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Abstract

Purpose

Current time—density curve analysis of digital subtraction angiography (DSA) provides

intravascular flow information but requires manual vasculature selection. We developed an

angiographic marker that represents cerebral perfusion by using automatic independent

component analysis.

Materials and methods

We retrospectively analyzed the data of 44 patients with unilateral carotid stenosis higher

than 70% according to North American Symptomatic Carotid Endarterectomy Trial criteria.

For all patients, magnetic resonance perfusion (MRP) was performed one day before DSA.

Fixed contrast injection protocols and DSA acquisition parameters were used before stent-

ing. The cerebral circulation time (CCT) was defined as the difference in the time to peak

between the parietal vein and cavernous internal carotid artery in a lateral angiogram. Both

anterior-posterior and lateral DSA views were processed using independent component

analysis, and the capillary angiogram was extracted automatically. The full width at half

maximum of the time—density curve in the capillary phase in the anterior-posterior and lat-

eral DSA views was defined as the angiographic mean transient time (aMTT; i.e., aMTTAP

and aMTTLat). The correlations between the degree of stenosis, CCT, aMTTAP and aMT-

TLat, and MRP parameters were evaluated.

Results

The degree of stenosis showed no correlation with CCT, aMTTAP, aMTTLat, or any MRP

parameter. CCT showed a strong correlation with aMTTAP (r = 0.67) and aMTTLat (r = 0.72).

Among the MRP parameters, CCT showed only a moderate correlation with MTT (r = 0.67)

and Tmax (r = 0.40). aMTTAP showed a moderate correlation with Tmax (r = 0.42) and a

strong correlation with MTT (r = 0.77). aMTTLat also showed similar correlations with Tmax

(r = 0.59) and MTT (r = 0.73).
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Conclusion

Apart from vascular anatomy, aMTT estimates brain parenchyma hemodynamics from DSA

and is concordant with MRP. This process is completely automatic and provides immediate

measurement of quantitative peritherapeutic brain parenchyma changes during stenting.

Introduction

X-ray digital subtraction angiography (DSA), with its submillimeter and subsecond resolu-

tions, is the gold standard for diagnosing cerebrovascular diseases [1–3]. Previous studies have

demonstrated the feasibility of time—density curve (TDC) analysis, computed fluid dynamic

simulation, and optic flow methods for quantitative hemodynamic measurement in DSA [4–

7]. Computed fluid dynamic simulation estimates blood flow based on detailed anatomic and

physiologic modeling and is therefore a time-consuming process. Nevertheless, its accuracy

enables the successful prediction of aneurysmal rupture risk, and it is a promising method for

risk stratification [6]. The optic flow method, which detects the movement of a contrast bolus

between different frames to estimate velocity, is compute-intensive [5,8,9]. TDC analysis is the

sole algorithm fulfilling the requirements of being reasonably fast, accurate, and automatic and

is thus able to serve as an in-room hemodynamic assessment tool.

TDC analysis represents changes in the dynamic intensity of a contrast bolus passing

through the region of interest (ROI) in DSA. It is affected by the bolus characteristics and path-

ologic conditions (e.g., arterial stenosis or arterio-venous shunts) [10,11]. Regarding its advan-

tages, TDC analysis is less computer intensive, measurement outcomes are immediate [5,8,9],

and no additional radiation is required [10,12,13].

TDC analysis makes it possible to measure time to peak (TTP; i.e., the time point at which

the ROI achieves the highest concentration). Cerebral circulation time (CCT) is defined as the

difference between the TTPs of the internal carotid artery and the parietal vein (PV). The PV

is a relatively stable cortical vein located in the vicinity of the superior sagittal sinus, compared

with the major venous sinuses. Therefore, it was chosen as the reference for measuring the

time required for blood to pass through the brain [14]. The CCT has been shown to be an

effective method for quantifying the intravascular flow in different vascular disorders such as

carotid stenosis, carotid cavernous fistula, and vasospasm peritherapeutically [13–15].

