponding weight factor
to each position point in the sequence, where the weight factor is normalized, so that it is
convenient to calculate the moored records affected by the weight factor. After obtaining
the weight factor, the recalculated embedding vector can be expressed as Equation (6).

ct =
len(T)

∑
i=1

atshs (6)

Ports corresponding to each vector in hs trajectory points, ats represents the weight
factor. We also need to determine how to calculate the weight factor. Our method is to cal-
culate the weight factor of each port and the correlation coefficient of the final classification
result as Equation (7).

at = f (ct, ht) (7)

ats =
exp

(
score

(
ht, h̄s

))
∑S

s′=1 exp
(
score

(
ht, h̄s′

)) (8)

After normalizing the correlation coefficient calculated by the above formula, the weight
factor needed in Equation (8) can be obtained.

After completing the process of hierarchical spatial-temporal embedding, we obtain
a latent vector of trajectory, which is used for ship classification. The process of ship
classification includes training and reasoning. Let us first describe the training process. We
construct a multilayer perceptron, which consists of three layers of nodes: an input layer,
a hidden layer, and an output layer, to map multiple input vectors to a single output vector.
Except for the input nodes, each node is a neuron that uses a nonlinear activation function.
It can distinguish data that is not linearly separable. One layer perceptron can be described
by Equation (9) and it can be superimposed as MLP.

z = tanh(W · x + b) (9)

In the output layer, we use a softmax function. We use z to represent the input vector
of the softmax function and y to represent the output vector of the softmax function, where
zi is the ith element of the vector z and yi is the ith element of the vector y. For each element
zi in the output layer, after softmax function processing, yi can be obtained as Equation (10).

p(yi) =
ezi

∑j ezj
(10)

Moreover, we use part of the labeled moored records data as training data to input
our method, and we use the method of random gradient descent to make the recognition
model reach the optimal solution.
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Then we employ the trained for ship classification reasoning. We use the original
trajectory data as the input of the whole model. After preprocessing, layered embedding,
and adjusting the weight of trajectory points, the position of the largest element in the
output vector of MLP is the corresponding classification label. In this article, we classify
ships into four categories, including cargo ship, fishing ship, oil ship and passenger ship.
In the calculation process, we use a 1 × 4 vector to represent each different ship type.
Specifically, [1, 0, 0, 0] denotes cargo ship, [0, 1, 0, 0] denotes fishing ship, [0, 0, 1, 0] denotes
oil ship, and [0, 0, 0, 1] denotes passenger ship.

2.3. Parameter Setup

We set the iteration number of spatial embedding learning as 100. The size of the
spatial embedding vector is 300. The initial learning rate of our method is 0.001. The
number of the hidden layer and the attention layer of Hi-STEM is 300. We compare the
performance among LSTM, GRU, and BRNN and use BRNN as the default recurrent
module of our model. Other parameters can be looked up in the source code.

3. Results

In this section, we verify the effectiveness and robustness of ship classification method
based on moored records. In addition, we visualize the embedded vectors and compare
them with the moored records in geographical space to intuitively show that the hierar-
chical embedding method can effectively cluster ships of the same type in the embedding
space. Before we show the results, we need to introduce the metric methods and ship
classification baselines.

3.1. Datasets

Our datasets consist of three parts. The main part records the ship’s moored record,
including 20572 lines of data, and each line records the one moored record of a ship. The re-
maining two parts correspond to the basic information of the ship and the basic information
of the port, respectively. The ship type, port location, and other basic information can
be queried in the remaining two parts through the ship ID and port ID in the main part.
We checked the ship types of each ship one by one to ensure that the ship types used for
training and testing are correct. The detailed description of these datasets can be used at
links https://github.com/taos123/Ship_Classification_Moored (accessed on 25 November
2021). The basic statistics of the datasets are shown in Table 1. The statistical distribution
histogram of ship moored records and the statistical distribution histogram of port moored
number are shown in Figure 4.

(a) (b)

Figure 4. Ship moored records distribution histogram. From the perspective of ships and ports,
we calculate the distribution of moored records, and counted ship moored record distribution
according to ship types. (a) Moored Records Length Distribution Histogram; (b) Port Moored
Number Distribution Histogram.

https://github.com/taos123/Ship_Classification_Moored
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Table 1. Training data description and statistics.

Datasets

Attribute
N T Avr TR

Training Dataset 1 400 1200 16.9 2015.05 ∼ 2015.11
Training Dataset 2 400 800 13.6 2015.05 ∼ 2015.08
Training Dataset 3 400 400 14.5 2015.05 ∼ 2015.06

Test Data 400 400 15.53 2015.04 ∼ 2015.05
N and T in the above table represents the number of ships and the number of trajectory in the dataset. Avr is the
average number of locations per trajectory. TR represents the collection time range of the dataset.

