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Simple Summary: COVID-19, caused by a novel coronavirus, SARS-CoV-2, first emerged in China
in December 2019, and then spread around the globe with more than 29 million confirmed infections.
Immunoinformatics and molecular modelling techniques are time-efficient methods that are used
to accelerate the discovery and design of the candidate peptides for vaccine development against
SARS-COV-2. Recently, the use of multiepitope vaccines has proved to be a promising immunization
strategy against different viruses and other pathogens. In the current study a comprehensive in
silico strategy was used to design stable multiepitope vaccine construct (MVC) from B-cell and
T-cell epitopes of essential SARS-CoV-2 proteins which include, spike, main protease, non-structural
protein 12 (polymerase), and Nsp13 (helicase) with the help of adjuvants and linkers. Molecular
dynamics studies revealed that the MVC displayed favourable molecular interactions with human
Toll-like receptors (TLRs), which are known in triggering an innate and adaptive immune response.
Furthermore, the MVC was checked for its recombinant production in Escherichia coli using
a well-known expression system. The MVC showed a stable three-dimensional structure and could
serve as a potential candidate for vaccine production, which warrant further experimental research
for validation.
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Abstract: The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory
infection (COVID-19) has spread in China, and the World Health Organization has declared it
a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive
and through a few repurposed drugs. The urgency of the situation requires the development of
SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods
that are generally used to accelerate the discovery and design of the candidate peptides for vaccine
development. In recent years, the use of multiepitope vaccines has proved to be a promising
immunization strategy against viruses and pathogens, thus inducing more comprehensive protective
immunity. The current study demonstrated a comprehensive in silico strategy to design stable
multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2
proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations
analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs),
which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a
vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this
study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy
encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be
present as a better prophylactic solution against COVID-19.

Keywords: COVID-19; SARS-CoV-2; spike protein; multiepitope vaccine; molecular modeling

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped, non-segmented
positive-sense RNA virus, causes severe respiratory infection [1]. The ongoing 2019–2020 outbreak of
coronavirus disease 2019 (COVID-19) [2–4] has led to 727,435 deaths with 19,687,156 confirmed cases
globally as per 10 August 2020, and the World Health Organization (WHO) has declared COVID-19
a global health emergency [5]. Coronaviruses are highly pathogenic viruses and are known to be
contagious, which was revealed by the SARS and MERS (Middle East respiratory syndrome) outbreak
in 2002 and 2012 [6,7]. The recent SARS-CoV-2 is considered as the seventh known human coronavirus
(HCoV) from the same family after 229E, NL63, OC43, HKU1, MERS-CoV, and SARS-CoV [8].

Like other coronaviruses, SARS-CoV-2 is spherical, having a diameter of about 125 nm, and its
genome (~30 kb) contains at least six open reading frames, which encode 16 non-structural proteins
and 4 major structural proteins, namely, a spike protein (S), a form of glycoprotein; a membrane protein
(M), which consists of the membrane; an envelope protein (E); and a nucleocapsid (N) protein, encoded
by the ORFs near the 3′end of the genome. Among these structural proteins, the spike (S) glycoprotein
binds to the cellular receptor angiotensin-converting enzyme 2 (ACE2), and is responsible for causing
the viral infection [9]. The S precursor protein of SARS-CoV-2 can be proteolytically cleaved into S1 (685
amino acids) and S2 (588 amino acids) subunits [10]. Owing to the integral role of S protein between
viral and host cell membrane interactions, it could be a potential target for developing new SARS-CoV-2
vaccines. Previous studies related to the development of anti-SARS-CoV vaccines and therapeutics that
target S protein have already been reported [11–14]. Most of the non-structural proteins play an essential
role in viral replication, mainly SARS-CoV-2 main protease (Mpro), also known as chymotrypsin-like
protease (3CLpro) [15,16], Nsp13 helicase [17], and the Nsp12 RNA-dependent RNA polymerase [18].
These proteins are also highly conserved among coronaviruses [19].

Owing to the high mortality rate of patients, there is an urgent need to develop vaccines and
anti-viral drugs to combat the COVID-19 outbreak. Although phenomenal efforts are in progress in
developing vaccines and through repurposing studies [20–22], with the advancement in computational
biology, it is now possible to accelerate the drug discovery pipeline and vaccine development [23–25],
and these methods have surpassed the conventional methods [26,27]. Although Felipe and coworkers
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also reported a live attenuated vaccine using yellow fever 17D as a vector, that can induce SARS-CoV-2
neutralizing antibodies [28]. Numerous studies have been published related to the B- and T-cell
epitope-based vaccine development using in silico immunoinformatics methods [29–36].

Keeping in view the urgency situation of the COVID-19 outbreak, developing an effective vaccine
is, therefore, a prime research priority. There are some studies on the development of vaccines against
SARS-CoV-2 and some vaccines reached have trial phase as well. It will still require 12 to 18 months to
develop an effective vaccine [37]. The current study deals with the modelling of novel multiepitope
vaccine for SARS-CoV-2 using a cost-effective integrated immunoinformatics approach. This approach
has been proved to be promising against viral diseases caused by viruses like yellow fever [38],
SARS-CoV [39], influenza [40], Zika [41], Congo Virus [42], and pathogens including L. donovani [43]
and S. pneumoniae [44]. Few multiple epitope vaccine strategies proved to be effective against H. pylori
infection in the BALB/c mice model [45,46], chronic hepatitis B virus infection [47], and foot-and-mouth
disease virus (serotype A) in pigs [48].

In the present study, we effectively designed the multiepitope subunit vaccine construct (MVC) by
considering the potential B- and T-cell epitopes of SARS-CoV-2 Spike, Mpro, Nsp-12 polymerase, and
Nsp13 helicase proteins. The antigenicity, allergenicity, and physiochemical properties of B- and T-cell
epitopes were also measured. Later, the structural analysis of MVC interaction with Toll-like receptors
(TLRs) was analyzed through molecular dynamics (MD) simulations and binding free energies were
estimated. TLRs establish an important link between innate and adaptive immunity. Engagement of
TLR signaling pathways is a promising mechanism for accelerating vaccine responses and is involved
in therapeutic immunization against infectious diseases [49]. Thus, the interaction of a multiepitope
vaccine construct designed through an integrated modelling approach may trigger innate and specific
adaptive immunity by activating TLR signaling pathways and may produce a promising immune
response against SARS-CoV-2.

2. Materials and Methods

2.1. Coronavirus Protein Sequences and Structural Information

The primary amino acid sequences of SARS-CoV-2 main protease (Mpro) (306 amino acids), Nsp12
RNA dependent RNA polymerase (932 amino acids), spike (1237 amino acids), and Nsp13 helicase
(601 amino acids) proteins were retrieved from GenBank ID: AHZ13508.1. For structural studies,
the crystal structures of recently deposited SARS-CoV-2 Mpro (PDB ID: 6LU7) and spike (PDB ID:
6VYB) protein were obtained from PDB, while the homology models of SARS-CoV-2 Nsp12 RNA
polymerase and Nsp13 helicase were obtained from our recent study [50]. These homology models were
generated from templates that showed 99.83% and 96.08% identities with SARS-CoV Nsp12 (PDB ID:
6NUR) [18], Nsp13 (PDB ID: 6JYT) [17]. These models showed strikingly similar domain architecture
with SARS-CoV and were found to be reliable enough to use in epitope identification studies.