One drawback of CCT is that it requires manual selection of the internal carotid artery and

PV, rendering the measurement process susceptible to intraobserver and interobserver varia-

tions and potentially delaying the workflow of endovascular treatment [12]. To establish a

more objective measurement, in a previous study, we introduced independent component

analysis (ICA) to avoid the manual selection of ROIs. ICA decomposes the mixed signals into

statistically independent components [16]. The superiority of ICA for estimating individual

components with partial volume effects in magnetic resonance perfusion (MRP) images has

been demonstrated [17,18]. Furthermore, a deconvolution approach can estimate cerebral

blood flow, cerebral blood volume, and mean transit time from DSA imaging [19]. Through

the automatic generation of an angiographic surrogate to assemble the CCT, the operator can

save the time required for post processing and focus on the operation. Thus, the aim of the cur-

rent study was to develop a real-time automatic computerized algorithm to optimize an angio-

graphic imaging marker for generating a surrogate for brain parenchyma perfusion. This

algorithm was compared with manually defined CCT and MRP.
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Material and methods

Patient selection

The Taipei Veterans General Hospital institutional review board approved this retrospective

study. The requriement for patient consent was waived (TVGH IRB No. 2014-16-014) because

all the data were anonymized. From January 2012 to September 2016, 136 patients with extra-

cranial internal carotid stenosis (>70%, North American Symptomatic Carotid Endarterec-

tomy Trial [NASCET]) were referred to our department for carotid stenting and were

included in this study. Patients with contralateral or distal stenosis (n = 15), those with previ-

ous large territorial infarcts (n = 2), those without preoperative MRP imaging (n = 63), and

those without complete intracranial angiographic series (n = 12) were excluded. The remain-

ing 44 patients were included in this study.

DSA imaging protocol

For all 44 patients, DSA acquisitions were performed using a standard, clinically routine proto-

col on the same biplane AngioSuite (AXIOMArtis1, Siemens Healthcare, Forchheim, Ger-

many). The degree of arterial stenosis was determined by the more severe degree of the

anterior-posterior (AP) or lateral views according to NASCET criteria [20]. A power injector

(Liebel-FlarsheimAngiomat1, Illumena, San Diego, USA) was used to administer a contrast

bolus by placing a 4-F angiocatheter in the common carotid artery at the C4 vertebral body

level. A bolus of 12 mL of 60% diluted contrast medium (340 mg I/mL) was then administered

within 1.5 seconds. No additional contrast medium or radiation was used. The acquisition

parameters were 7.5 frames per second for the first 5 seconds, followed by 4 frames per second

for 3 seconds, 3 frames per second for 2 seconds, and finally 2 frames per second for 2 seconds.

The entire DSA acquisition lasted 12 seconds, but was manually prolonged to visualize internal

jugular vein opacification in cases of slow intracranial circulation [12].

Cerebral circulation time

All angiographic datasets were sent to a workstation equipped with commercialized software

(Syngo iflow1, Siemens Healthcare, Forchheim, Germany). A TDC was generated according

to ROIs manually selected in the angiographic series. The TTP was defined as the time point at

which individual ROIs achieved the maximum concentration. Moreover, the CCT, defined as

the difference in TTP between the PV and the cavernous segment of the internal carotid artery,

was manually determined by an interventionist with 12 years of experience. CCT has been

demonstrated to have a strong correlation with the mean transit time of MRP, and it reflects

hemodynamic changes during treatment of various cerebrovascular diseases in the angio-

room [15].

Angiographic mean transit time

The dataset was post processed using a Pentium-based personal computer. All DSA analyses

were performed using in-house software written in MATLAB (MathWorks, Natick, MA). We

applied the scale-invariant feature transform technique by aligning all other images of a series

to the reference image (at a time of 0) to reduce motion artifacts in sequential dynamic sub-

traction X-ray projection images [21]. ICA is a data-driven method that entails decomposing

mixed signals into statistically independent components, and it can efficiently and objectively

reflect cerebral hemodynamic changes [22,23]. In this experiment, we permuted the 2D images

of DSA into a 1D signal, and used the FastICA technique [16] on a patient basis. The number

of output IC components was set to three: arterial, capillary, and venous components (Fig 1).

Automatic flow analysis in digital subtraction angiography

PLOS ONE | https://doi.org/10.1371/journal.pone.0185330 September 26, 2017 3 / 13

https://doi.org/10.1371/journal.pone.0185330


Thresholds were determined using Ostu’s intervariance maximization technique to generate

the vessel masks [24]. A TDC in the capillary phase was extracted by multiplying the vessel

mask to the DSA series on a pixel-by-pixel basis, and the curve was fitted by the gamma-variate

function. Angiographic mean transient time was used to define the full width at half maximum

of the TDC derived from the capillary component in the AP and lateral views, labelled aMT-

TAP and aMTTLat, respectively (Fig 2).