3.2. Evaluation Metrics

Because trajectory classification is a multi-classification task, we use the precision rate
and recall rate to measure ship classification performance, the standard metric methods in
information retrieval domains. Those metric methods are defined as follows.

precision =
1
N

N

∑
i=1

TPi
TPi + FPi

recall =
1
N

N

∑
i=1

TPi
TPi + FNi

In the above formula, TPi, FPi, and FNi are the number of true positive, false positive,
false negative samples of category i in trajectory classification. N is the number of categories
of trajectory datasets. F1 value is also employed to measure the model’s performance, which
is defined as follows.

F1 = 2× precision× recall
precision + recall

3.3. Effectiveness Analysis

In this section, we answer two questions: (1) Does using moored records better classify
ships than using origin ship trajectories? (2) Can Hi-STEM classify ships better than other
sequence classification methods? At the same time, for the sake of comparing model
performance in a different amount of training data, we reduce the training data to three
months and one month, keeping the test data invariant concurrently. First, we employ three
common trajectory classification methods, including LCSS, DTW, and HMM. Those method
can be realized by open source code: https://pypi.org/project/hmmlearn/ (accessed on 25
November 2021); https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-
Time-Warping (accessed on 25 November 2021). We compare them with our method based
on moored records. The results are shown in Figure 5.

We can see from Figure 5 that the ship classification effect based on the original trajec-
tory is much lower than that based on moored records. In particular, the performance of
ship classification based on trajectory similarity is very poor. This is because the trajectories
of the same type of ships are very different, and it is difficult to capture the movement
patterns of the same type of ships by LCSS or DTW. The performance based on HMM is
better than that based on trajectory similarity measurement. However, due to the large
uncertainty in ship movement, the HMM method still cannot achieve a good effect with
limited data. In addition, we can draw the conclusion that whether in the original trajectory
or in the moored records, the effect of the method based on LCSS, DTWm and HMM are not
satisfactory. This is because both LCSS and DTW measure the distance between trajectories,
but the trajectories of ships of the same type are not close to each other. Our method is to
identify the transfer patterns of ships between different ports to classify ships. Because the
transfer patterns of different types of ships between ports are very different, our method
can achieve a better effect. On the other hand, Hi-STEM is designed for classify moored

https://pypi.org/project/hmmlearn/
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping
https://github.com/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping
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record, as a result, it is not suitable for original trajectories. We can also see that there is
little difference between LCSS and DTW under the original trajectory and moored records,
because the difficulty of trajectory-based ship classification is to identify the pattern of
ship movement. However, LCSS and DTW only consider the distance between trajectories,
and the effect of ship classification is similar under the original trajectories and moored
records trajectories. Hi-STEM considers the semantics of each port, and captures the trans-
fer mode of ships between different ports through deep neural network to infer the ship
type, which will bring great improvement.

Figure 5. Results comparison of ship classification under moored records and original ship trajectories.

On the other hand, we compare Hi-STEM with other sequence classification method
based on moored records. The overall results are shown in Figure 6.

(a) (b) (c)

Figure 6. Overall result comparison. The three figure, respectively, show the comparison of ship
classification effects under different metric methods. Different colors in each figure represent differ-
ent methods. (a) Precision Rate; (b) Recall Rate; (c) F1 Value.

As we can see from Figure 6, we obtain the following conclusions: (1) Trajectory classi-
fication results on SVM, DT, RF are inferior. This is because real trajectory data are highly
free on movement space, making it challenging to find the classification plane on movement
space. (2) Hi-STEM is better than the RNN-based model. Compared with the RNN-based
model, Hi-STEM has two improvements. Hi-STEM learned the semantic representation
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of spatial and temporal from historical trajectory data. Hi-STEM introduces the attention
mechanism and considers the influence of different locations on the classification results.
(3) We can also see that with the decrease of the number of training samples (historical
data), all methods’ accuracy shows a downward trend, but Hi-STEM decreases slowly
than existing methods. However, when the training data drops to three months, the result
accuracy of the RNN-based method approach very rapidly, but our method’s accuracy
remains the same. When the training data is down to only one month, all methods’ results
are significantly reduced, but Hi-STEM still shows better accuracy than others. There are
two reasons we think Hi-STEM outperforms other methods when the number of training
samples decreases: (1) Hi-STEM introduces information in space embedding and time
embedding, which is independent of training data and will not decrease with the reduction
of training data. (2) Hi stem introduces the attention mechanism, which can more focus on
capturing different types of features in the trajectory, which will reduce the dependence on
the amount of training data.