2.2. Prediction of Linear and Conformational B-Cell Epitopes

The interaction between the antigenic B-cell epitope and B-lymphocyte causes the B-lymphocytes
to differentiate into memory cells and antibody-secreting plasma [51]. B-cell epitope has two
significant features, including accessibility to the flexible region and the hydrophilic nature of
an immunogen [52]. As per the prediction of Parker hydrophilicity, for surface accessibility, Emini
prediction [53], antigenicity scale for Kolaskar and Tongaonkar [54], and flexibility prediction for
Karplus and Schulz [55], the analysis was employed arithmetically at IEDB (http://www.iedb.org/).
Discontinuous (conformational) epitopes prediction for B-cell was performed using Ellipro from
IEDB (http://tools.immuneepitope.org/toolsElliPro/) [56], which used three diverse algorithms such as
residues’ protrusion index (PI) [57], adjoining clustering residues liable upon PI, and approximation of
protein shape [58].

http://www.iedb.org/
http://tools.immuneepitope.org/toolsElliPro/
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2.3. Prediction of Potential Cytotoxic T-Lymphocyte (CTL) Epitopes

NetCTL.1.2 server (http://www.cbs.dtu.dk/services/Net CTL) was used to predict the CTL
epitopes [59], The eliciting of CTLs happened on the surface of antigen-presenting MHC (major
histocompatibility complex) molecules. To assimilate the MHC class I binding, efficiency of TAP
transport, and the cleavage of proteasomal C-terminal, NetCTL 1.2 server was employed. HLA (human
leukocyte antigen) alleles and peptide lengths both were selected and submitted for prediction of T-cell
epitopes as an output. For predicting the TAP transport efficiency, the weight matrix was utilized,
while for cleavage of proteasomal C-terminal and MHC class I binding, the ANN (artificial neural
network) was employed.

2.4. Epitope Prediction of Helper T-Cell

For the prediction of the epitope of helper T-cell, NetMHCII 2.2 Server was used, which gives
a 15-mer epitope for human alleles. NetMHCII 2.2 Server uses an artificial neuron network for
the prediction of a peptide with human alleles, that is, HLA-DP, HLA-DR, and HLA-DQ [60]. On
the basis of receptor interaction, MHC II epitopes were predicted and deduced from IC50 values, as
well as the assigned percentile ranks. The peptides that show a strong interaction have an IC50 value
of <50 nM, while those having intermediate and low affinity have IC50 values of <500 and <5000,
respectively. Therefore, the percentile rank has a direct relation with IC50 and inverts to the affinity
for epitope.

2.5. Multiepitope Vaccine Designing

The MVC was designed by connecting the peptide sequences in a successive manner with the help
of suitable linkers. The occurrence of overlapping residues amid the B-cell (BCL), HTL, and CTL epitopes
was unwavering and epitopes with overlapping regions were used for multiepitope vaccine design.
It has been established that human β-defensins have an important role in presenting the microbial
peptides to antigen presenting cells and the inflammatory response, thus enhancing the immunogenicity
of the bound antigen; therefore, β-defensins can be used as adjuvants [61–63]. Recently, mammals’
β-defensin was documented to have a possible role to confer HIV (human immunodeficiency virus)
infection as a mucosal adjuvant; consequently, owing to its adjuvant characteristics against viral
infection [64], it was chosen and added to the N- and C-terminal sequences of the vaccine construct.
Adjuvants were joined with epitopes at the N- and C-terminal using the EAAAK linker, whereas
intra-CTL epitopes were joined using the AAY linker. After the CTL epitope, HTL epitopes were added
next to the CTL epitope using the GPGPG linkers, as used in a previous study [64].

2.6. Antigenicity and Allergenicity Estimation of the MVC

To be an effective and safe vaccine candidate, the vaccine candidate should be nonallergic
with minimum off-targets effects. The nonallergenic and allergenic behaviors of the MVC were
assessed by three servers, AllerTOP V2.0 (http://www.ddg-pharmfac.net/AllerTOP/), AlgPred (http:
//www.imtech.res.in/raghava/algpred/) and AllergenFP 1.0 [65]. Out of these, the latter categorizes
the protein sequence (input) by a k-nearest neighbor algorithm (kNN; k = 3) on the basis of the training
set comprising 2210 already known allergens from diverse species and nonallergens (n = 2210) from
the similar species. The former assimilates the SVM module for the prediction of the allergenic nature
of protein with high accuracy. The MAST/MEME allergen motif was examined with the help of MAST
(Motif Allignment and Search Tool), and the allergenic nature was allocated if an identical motif
was determined.

Evaluation of antigenicity of the MVC was done using two freely available servers, VaxiJen v2.0
(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) [66] and ANTIGENpro (http://scratch.
proteomics.ics.uci.edu/), where the latter categorizes the antigen based only on the physio-chemical
characteristics of the input protein sequence instead of the sequence placement algorithm.

http://www.cbs.dtu.dk/services/Net
http://www.ddg-pharmfac.net/AllerTOP/
http://www.imtech.res.in/raghava/algpred/
http://www.imtech.res.in/raghava/algpred/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://scratch.proteomics.ics.uci.edu/
http://scratch.proteomics.ics.uci.edu/
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The correctness of the server is relatively high and differs between 70% and 89% based on the target
organism. While the former envisages the entire protein antigenicity based on the results obtained by
the protein microarray data analysis, it predicts the antigenicity as being independent of the pathogen,
but this approach is sequence-based.

2.7. Physiochemical Parameters Evaluation

The vaccine construct sequence was used in ProtParam (http://web.expasy.org/protparam/) [67] to
examine its physiochemical properties. The criteria on which the sequences of multiepitope vaccine
were examined are theoretical PpI, half-life, instability index, aliphatic index, grand average, and
stability profiling of hydropathy.

2.8. Tertiary Structure Prediction and Refinement of MVC

The final vaccine construct was submitted to structure prediction server known as RaptorX
(http://raptorx.uchicago.edu/StructurePrediction/predict/) [68] and I-TASSER [69]. It is an exceptional
server for protein 3D structures’ predictions on the ab initio method and is able to generate from
the template that lies in the twilight zone (<30%). It utilizes an exclusive nonlinear context-specific
alignment and prospective consistency algorithm. The generated models were evaluated through
MolProbity for all-atom contacts and geometry [70]. The model was selected for further refinement
through molecular dynamics simulations that showed reliable Ramachandran evaluations.

2.9. Stability Enhancement of MVC by Disulfide Engineering

Before moving towards the docking protocol, it is essential to enhance the stability of the model
through disulfide engineering. It is a novel concept to introduce disulfide bonds to the modelled
protein structure. Consequently, the multiepitope model was employed to the Disulfide by Design 2.0
server [71] to achieve disulfide engineering. The protein model was uploaded to identify the residue
pairs, which can be utilized for disulfide engineering. To create the disulfide bonds, four residues were
selected to mutate them with cysteine residue by the Disulfide by Design 2.0 server.

2.10. Molecular Docking of Vaccine Constructs with TLR4

In order to analyze the binary interaction of MVC with TLRs, protein–protein docking was
performed using Cluspro [72,73].The PDB structures of TLR-4 (PDB: 4G8A) and TLR-3 (PDB: 1ZIW)
were retrieved from PDB. The multiepitope vaccine model was used as a ligand. Both proteins
were prepared accordingly, by removing heteroatoms, and the addition of hydrogens and charges.
ClusPro is an automated protein–protein docking server, which generates root mean square deviation
(RMSD)-based clustering of 1000 docked conformations. Each representative model is chosen from
a cluster of docked models based on the scoring function it uses. The most representative docked
conformation from the largest cluster was used for further structural analyses.

2.11. Molecular Dynamics Simulation for TLRs/MVC Complex

Molecular dynamics simulations were performed in two steps: (1) a 50 ns MD simulation was
performed to optimize and refine 3D model of multiepitope vaccine construct before docking, and
(2) a second 50 ns MD simulations to examine the backbone stability of TLRs/MVC complexes. After
MD, MD clustering was performed, which typically takes the representative conformation from
the largest cluster (within 1 Angstrom deviation). These clusters are generated based on the deviation
over the course of total snapshots (in our case, after every 2 ps, which generated a total of 25,000
snapshots). This analysis considers all meaningful conformations over the time of simulation. All
simulations were performed by AMBER simulation package 18 using the same protocol as described in
previous immunoinformatics studies [30,32]. Briefly, with stepwise minimization and an equilibration
procedure, the solvated system in explicit water molecules (TIP3P) was submitted to a production run

http://web.expasy.org/protparam/
http://raptorx.uchicago.edu/StructurePrediction/predict/
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at standard temperature (300 K) and pressure (1 bar). The trajectories were collected after every 2 ps
for a complete production run, and the CPPTRAJ module was utilized to analyze trajectories. The MD
simulation complexes were analyzed using Chimera 1.14.