Magnetic resonance perfusion

All MRP processes were performed one day before carotid stenting on the same 1.5 Tesla scan-

ner (Signa HDxt1, GE Healthcare, Milwaukee, USA) with an eight-channel neurovascular

coil. Imaging parameters were as follows: 60˚ flip angle, 1000-millisecond TR/40-millisecond

TE, 7-mm section thickness with a 7-mm imaging gap, 240-mm field of view, and 128 × 128

acquisition matrix. The MR scan and bolus administration were started simultaneously. Perfu-

sion Mismatch Analyzer software (version 5.0, ASIST Group, Japan) was used for analysis

[25]. The arterial input function of the ipislateral middle cerebral artery was chosen. Standard

singular value decomposition was used as the deconvolution algorithm for obtaining Tmax,

Cerebral blood volume (CBV), Cerebral blood flow (CBF), and Mean transient time (MTT)

Fig 1. A 67-year-old male patient with 84% left carotid stenosis received carotid angiogram before stenting. The angiogram was

processed using independent component analysis with motion correction and automatically produced (A) arterial, (B) capillary, and (C)

venous phases of the anterior-posterior view and (D) arterial, (E) capillary, and (F) venous phases of the lateral view.

https://doi.org/10.1371/journal.pone.0185330.g001
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values. The ROIs in MRP were designated to include ipsilateral middle cerebral artery cortical

territories (i.e., M1, M2, and M3) according to the Alberta Stroke Program Early CT Score cri-

teria [26–28].

Statistical analyses

All statistical analyses were performed using SPSS 20 (2010; IBM-SPSS, Chicago, IL). Pearson

correlations were calculated between the degree of stenosis (%), CCT, aMTT, and MRP

parameters and all indices for the three phases (artery, capillary and venous). Significance was

set at p< 0.05.

Results

Patient characteristics, angiographic parameters, and results of MR perfusion are listed in

Table 1. None of the patients experienced acute strokes peritherapeutically, as revealed by MR.

The degree of stenosis showed no correlation with the CCT, aMTTAP, aMTTLat, or any MRP

parameter. The average aMTTAP and aMTTLat values for the whole study group were

Fig 2. Time—Density curves of arterial (red), capillary (green), and venous (blue) phases of a lateral view of the lesional carotid

angiogram of a 67-year-old male patient with 83% carotid stenosis. The full width at half maximum (FWHM) of the time—density curve

in the capillary phase was defined as the angiographic mean transient time (aMTT).

https://doi.org/10.1371/journal.pone.0185330.g002
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5.34 ± 1.18 seconds and 5.12 ± 1.04 seconds respectively. The average CCT was 4.87 ± 1.19 sec-

onds. CCT showed a strong correlation with aMTTAP (r = 0.67) and aMTTLat (r = 0.72).

Among the MRP parameters, the CCT only showed a moderate correlation with time-depen-

dent parameters, namely MTT (r = 0.67) and Tmax (r = 0.40) (Fig 3). Moreover, aMTTAP

showed a moderate correlation with Tmax (r = 0.42) and a strong correlation with MTT

(r = 0.77); aMTTAP was not correlated with CBF or CBV. Finally, aMTTLat showed a moderate

correlation with Tmax (r = 0.59) and a strong correlation with MTT (r = 0.73; Fig 4).

Discussion

Cerebral perfusion has been reported to be influenced by multiple factors such as proximal

luminal stenosis, collateral circulation, and brain parenchyma viability [29,30]. Therefore, the

carotid degree of stenosis alone could not approximate cerebral perfusion deficits. No correla-

tion was observed between any MRP parameter and the degree of stenosis in the current

study, confirming that stenosis is a poor indicator of ischemia. Moreover, we revealed that

automatic outputs from customized software (aMTTAP and aMTTLat) and the CCT showed a

strong correlation with MTT (r = 0.67–0.72). According to Soinne et al., MTT is the most sen-

sitive MRP parameter for the detection of reduced cerebral perfusion in carotid stenosis [31].

Both aMTT parameters (aMTTAP and aMTTLat) measured the duration for which contrast-

containing blood flow remained in the capillary, the smallest vasculature identifiable and con-

ceptually closest to brain parenchyma in DSA imaging. Therefore, aMTTAP and aMTTLat in

DSA resemble MTT in MRP.

Tmax is a physiologic measurement comprising intravascular components (poststenotic

delay and dispersion effect) and a parenchyma component (mean transient time) [25,32,33].