3.4. Robustness Analysis

In this section, we verify the robustness of our method. We first analyze Hi-STEM
performance under different parameters. We compare Hi-STEM results under different
RNN units and different attention score measures. We choose LSTM, GRU, and BRNN as
RNN units’ variants and additive, multiplicative, and dot attention scores. By combining
different RNN variants and attention scores, we can obtain nine kinds of Hi-STEM variants.
We conduct experiments on those nine kinds of Hi-STEM variants with three datasets.
The results are shown in Figure 7.

Figure 7. Result comparison with different RNNs units and attention scores. The figure describes
the influence of different attention mechanisms and RNN models in Hi-STEM on the results under
different data sets.

From Figure 7, we can see that Hi-STEM with GRU units performs worse than other
RNN units. Hi-STEM performance with LSTM units is relatively stable, and results are
at the same level under different attention scores. Add attention are better than the other
two attention scores. We can draw the conclusion that (1) Attention mechanism did
affects classification results. In most situations, the attention mechanism is able to improve
the accuracy of ship classification. (2) When the training data is sufficient, there is little
difference in the impact of different attention calculation methods on the results. However,
when training data reduced, different attention mechanisms will fluctuate greatly.

Second, we compare the effect of hidden layer size on trajectory classification accuracy.
We select the hidden layer size from 100 to 1000 and compare the results under different
hidden layers as shown in Figure 8. We can see that when the hidden layer size is less
than 300, the accuracy of the model will increase with the increase of the hidden layer
size. However, the classification accuracy of Hi-STEM does not change significantly with
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the setting of other hidden layer sizes, which indicates that Hi-STEM is not sensitive to
this parameter.

Figure 8. Hi-STEM results with different hidden layer length. Different colors represent different
indicators, and different lines represent different data sets. It can be seen from the figure that under
different data sets, the effect of the model is the best when the hidden layer size is 300.

3.5. Embedding Visualization Analysis

Finally, we want to explore how Hi-STEM works. Because the working principle of
the internal structure of the deep neural network is still a black box for us, we visualize the
input and output of the neural network. For the input end, first, we randomly select four
ships from four different ship classifications, and extract their trajectories for one month
and visualize them on the map, which is shown in Figure 9

Then for the output end, we visualize the latent vector of moored records. Because em-
bedded moored records are still high-dimensional vectors, we employ t-distributed Stochas-
tic Neighbor Embedding, and t-SNE [33,34] for embedded moored records dimensionality
reduction. It is a nonlinear dimensionality reduction technique well-suited for embed-
ding high-dimensional data for visualization in a low-dimensional space of two or three
dimensions. More precisely stated, it models each high-dimensional object by a two- or
three-dimensional point in such a way that similar objects are modeled by nearby points,
and dissimilar objects are modeled by distant points with high probability. In practice, we
use the public machine learning tools (https://scikit-learn.org/stable/modules/generated/
sklearn.manifold.TSNE.html, accessed on 25 November 2021) to realize the t-SNE method.
The visualized embedded vectors are shown as Figure 10.

As we can see, the movement of the same type of ship in the original space has a
very low correlation. It is difficult to find similar features in the same ship movement
pattern. However, in the embedding space, the same type of ships is clustered in near areas.
Hi-STEM can project the same kind of trajectory to the adjacent points in the feature space,
which makes it available to find the effective classification plane in the feature space.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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(a) (b) (c) (d)

Figure 9. Ship moored records examples. We show the moored records of four different types of
ships. The moored records of four ships in a month are selected randomly from each type of ship
for visualization. Each column in the map represents the moored records of ships of the same kind,
and the colors of their moored records are also the same on the map. We can find that the same kind
of ship’s moored records has no apparent similarity in both the geographical spatial distribution and
the motion pattern. (a) Cargo; (b) Fishing; (c) Oil; (d) Passenger.
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Figure 10. Ship movement embedding vectors visualization. The points shown in the figure are
the high-dimensional vector points in the two-dimensional space after dimension reduction. These
points are one-to-one corresponding to the original space’s ship movement, and the points with
different colors represent different types of ships in the original space. We described the cluster and
marked the specific the type of ship next to the cluster.

4. Conclusions

This paper reviewed the problem of ship type classification. To address the challenges
of high uncertainty of real trajectories, we proposed a hierarchical spatial-temporal em-
bedding method based on enhanced trajectory features, which can map origin trajectory
into the feature space and find the classification plane in the feature space. We conducted
experiments on the real-world trajectory datasets and the results show that our method has
high accuracy. Furthermore, as the size of training data reduces, the model performs much
better than other approaches. We compared the performance under different parameters
to test the robustness of the method. Attention mechanism was also introduced into our
method which makes the model more accurate. In addition, we visualized embedded
vectors and observed the same type of ship clustering in the feature space. In future works,
we will work out ship classification datasets that can be used by more scholars and make
them available to researchers in related fields.
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