2.12. Codon Adaptation and In Silico Cloning

The sequence of multiepitope vaccine construct was employed to the online server JCat for reverse
translation, and cDNA was obtained, which was submitted for codon optimization [74]. The cDNA
was evaluated by codon optimization according to the codon adaptation index (CAI) and GC content
of the sequence. The acceptable range of the GC content is 30–70% and the value of CAI varies from 0
to 1. The higher value of CAI indicates a higher level of gene expression [75]. The maximum value of
CAI is 1 and is considered ideal, whereas a value of more than 0.8 is also acceptable. After this step,
the adapted and optimized sequence of the nucleotides consistent to the design of multiepitope vaccine
construct was cloned using the restriction cloning module of SnapGene toll in the vector pET28a (+) of
E. coli.

2.13. In Silico Immune Simulation

To check the immunogenic potential of the vaccine construct, an in silico immune simulation
approach was employed using the C-immsim server [76]. The position specific scoring matrix approach
was used by the server for the analysis. The server used three compartments of mammals for immune
stimulation, that is, lymph node, thymus, and bone marrow [77]. The defaults constraints for simulation
were employed, which are as follows: simulation volume (10), simulation steps (100), random seed
(12345), host HLA selection (MHC Class I A0101 allele, B MHC class I B0702, DR MHC class II
DRB1_0101 allele), and the time for the injection was set as 1.

3. Results

In the present research, plausible T-cell and B-cell epitopes (discontinuous and continuous)
from SARS-CoV-2 Spike, Mpro, Nsp12 RNA polymerase (RdRp), and Nsp13 helicase proteins were
recognized to design peptide vaccines to counter SARS-CoV-2 infection. Most potential epitopes were
selected and joined together with appropriate linkers and adjuvant. The 3D model was generated
using various online servers, and a reliable model was used for docking and MD simulation studies.
Docking and immuno-informatics method are helpful for the prediction of the binding interaction
between TLRs and ligand (multiepitope vaccine) complexes, and analysis was done as these are proven
useful tools in identifying novel multiepitope vaccines [23,32].

3.1. Antigenic B-Cell Epitope Prediction

Depending on the physicochemical properties of amino acids, which have already been observed
in practically determined antigen-based epitopes, Kolaskar and Tongaonkar’s approach was used
for predicting antigenic epitopes of provided sequences. Seventy-five percent experimental precision
has been reported for this approach [54]. Using this method, 11 antigenic peptides with 9–14 amino
acid length were observed, including two heptapeptides from SARS-CoV-2 Mpro (Table 1). Likewise,
out of 932 amino acids, 37 antigenic peptides were predicted in SARS-CoV-2 Nsp12 polymerase. For
RdRp, the length of the antigenic peptides was 6–29 amino acid along, with ten heptapeptides and
nine octapeptides (Table 2). For Nsp13 helicase, 18 antigenic peptides were predicted, and the length
of the antigenic peptide was 6–38, with 7 hexapeptides (Table 3). For the spike protein, 46 antigenic
peptides were predicted from 1273 amino acids (Table 4).
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Table 1. Predicted antigenic B-cell epitopes of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) main protease (Mpro).

No. Start End Peptide Length

1 15 23 GCMVQVTCG 9
2 32 45 LDDVVYCPRHVICT 14
3 65 72 NFLVQAGN 8
4 83 91 QNCVLKLKV 9
5 101 107 YKFVRIQ 7
6 111 120 TFSVLACYNG 10
7 123 129 SGVYQCA 7
8 153 162 DYDCVSFCYM 10
9 201 212 TVNVLAWLYAAV 12

10 244 253 QDHVDILGPL 10
11 * 258 271 GIAVLDMCASLKEL 14

* 11 antigenic sites were predicted from the main protease. The underlined residues were also predicted as cytotoxic
T-lymphocyte (CTL) epitope.

Table 2. Predicted antigenic B-cell epitopes of SARS-CoV-2 Nsp12 RNA polymerase.

No. Start End Peptide Length

17 395 400 CFSVAA 6
3 50 56 KTNCCRF 7
8 171 177 ILRVYAN 7

10 201 207 IVGVLTL 7
13 327 333 GPLVRKI 7
20 557 563 VAGVSIC 7
21 573 579 QKLLKSI 7
22 585 591 ATVVIGT 7
26 670 676 GGSLYVK 7
28 725 731 HRLYECL 7
31 773 779 QGLVASI 7
2 28 35 TDVVYRAF 8
6 125 132 ADLVYALR 8

15 350 357 ELGVVHNQ 8
16 369 376 KELLVYAA 8
18 435 442 VELKHFFF 8
23 633 640 MASLVLAR 8
29 744 751 EFYAYLRK 8
32 783 790 KSVLYYQN 8
34 825 832 DYVYLPYP 8
4 67 75 DSYFVVKRH 9

25 658 666 ECAQVLSEM 9
30 760 768 DDAVVCFNS 9
35 839 847 GAGCFVDDI 9
36 859 867 FVSLAIDAY 9
1 8 17 LNRVCGVSAA 10

27 694 703 FNICQAVTAN 10
33 810 819 HEFCSQHTML 10
7 144 154 EILVTYNCCDD 11
9 183 193 RQALLKTVQFC 11

14 335 345 VDGVPFVVSTG 11
24 643 653 TTCCSLSHRFY 11
5 87 99 YNLLKDCPAVAKH 13

37 * 878 890 ADVFHLYLQYIRK 13
19 466 482 IRQLLFVVEVVDKYFDC 17
11 230 248 GVPVVDSYYSLLMPILTLT 19
12 295 323 HPNCVNCLDDRCILHCANFNVLFSTVFPP 29

* 37 antigenic sites were predicted. The underlined residues were also predicted as CTL epitope.



Biology 2020, 9, 296 8 of 28

Table 3. Predicted antigenic B-cell epitopes of SARS-CoV-2 Nsp13 helicase protein.

No. Start End Peptide Length

3 70 75 YYCKSH 6
5 207 212 DAVVYR 6

10 369 374 DIVVFD 6
11 384 389 LSVVNA 6
13 423 428 NSVCRL 6
15 493 498 IGVVRE 6
17 542 547 DYVIFT 6
12 394 400 KHYVYIG 7
16 522 528 ASKILGL 7

18 * 570 576 VGILCIM 7
1 4 11 ACVLCNSQ 8
6 222 230 GDYFVLTSH 9
9 353 361 EQYVFCTVN 9
4 78 87 PISFPLCANG 10

14 449 458 VDTVSALVYD 10
7 237 250 APTLVPQEHYVRIT 14
8 292 325 AIGLALYYPSARIVYTACSHAAVDALCEKALKYL 34
2 21 58 RRPFLCCKCCYDHVISTSHKLVLSVNPYVCNAPGCDVT 38

* 18 antigenic sites were predicted. The underlined residues were also predicted as CTL epitope.

Table 4. Predicted antigenic B-cell epitopes of SARS-CoV-2 spike protein.

No. Start End Peptide Length

1 4 18 FLVLLPLVSSQCVNL 15
2 34 41 RGVYYPDK 8
3 44 51 RSSVLHST 8
4 53 60 DLFLPFFS 8
5 65 70 FHAIHV 6
6 81 87 NPVLPFN 7
7 115 121 QSLLIVN 7
8 125 134 NVVIKVCEFQ 10
9 136 146 CNDPFLGVYYH 11

10 168 174 FEYVSQP 7
11 210 216 INLVRDL 7
12 223 230 LEPLVDLP 8
13 239 248 QTLLALHRSY 10
14 263 270 AAYYVGYL 8
15 272 278 PRTFLLK 7
16 288 295 AVDCALDP 8
17 333 339 TNLCPFG 7
18 359 371 SNCVADYSVLYNS 13
19 376 385 TFKCYGVSPT 10
20 430 435 TGCVIA 6
21 488 495 CYFPLQSY 8
22 505 527 YQPYRVVVLSFELLHAPATVCGP 23
23 592 599 FGGVSVIT 8
24 607 615 QVAVLYQDV 9
25 617 627 CTEVPVAIHAD 11
26 647 653 AGCLIGA 7
27 667 674 GAGICASY 8
28 687 693 VASQSII 7
29 723 730 TTEILPVS 8
30 735 741 SVDCTMY 7
31 750 763 SNLLLQYGSFCTQL 14
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Table 4. Cont.

No. Start End Peptide Length

32 781 788 VFAQVKQI 8
33 803 808 SQILPD 6
34 837 843 YGDCLGD 7
35 847 853 RDLICAQ 7
36 858 864 LTVLPPL 7
37 873 880 YTSALLAG 8
38 959 966 LNTLVKQL 8
39 973 979 ISSVLND 7
40 1003 1011 SLQTYVTQQ 9
41 1030 1037 SECVLGQS 8
42 1057 1070 PHGVVFLHVTYVPA 14
43 1079 1085 PAICHDG 7
44 1123 1132 SGNCDVVIGI 10
45 1174 1179 ASVVNI 6

46 * 1221 1256 IAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKF 36

* 46 antigenic sites were predicted. The underlined residues were also predicted as CTL epitope.

Moreover, Kolaskar and Tongaonkar’s approach also projected the highest residual score of
each amino acid in all investigated proteins. In SARS-CoV-2 Mpro, 211 out of 306 amino acids have
greater than 1.000 residual scores. From position 85 to 91, the antigenic peptide (CVLKLKV) having
lysine at the 88th position was identified with a maximal residual score of 1.22. The Nsp12-RdRp has
686 residues out of 932 with a residual score above 1.000, and valine at position 473, in the peptide
(LFVVEVV) from 470 to 476, has a maximum residual score of 1.246. Likewise, for Nsp13 helicase
protein, 479 out of 601 amino acids were predicted with a residual score greater than 1.000, and
lysine present at the 28th position in an antigenic peptide from 25 to 31 (LCCKCCY) has a maximum
residual score of 1.284. For SARS-CoV-2 S protein, 958 out of 1273 amino acids were predicted to have
a residual score higher than 1.000, and leucine at position 8 of the antigenic peptide from position 5 to
11 (LVLLPLV) showed a maximal residual score of 1.261.

A graphical depiction of peptides predicted for B cell from investigated SARS-CoV-2 proteins
based on sequence position along the x-axis and antigenic propensity (AP) as the y-axis is shown in
Figures S1–S4. Divergence in AP is related to the length of the sequence. The minimum AP score for
Mpro was 0.844 and the maximum AP score was 1.22 (A), while the maximum and minimum AP
scores of Nsp12, Nsp13, and S protein were 1.246, 1.284, and 1.261, respectively, and 0.858, 0.893, and
0.866, respectively.

3.2. Prediction of Cytotoxic T-Lymphocyte (CTL) Epitopes

An infected cell having antigen-presentation triggers the T-cell to turn out as an effector cell and
kill the infected cells. Cell death or self-destruction is detected after the attack of CTLs on effected cells.
The pathogen’s peptide fragment and molecule of MHC interact and are exposed on the cell surface of
infected cells. CTLs identify the complex of peptide–protein; moreover, as a consequence, infected cells
are killed. The processing of fragment of the peptide (antigen), along with its appearance to the T-cell,
is achieved through different steps. Peptides are treated in the cytoplasm through proteasome and
transferred to the endoplasmic reticulum (ER) later, where MHC is produced. Here, the peptide
is transported to the MHC I molecule by the transporter associated with antigen processing (TAP).
Afterwards, a complex of peptide–MHC-I is transferred to the surface of the cell. A varied array
of peptides is attached to each allelic type of MHC-I protein. The molecule of MHC can interact
with peptides strongly as the pathogens attempt to mutate the MHC molecule’s epitope. Therefore,
the MHC molecule displays strong binding with a diversity of peptides [78].
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Prediction of CTL epitope is a significant in silico tool in designing the vaccine as it decreases
the time and necessity for in vitro trials. NetCTL 1.2 server [59] was used for the prediction of
CTL epitope. For all investigated SARS-CoV-2 proteins, the peptide sequences were predicted as
CTL epitopes based on three main factors, which include their MHC binding capacity, proteasomal
cleavage of the peptide from C-terminal, and affinity for the TAP transporter with the default threshold
prediction score being >0.75000. Among all the peptides, 11 peptide sequences from S protein, 4
peptides from Mpro, 19 from Nsp12, and 10 from Nsp13 were selected as CTL epitopes. These CTL
epitopes were also predicted as an antigenic site. Hence, these peptides can be considered as potential
vaccine candidates (Tables 5–8). A complete list of peptides for these four proteins is also given in
Tables S1–S4.
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Table 5. Predicted CTL from SARS-CoV-2 S protein *. TAP, transporter associated with antigen processing.

Residue
Number

Peptide Sequence Predicted MHC
Binding Affinity

Rescale Binding
Affinity

C-Terminal
Cleavage Affinity

TAP Transport
Prediction Score

MHC
Efficiency Ligand

604 TSNQVAVLY 0.6559 2.7847 0.944 2.991 3.0758 yes
361 CVADYSVLY 0.5348 2.2705 0.9764 3.18 2.5759 yes
733 KTSVDCTMY 0.4908 2.084 0.9649 3.016 2.3795 yes
687 VASQSIIAY 0.3529 1.4986 0.9656 3.089 1.7978136 yes
136 CNDPFLGVY 0.2613 1.1095 0.69 2.45 1.3355 yes
261 GAAAYYVGY 0.2253 0.9568 0.7608 2.969 1.2194 yes
357 RISNCVADY 0.2106 0.8941 0.9292 3.394 1.2032 yes
285 ITDAVDCAL 0.235 0.9979 0.8708 0.79 1.168 yes

1237 MTSCCSCLK 0.226 0.9595 0.7525 0.479 1.0963 yes
50 STQDLFLPF 0.1974 0.8383 0.553 2.511 1.0468 yes
748 ECSNLLLQY 0.1413 0.6 0.5316 2.747 0.8171 yes

* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.

Table 6. CTL prediction from SARS-CoV-2 Main protease *.

Residue
Number Peptide Sequence Predicted MHC

Binding Affinity
Rescale Binding

Affinity
C-Terminal

Cleavage Affinity
TAP Transport

Efficiency Prediction Score MHC
Ligand

201 TVNVLAWLY 0.6255 2.6559 0.8852 2.957 2.9365 yes
110 QTFSVLACY 0.2625 1.1146 0.9725 2.998 1.4104 yes
153 DYDCVSFCY 0.2097 0.8905 0.9722 0.9722 1.1717 yes
93 TANPKTPKY 0.1676 0.7118 0.9755 2.676 0.9088 yes

* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.

Table 7. Predicted CTL from SARS-CoV-2 Nsp12 RdRp *.

Residue
Number Peptide Sequence Predicted MHC

Binding Affinity
Rescale Binding

Affinity
C-Terminal

Cleavage Affinity
TAP Transport

Efficiency Prediction Score MHC
Ligand

738 DTDFVNEFY 0.7922 3.3634 0.8873 2.458 3.6194 yes
336 LSFKELLVY 0.3898 1.6552 0.9676 3.213 1.961 yes
27 STDVVYRAF 0.4019 1.7065 0.6174 2.4 1.9191 yes
859 FVSLAIDAY 0.3709 1.5746 0.7669 3.096 1.8444 yes
666 MVMCGGSLY 0.3637 1.5441 0.9482 3.008 1.8368 yes
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Table 7. Cont.

Residue
Number Peptide Sequence Predicted MHC

Binding Affinity
Rescale Binding

Affinity
C-Terminal

Cleavage Affinity
TAP Transport

Efficiency Prediction Score MHC
Ligand

758 LSDDAVVCF 0.3143 1.3345 0.9556 2.412 1.5985 yes
686 TTAYANSVF 0.2963 1.258 0.4772 2.663 1.4627 yes
762 AVVCFNSTY 0.2435 1.0339 0.9754 3.146 1.3375 yes
463 MCDIRQLLF 0.2518 1.0691 0.1005 2.436 1.206 yes
233 VVDSYYSLL 0.2332 0.9901 0.7134 0.834 1.1388 yes
700 VTANVNALL 0.2007 0.8523 0.9705 1.166 1.0562 yes
818 MLVKQGDDY 0.1793 0.7614 0.8328 3.079 1.0403 yes
823 GDDYVYLPY 0.1821 0.7733 0.8456 2.213 1.0108 yes
879 DVFHLYLQY 0.1677 0.7119 0.9529 3.013 1.0055 yes
876 EYADVFHLY 0.1624 0.6894 0.9603 2.953 0.9811 yes
230 GVPVVDSYY 0.1504 0.6386 0.9521 2.923 0.9276 yes
434 SVELKHFFF 0.1454 0.6176 0.9285 2.636 0.8886 yes
334 FVDGVPFVV 0.1739 0.7382 0.8437 0.191 0.8743 yes
645 CCSLSHRFY 0.1586 0.6732 0.274 2.91 0.8598 yes

* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.

Table 8. Predicted CTL from SARS-CoV-2 Nsp13 helicase *.

Residue
Number Peptide Sequence Predicted MHC

Binding Affinity
Rescale Binding

Affinity
C-Terminal

Cleavage Affinity
TAP Transport

Efficiency Prediction Score MHC
Ligand

57 VTDVTQLYL 0.4708 1.9988 0.6073 0.68 2.1239 yes
56 DVTDVTQLY 0.289 1.2271 0.9651 2.704 1.5071 yes
535 SSQGSEYDY 0.2761 1.1724 0.8149 2.847 1.437 yes
238 PTLVPQEHY 0.1794 0.7617 0.8719 2.595 1.0222 yes
448 IVDTVSALV 0.1991 0.8453 0.8977 0.133 0.9866 yes
574 CIMSDRDLY 0.1634 0.6937 0.1836 3.125 0.8775 yes
347 KVNSTLEQY 0.1391 0.5907 0.8156 2.971 0.8616 yes
245 HYVRITGLY 0.1102 0.4678 0.9598 3.009 0.7622 yes
85 ANGQVFGLY 0.1141 0.4845 0.9132 2.746 0.7588 yes
538 GSEYDYVIF 0.1401 0.5947 0.3528 2.203 0.7578 yes

* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.
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3.3. Structure-Based Epitope Prediction

ElliPro was used to predict the epitopes from the 3D structure of proteins [56]. This advanced
program is web-based and used to study the correlation among antigenicity, flexibility, and solvent
accessibility of proteins’ structure. Furthermore, differentiation of predicted epitopes based on
interactions of protein–antibody is an essential property of this program. ElliPro measures the PI score
(protrusion index), which shows the percent of atoms of proteins that spread beyond the molecular
mass/bulk as well as those responsible for binding antibodies. On the basis of the PI score (>0.7),
five, three, and two discontinuous epitopes were selected for SARS-CoV-2 S, Nsp13 helicase, and
Nsp12 polymerase, respectively, while only one epitope was identified for Mpro that showed PI > 0.7.
The graphical illustration of discontinuous epitopes is shown in Figure 1, while number of residues
and epitope scores are tabulated in Tables 9–12.
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Table 9. Conformational epitopes of SARS-CoV-2 Mpro.

No. Residues Number of
Residues Score

1

A:S1, A:G2, A:F3, A:A211, A:V212, A:I213, A:N214, A:G215, A:D216, A:R217, A:W218, A:F219, A:L220, A:N221, A:R222, A:F223,
A:T224, A:T225, A:T226, A:L227, A:N228, A:D229, A:F230, A:N231, A:L232, A:V233, A:A234, A:M235, A:K236, A:Y237, A:Y239,
A:E240, A:P241, A:L242, A:T243, A:Q244, A:D245, A:V247, A:D248, A:L250, A:G251, A:P252, A:S254, A:A255, A:Q256, A:T257,
A:G258, A:I259, A:A260, A:V261, A:L262, A:D263, A:A266, A:S267, A:K269, A:E270, A:L271, A:L272, A:Q273, A:N274, A:G275,
A:M276, A:N277, A:G278, A:R279, A:T280, A:I281, A:L282, A:G283, A:S284, A:A285, A:L286, A:C300, A:S301, A:G302

75 0.716

Table 10. Conformational epitopes of SARS-CoV-2 S protein.

No. Residues Number of
Residues Score

1

A:L119, A:T120, A:K121, A:Y122, A:T123, A:D126, A:D135, A:E136, A:G137, A:N138, A:C139, A:D140, A:T141, A:K143, A:E144, A:I145,
A:L146, A:V147, A:T148, A:Y149, A:N150, A:C151, A:C152, A:D153, A:D154, A:D155, A:Y156, A:F157, A:N158, A:K159, A:W162, A:Y163,
A:N168, A:P169, A:D170, A:R173, A:V174, A:N177, A:L178, A:E180, A:R181, A:R183, A:Q184, A:A185, A:L187, A:K188, A:T189, A:V190,
A:Q191, A:F192, A:C193, A:D194, A:A195, A:M196, A:R197, A:N198, A:A199, A:G200, A:I201, A:V202, A:G203, A:V204, A:L205, A:T206,
A:D208, A:N209, A:Q210, A:D211, A:L212, A:N213, A:G214, A:N215, A:W216, A:Y217, A:D218, A:F219, A:G220, A:D221, A:F222, A:I223,
A:Q224, A:T225, A:T226, A:P227, A:G228, A:S229, A:G230, A:V231, A:P232, A:V233, A:V234, A:A250, A:D284, A:K288, A:Y289

95 0.728

2

A:D269, A:L270, A:L271, A:K272, A:Y273, A:D274, A:F275, A:E277, A:E278, A:K281, A:T324, A:L329, A:V330, A:R331, A:K332, A:I333,
A:F334, A:V335, A:D336, A:G337, A:V338, A:P339, A:F340, A:V341, A:V342, A:S343, A:T344, A:H355, A:N356, A:Q357, A:D358, A:V359,
A:N360, A:L361, A:H362, A:S363, A:S364, A:R365, A:L366, A:S367, A:F368, A:K369, A:E370, A:L371, A:L372, A:V373, A:Y374, A:D377,
A:P378, A:A379, A:M380, A:H381, A:A382, A:A383, A:S384, A:G385, A:N386, A:L387, A:L388, A:L389, A:D390, A:K391, A:R392, A:T393,
A:A399, A:A400, A:L401, A:T402, A:N403, A:N404, A:V405, A:A406, A:F407, A:Q408, A:T409, A:V410, A:K411, A:P412, A:G413, A:N414,
A:F415, A:N416, A:K417, A:D418, A:F419, A:Y420, A:D421, A:F422, A:A423, A:V424, A:S425, A:K426, A:G427, A:F428, A:F429, A:K430,
A:E431, A:G432, A:S433, A:S434, A:V435, A:E436, A:L437, A:K438, A:H439, A:F440, A:F441, A:F442, A:A443, A:Q444, A:D445, A:G446,
A:N447, A:C487, A:I488, A:N489, A:A490, A:N491, A:Q492, A:V493, A:D517, A:S518, A:M519, A:S520, A:Y521, A:E522, A:D523, A:Q524,
A:D525, A:A526, A:L527, A:A529, A:Y530, A:T531, A:K532, A:R533, A:N534, A:V535, A:I536, A:Y546, A:A550, A:F594, A:Y595, A:G596,
A:H599, A:N600, A:K603, A:S607, A:D608, A:V609, A:E610, A:N611, A:P612, A:H613, A:H642, A:T643, A:T644, A:C645, A:C646, A:S647,
A:H650, A:G670, A:G671, A:T710, A:D711, A:G712, A:N713, A:K714, A:I715, A:A716, A:D717, A:K718, A:Y719, A:V720, A:R721, A:N722,
A:L723, A:R726, A:C730, A:V737, A:D738, A:T739, A:D740, A:F741, A:N743, A:E744, A:K751, A:H752, A:N767, A:S768, A:T769, A:Y770,
A:S772, A:Q773, A:G774, A:L775, A:V776, A:T801, A:E802, A:T803, A:D804, A:L805, A:T806, A:K807, A:G808, A:M818, A:L819, A:V820,
A:K821, A:Q822, A:G823, A:D824, A:D825, A:Y826, A:V827, A:Y828, A:L829, A:P832, A:D833, A:P834, A:L838, A:G839, A:G841, A:C842,
A:F843, A:V844, A:D845, A:D846, A:I847, A:V848, A:K849, A:T850, A:D851, A:G852, A:T853, A:L854, A:M855, A:I856, A:E857, A:F859,
A:V860, A:A863, A:I864, A:A866, A:Y867, A:P868, A:L869, A:T870, A:K871, A:H872, A:P873, A:N874, A:Q875, A:E876, A:Y877, A:A878,
A:D879, A:V880, A:F881, A:H882, A:L883, A:Y884, A:L885, A:Q886, A:Y887, A:I888, A:R889, A:K890, A:L891, A:H892, A:D893, A:E894,
A:L895, A:T896, A:G897, A:H898, A:M899, A:L900, A:D901, A:M902, A:Y903, A:S904, A:V905, A:M906, A:L907, A:T908, A:N909, A:D910,
A:N911, A:T912, A:S913, A:R914, A:Y915, A:W916, A:E917, A:P918, A:E919

297 0.719
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Table 11. Conformational epitopes from SARS-CoV-2 Nsp12 polymerase.

No. Residues Number of
Residues Score

1 A:D1139, A:P1140, A:L1141, A:Q1142, A:P1143, A:E1144, A:L1145, A:D1146 8 0.975

2

A:Y707, A:S708, A:N709, A:N710, A:S711, A:I712, A:A713, A:I714, A:P715, A:T716, A:N717, A:Q1071, A:K1073, A:N1074, A:F1075,
A:T1076, A:T1077, A:A1078, A:P1079, A:A1080, A:I1081, A:C1082, A:H1083, A:D1084, A:G1085, A:K1086, A:A1087, A:H1088, A:F1089,
A:P1090, A:R1091, A:E1092, A:G1093, A:V1094, A:F1095, A:V1096, A:S1097, A:N1098, A:G1099, A:T1100, A:H1101, A:W1102, A:F1103,
A:V1104, A:T1105, A:Q1106, A:R1107, A:F1109, A:Y1110, A:E1111, A:P1112, A:Q1113, A:I1114, A:I1115, A:T1116, A:T1117, A:D1118,
A:N1119, A:T1120, A:F1121, A:V1122, A:S1123, A:G1124, A:N1125, A:C1126, A:D1127, A:V1128, A:V1129, A:I1130, A:G1131, A:I1132,
A:V1133, A:N1134, A:N1135, A:T1136, A:V1137, A:Y1138

77 0.845

3

A:L335, A:C336, A:P337, A:F338, A:G339, A:E340, A:V341, A:F342, A:N343, A:A344, A:T345, A:R346, A:F347, A:A348, A:S349, A:V350,
A:Y351, A:A352, A:W353, A:N354, A:R355, A:K356, A:R357, A:I358, A:S359, A:N360, A:C361, A:V362, A:A363, A:D364, A:Y365, A:S366,
A:V367, A:L368, A:Y369, A:N370, A:S371, A:A372, A:S373, A:F374, A:S375, A:T376, A:F377, A:K378, A:C379, A:Y380, A:L390, A:C391,
A:F392, A:T393, A:N394, A:V395, A:Y396, A:A397, A:D398, A:S399, A:F400, A:V401, A:I402, A:R403, A:G404, A:D405, A:E406, A:V407,
A:R408, A:Q409, A:I410, A:A411, A:P412, A:G413, A:Q414, A:T415, A:G416, A:K417, A:I418, A:A419, A:D420, A:Y421, A:N422, A:Y423,
A:K424, A:L425, A:P426, A:D427, A:D428, A:F429, A:T430, A:G431, A:C432, A:V433, A:I434, A:A435, A:W436, A:N437, A:S438, A:N439,
A:N440, A:L441, A:D442, A:S443, A:Y449, A:N450, A:Y451, A:L452, A:Y453, A:R454, A:P491, A:L492, A:Q493, A:S494, A:Y495, A:G496,
A:F497, A:Q498, A:P499, A:T500, A:V503, A:G504, A:Y505, A:Q506, A:P507, A:Y508, A:R509, A:V510, A:V511, A:V512, A:L513, A:S514,
A:F515, A:E516, A:L517, A:L518, A:H519, A:A520, A:P521, A:A522, A:T523, A:V524, A:C525, A:G526, A:P527, A:K528

142 0.799

4 A:F559, A:L560, A:P561, A:F562, A:Q563 5 0.789

5

A:F79, A:D80, A:N81, A:P82, A:V83, A:L84, A:P85, A:I100, A:I101, A:R102, A:G103, A:W104, A:I105, A:T108, A:T109, A:L110, A:D111,
A:S112, A:K113, A:T114, A:Q115, A:S116, A:L117, A:L118, A:I119, A:V120, A:N121, A:N122, A:A123, A:T124, A:N125, A:V126, A:V127,
A:I128, A:K129, A:V130, A:C131, A:E132, A:F133, A:Q134, A:F135, A:C136, A:N137, A:D138, A:P139, A:F140, A:L141, A:G142, A:E156,
A:F157, A:R158, A:V159, A:Y160, A:S161, A:S162, A:A163, A:N164, A:N165, A:C166, A:T167, A:F168, A:E169, A:Y170, A:V171, A:S172,
A:Q173, A:P174, A:F175, A:L176, A:T236, A:R237, A:F238, A:Q239, A:T240, A:L241, A:L242, A:A243, A:L244, A:H245, A:R246

80 0.756
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Table 12. Conformational epitopes from SARS-CoV-2 Nsp13 helicase.

No. Residues Number of
Residues Score

1

A:A1, A:V2, A:G3, A:A4, A:C5, A:L7, A:C8, A:N9, A:S10, A:Q11, A:T12, A:S13, A:L14, A:R15, A:C16, A:G17, A:F24, A:L25, A:C26, A:C27,
A:K28, A:C29, A:C30, A:Y31, A:D32, A:V34, A:I35, A:S36, A:T37, A:S38, A:H39, A:K40, A:L41, A:V42, A:L43, A:S44, A:V45, A:N46, A:P47,
A:Y48, A:V49, A:C50, A:N51, A:A52, A:P53, A:G54, A:C55, A:D56, A:V57, A:T58, A:D59, A:V60, A:T61, A:Q62, A:L63, A:Y64, A:L65,
A:G66, A:G67, A:M68, A:S69, A:Y70, A:Y71, A:C72, A:K73, A:S74, A:H75, A:K76, A:P77, A:P78, A:I79, A:S80, A:F81, A:P82, A:L83, A:C84,
A:A85, A:N86, A:G87, A:Q88, A:V89, A:F90, A:G91, A:L92, A:Y93, A:K94, A:N95, A:T96, A:C97, A:V98, A:G99, A:S100, A:D101, A:N102,
A:V103, A:T104

96 0.761

2 A:D344, A:K345, A:F346 3 0.74

3

A:G150, A:I151, A:A152, A:T153, A:V154, A:R155, A:E156, A:V157, A:L158, A:S159, A:D160, A:R161, A:E162, A:L163, A:H164, A:L165,
A:S166, A:W167, A:E168, A:V169, A:G170, A:K171, A:P172, A:R173, A:G184, A:Y185, A:R186, A:V187, A:T188, A:K189, A:N190, A:S191,
A:K192, A:V193, A:Q194, A:I195, A:G203, A:D204, A:Y205, A:G206, A:D207, A:A208, A:V209, A:Y217, A:K218, A:L219, A:N220, A:V221,
A:G222, A:D223, A:Y224, A:F225

52 0.738
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3.4. Epitope Prediction for (HTL) Helper T Lymphocytes

MHC class II epitope, which shows high binding affinity, was predicted for human alleles HLA-DP,
HLA-DQ, and HLA-DR based on their IC50 values from Net MHC II 2.2 server. These epitopes were
described as HTL epitopes. The epitopes with similar sequences were overlapped to get a single
epitope. A total of 21 high binding HTL epitopes were selected for the spike (S), main protease, RdRp,
and helicase for the novel multiepitope vaccine (Tables S5–S8).

3.5. Design and Construction of Final Multiepitope Vaccine

The overlapped and high scoring CTL and HTL epitopes found from SARS-CoV-2 S, Mpro, Nsp12
polymerase, and Nsp13 helicase were combined to form the multiepitope vaccine construct (MVC).
To increase the immune response, human β-defensin 2 (hβD-2) (PDB ID: 1FD3), the sequence of
GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP and hBD-3 (PDB ID:1KJ6), the sequence
of GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK were selected as adjuvants at
the N- and C-terminals sequence of the vaccine construct, respectively, with linker EAAK [79,80]. After
the adjuvant CTL epitopes were combined using appropriate AAY linkers, HTL epitopes were joined
together with GPGPG linkers [81] as displayed in Figure S5. By combining potential CTLs, HTLs
epitopes, and adjuvants, a multiepitope vaccine construct of 1057 amino acids was constructed.

3.6. Parametric Evaluation of Physiochemical Properties

By estimating the multiepitope vaccine construct (MVC) using ProtParam server to estimate
physicochemical properties [67], it was found that MVC weighed 114.6 kDa. The hypothetical isoelectric
point (pI) was 8.15, displaying the basic nature of the MVC, and the assessed in vitro half-life was 30 h
in mammals’ reticulocytes [82]. The assessed half-life indicates the time acquired by the protein to
remain half of the quantity as originally produced in the cell. The instability index was also predicted
to be 35.56 and classified the MVC as stable in nature. The aliphatic index [83] was also examined,
which displays the relative volume retained by the aliphatic side chain. It might be reflected as
a positive variable for the extension of the thermostability of globular proteins. The attained values
of the aliphatic index were found to be 80.93, indicating that, at varied temperatures, the protein is
thermostable. The grand average value of Hydropathy [84] signifies the summation of the hydropathy
rate and, along with sequence of amino acid, indicates the hydrophilic and hydrophobic nature of
the protein. The observed grand average value of Hydropathy for the vaccine protein was found to be
0.158.

3.7. Assessment of Allergenicity and Immunogenicity

The designed subunit of the vaccine was assessed on the allergenic parameter through AllergenFP
1.0 and AlgPredand AllerTOP 2.0 servers. All these servers predicted the non-allergenic nature of
MVC. The antigenicity connected to the vaccine subunit was projected through VaxiJen v2.0 servers.
According to the outcome of VaxiJen, the antigenicity of the vaccine was 0.4259, displaying it as
a plausible antigen. Thus, the attained outcome from servers exhibited a high possibility of the subunit
vaccine’s antigenic and non-allergenic nature.

3.8. Structure Prediction and Validation of MVC

In order to analyze the 3D confirmation of MVC, the 1073 amino acid peptide sequence was
utilized for the prediction of the 3D model. Multiple softwares were used for modeling, including
RaptorX [85] and I-TASSER [86,87], in order to avoid biases. The information of the secondary structure
result showed 34% helical, 19% E, and 45% coiled assembly. For homology modeling, the p-value
is a good parameter to describe the relative quality of the model and a lower p-value indicates that
the quality is good for the modeled structure. The p-value obtained for the MVC structure was
1.29 × 10-6, which is lower and significant. For I-TASSER modeling, the model with the highest
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C-score was selected. The models generated from both servers were compared and validated through
the MolProbity server [70]. The structure with a better M-score (which combines the clash score,
rotamer, and Ramachandran estimations into a single score) was utilized for extensive refinement
through MD simulations. The refinement included optimizing bond lengths and angles and removing
clashes in geometry [88–90]. The root mean square deviation (RMSD) was calculated for 50 ns.
Figure 2A displays the MD refined 3D-model of MVC and the all-backbone RMSD trajectory is shown
in Figure 2B. Initially, the RMSD trajectory of MVC model gradually expanded until 30 ns and reached
a value of ~9.5 Å. Later, the RMSD value continued to converge until 50 ns, with a deviation <1 Å. This
higher RMSD of the simulated model indicated protein expansion during simulation to attain a more
stable conformation. The averaged conformation of the MVC model was extracted from the trajectory
and compared with the initial model through Ramachandran evaluations. The MD optimized MVC
model showed that 86.2% (924/1073) of all residues were in Ramachandran favoured (>98%) regions,
while the initial homology model showed only 72.49% (778/1073 residues) in Ramachandran favoured
regions. Moreover, residues placed in Ramachandran favoured regions (>99.8%) increased from 83.8
(901/1073 residues) with 172 (16.02%) outliers to 95.5% (1024/1073) with 49 outliers (4.1%) (Figure 2C).
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Figure 2. Molecular modeling of vaccine construct. (A) Structural representation of multiepitope
vaccine construct (MVC) is displayed with regions (helper T lymphocytes (HTL), cytotoxic T-lymphocyte
(CTL) epitopes, linkers, and adjuvants) highlighted accordingly. (B) Root mean square deviation
trajectory (RMSD) of MVC analyzed over a period of 50 ns molecular dynamics (MD) simulations. (C)
Ramachandhran evaluations of MVC before and after refinement through MD simulations.

3.9. Disulfide Engineering for Vaccine Stability

Disulfide engineering was done to stabilize the modelled structure of MVC, by Disulfide by
Design v2.0 server [71]. In the evaluation based on other parameters like Chi3 and energy value, only 07
residues pairs were selected as their value came under the permissible range, that is, energy value must
be smaller than 2.2 and Chi3 must be between −87 and +97 degrees. Hence, a total of eight mutations
were formed at the pairs of residues, named VAL6-ALA157, TYR138-ALA163, VAL360-GLY730,
LEU462-TYR474, ALA499-ARG519, SER814-GLY923, GLY816-SER927, and THR934-GLY946.
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3.10. Molecular Docking of Vaccine Constructs with TLR3 and TLR4

Molecular docking is the best in silico approach to finding out interactions between protein–protein
and protein–ligand complexes [91–94]. Molecular docking of MVC with TLR4 and TLR3 receptors was
performed using ClusPro 2.0, and 30 models were produced [95]. Among these, the complex with
the lowest energy was selected. The energy scores attained for TLR3 and TLR4 were –1327.2 and –1270.2,
respectively, and subjected to MD simulations to analyze the complex stability. The interaction profile
of TLR3 and TLR4 with the MVC showed significant interactions, including H-bonds, salt bridges,
and disulfide contacts (Figures S6 and S7). Both hydrogen bonds and salt bridges are particularly
important in determining binding specificity [96]. It was observed that MVC established 16 H-bonds
with TLR3 and 12 H-bonds with TLR4 within the range of 3.00 Å (Tables S5–S8).

3.11. Molecular Dynamics Simulation for TLRs/MVC Complex

The stability of the TLRs/MVC docked complexes was further investigated by performing MD
simulation for a period of 50 ns in an explicit solvent environment at 300 K. The potential energy
of the simulation system was also found to be stable throughout the simulation period (data not
provided). The MD refined MVC was utilized for docking, and both complexes showed relatively
stable RMSD as compared with MVC alone (Figure 2). In the beginning, the MVC experienced small
fluctuations, but remained interacted with the hydrophobic groove of TLR4 (Figure 3A) and TLR3
(Figure 3B), and showed consistent stability in the last ~25 ns. The radius of gyration (RoG) and
solvent accessible surface area (SASA) analyses were achieved to determine the compactness [97,98]
and protein solvent accessible surface area [99] of TLR3 and TLR4 and designed MVC throughout
the MD run (Figure 3C–F). The results suggested similar trends in both complexes. The RoG plot
(measured in nm) showed no conformational shift, except for small deviations that were evident owing
to the flexible linkers utilized, and the overall structure remained stable between 31.5 and 33 nm.
The compactness of TLR3 and TLR4 complexed with MVC suggested a strong binding interaction
with the designed MVC. A similar description was revealed through SASA analysis (measured in
nm2), representing the solvent accessible protein surface and its placement through folding, creating
the adjustments in the exposed and buried regions of the surface area of proteins. SASA trajectories in
both systems also showed a similar trend throughout the simulation period. The presented analysis
suggested a stable structure with a significantly strong binding interaction with the vaccine construct,
hence providing insights into the biological system’s stability [97,98].

3.12. Codon Adaptation and In Silico Cloning of the MVC

The reverse translation and codon optimization were performed for the sequence of MVC by
the online JCat server [74]. The GC content and codon adaptation index (CAI) were determined out as
output from the server. The GC content obtained for MVC was 54.39%, which lies in the acceptable
range, that is, from 30% to 70%. Meanwhile, CAI value of MVC was 1, which indicates a high level of
expression in the K12 strain of E. coli. Later, the restrictions sites of NdeI and XhoI were added and
the MVC sequence was cloned in the pET28a (+) vector (Figure 4). The MVC sequence is represented in
yellow with the restriction sites. The sequence of multiepitope vaccine construct was cloned between
the 6-histidine residue on both sites, which will help in the purification of MVC.
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Figure 3. Toll-like receptor (TLR) complexed with a multiepitope vaccine construct (MVC). (A)
Conformation of TLR4/MVC and (B) TLR3/MVC complex before and after 50 ns MD simulations,
together with the RMSD plot at the bottom indicating the all-atom backbone deviation of TLR (in
black) and MVC (in red). (C) Plot of radius of gyration (RoG) and (D) solvent-accessible surface area of
TLR4/MVC complex throughout 50 ns MD simulation and TLR3/MVC (E,F).
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3.13. Immune Simulation by MVC

The immune simulation response of MVC was determined by C-Immsim server. The MVC
generated strong primary responses. It has been shown that the titer scale of combined antibodies, IgM
and IgG, is approximate to 10,000/mL, and for the antibody, IgM is close to 7000 titer per ml (Figure 5A).
The high level of immunoglobulin accomplishments was distinct with associated antigen reduction in
both secondary and tertian responses. The level of soluble cytokine, interferon-gamma (IFN-g) was
retained, and it was more than 400,000 ng/mL against the antigen, as shown in Figure 5B.Biology 2020, 9, x  19 of 26 
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4. Discussion

The announcement of emergency by the World Health Organization (WHO) on the COVID-19
outbreak urged researchers to develop therapeutics, mainly the identification of drug candidates or
vaccines [20]. The use of cost-effective and less time-consuming methods, especially immunoinformatics
approaches, haas already assisted the researchers to predict potential antigenic epitopes for
the multiepitope-based vaccine [38–40,44,75,100–102]. The multiple epitope vaccine has a distinctive
design concept compared with classical single-epitope based vaccines [101,103–105]. The concept
behind the scanning of the viral genome to find immunogenic epitopes leads to an elicited immune
response without any reversal of viral pathogenesis [106].

To design a multiepitope vaccine, the research focused on the identification of epitopes for potential
B and T cells using the immune-informatics approach. An in silico method can be employed using
patho-genomics analysis on the genome on a vast scale to identify new vaccines [106,107]. Various
limitations are there in the context of appropriate candidate antigens, their immunodominant epitopes,
and experimental methods, which include the development of an effective delivery system [108,109].
Investigation of the whole spectrum of probable antigens is achievable through immunoinformatics and
with the aid of molecular modelling to analyze the potential binding with host proteins [30,32,38,41,109].
Besides, the difficulty of culturing the pathogens as well as in vitro antigen expression problems
can be avoided [102,110]. Some multiple epitope vaccines showed in vivo efficacy with promising
protective immunity [45,46,48,103], while some have entered into phase-I clinical trials, including
H2NVAC in patients with HER2-expressing ductal carcinoma in situ (DCIS) (NCT03793829), E1602 for
patients with metastatic melanoma [111], EMD640744 in patients with advanced solid tumors [104], and
TAB9 in non-HIV-1 infected human volunteers [112]. However, designing an effective multi-epitope
vaccine remains a great challenge. Hence, estimation of B cell and CTL cell epitopes by different
immune-informatics methods is considered to be a vital tool for designing a multi-epitope construct.

In the present research, potential T-cells and B-cell epitopes (discontinuous and continuous) were
recognized from SARS-CoV-2 main protease, Nsp12 RNA polymerase, spike, and Nsp13 helicase
proteins to design multi-epitope construct (MVC) using adjuvants (hβ defensins) and appropriate
linkers. The employed linkers (GPGPG and AAY) were carefully selected because their length,
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composition, and structure may affect the activity of the domains and overall characteristics of
the molecule [113]. For example, as being somewhat basic antigenic domains (isoelectric point pI >

8), a linker that contains more basic amino acids may increase the pI, such as KK [114]. Therefore,
basic linkers were avoided and a glycine-rich linker, that is, GPGPG, was chosen for joining potential
epitopes that usually improve solubility and allow the adjoining domains to be accessible and act
freely [115]. Following this, a reliable MVC model was generated through molecular modeling and
optimized accordingly. All-atom backbone stability of MVC was analyzed through molecular dynamics
simulation over a period of 50 ns, because the optimal structural stability of MVC is considered a prime
aspect in its efficacy [116], and to the trigger immune response by interacting Toll-like receptors (TLRs)
signaling, as successful immunization results are accomplished through stimulation of the TLRs [49].
The resulting model showed fewer outliers, while rotamers were adjusted during the simulation.
Molecular docking with TLR3 and TLR4 followed by 50 ns MD simulation revealed stability in
the overall complex in the last ~20 ns. The designed MVC interacted with TLR3 and TLR4 directly
and their molecular interactions were strengthened during MD simulation, which led to reducing
the backbone RMSD fluctuation in both TLR/MVC complexes (Figure 3). However, the epitopes were
estimated as non-allergenic, showed antigenicity, and predicted cloning in vector pET28a (+) of E. coli,
but given the limitation of in silico tools, the expression and efficacy of the designed multiple vaccine
construct should be further proven through in vitro and in vivo experiments.

5. Conclusions

COVID-19, after its first emergence in December 2019, widely spread to around 105 countries
and the World Health Organization declared it as pandemic. This state of emergency urged to
look for effective vaccine candidates and antiviral drugs. The immunoinformatics approach is fast
and cost-effective to design and validate the candidate vaccines against such pathogens. In this
study, a multiepitope vaccine using spike, Mpro, Nsp-12 polymerase, and Nsp13 helicase proteins of
SARS-COV-2 was designed. The epitopes that can induce B- and T-cell mediated immune response
were used to build the 3D model of the multiepitope vaccine, which was further validated for its
stability and allergenicity. Molecular docking followed by molecular dynamics simulations of MVC
with TLR3 and TLR4 was performed, which showed stable interactions of the candidate vaccine with
these receptors. Overall, the MVC showed an overall stable structure and could serve as a potential
candidate for vaccine production. Although present research is based on an integrated computational
approach, further experimental research will be required to validate the effectiveness of the designed
vaccine construct.
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