The complex physiologic nature of Tmax explains why its correlation with aMTTAP and aMT-

TLat was not as strong as that with MTT. Nevertheless, quantifying CBF and CBV in the two-

dimensional domain of DSA is challenging because of the difficulty associated with volumetric

measurements and the overlying vasculature [27]. Through this automatic in-room TDC

assessment, we could use Tmax, adjunct to MTT, as an angiographic marker for detecting per-

fusion deficits and evaluating the peritherapeutic treatment effect [34].

A shortened CCT during carotid stenting is a sign of CBF restoration in patients receiving

carotid stenting [12,35]. Furthermore, hyperperfusion syndrome has been reported to be the

Table 1. Patient characteristics, angiographic parameters, and results of MR perfusion of 44 patients

receiving carotid stenting.

Patient with unilateral carotid stenosis

Number 44

Age 72.4 ± 11.8

Heart rate (beat/minutes) 65.3 ± 19.4

Blood pressure (mmHg) 93.2 ± 2l.2

Stenotic degree (%) 79.3 ± 8.3%

Prior lacunar infarct 8 (16%)

aMTTAP (Second) 5.34 ± 1.18

aMTTLat (Second) 5.12 ± 1.04

CCT (Second) 4.87 ± 1.19

CBF (%) 34.78 ± 13.54

CBV (ml/100g) 3.03 ± 1.13

MTT (Second) 5.53 ± 1.14

Tmax (Second) 1.84 ± 1.31

https://doi.org/10.1371/journal.pone.0185330.t001
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most catastrophic adverse event associated with carotid stenting and to be associated with a

prolonged CCT [36–39]. Given the high correlation between both aMTT parameters and the

CCT, we expect that spontaneously generated angiographic parameters can be used to identify

patients at a higher risk of hyperperfusion syndrome, thus avoiding complications in the

angio-room (Fig 5). Moreover, the characteristic spontaneously generated parameters from

our customized program can facilitate the workflow of endovascular treatments. Flat-panel

perfusion imaging alternatively provides estimation of cerebral hemodynamics, but the risk of

additional iodine and radiation exposure should be carefully weighed [40,41].

Although infrequent, more arterioles have been observed in the capillary phase in cases of

severe stenosis (more than 90%) than in cases of moderate stenosis (70%–90%). Martel et al.

similarly noticed a tendency towards a more heterogenous dataset in more stenotic patients in

MRP [42]. We hypothesized that the stagnant arterial flow in cases of severe carotid stenosis

mimics the flow pattern of the capillary flow and thus generates a mixture of arteries and

capillaries. Different threshold methods might improve the correct segmentation of stagnant

flow. This question warrants further study.

Fig 3. Correlation between cerebral circulation time (CCT) and (A) CBF, (B) CBV, (C) MTT, and (D) Tmax.

https://doi.org/10.1371/journal.pone.0185330.g003
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This study has several limitations. First, the overlapping of anatomical structures compli-

cated the TDCs in the two-dimensional domain of DSA, thus resulting in some inaccuracies in

volumetric estimation. Second, the accuracy of segmentation of the three phases decreased as

the motion artifacts increased. This phenomenon occurs because the artifacts generated a

sharp density change in the TDC, thus simulating a distinguished curve, which interfered with

subsequent segmentation processes. Optimizing motion correction algorithms is warranted in

further applications. Third, our methodology is based on TDC analysis and is therefore subjec-

tive in terms of detecting territorial flow changes. Subtle changes of region flow fields are

beyond the scope of this methodology. Fourth, generalization of this approach should be care-

fully executed because varying injection rates, durations, and DSA acquisition frame rates

might potentially influence the value of angiographic mean transit times. However, as long as

the region of interest is ten times of the vessel diameter downstream to the catheter tip, the

contrast has been shown to mix thoroughly with the blood flow under clinical injection proto-

cols and is thus able to represent physiologic flow hemodynamically [43].

Fig 4. Correlation between (A) MTT and aMTTAP; (B) MTT and aMTTLat; (C) Tmax and aMTTAP; and (D) Tmax and aMTTLat.

https://doi.org/10.1371/journal.pone.0185330.g004
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Conclusion

Our study confirmed that ICA provides an efficient and completely automatic analysis of

DSA. Both aMTT parameters were highly correlated with MTT and Tmax in MRP. This study

showed that these parameters can provide objective, immediate cerebral hemodynamic mea-

surements and effectively reflect the severity of perfusion deficits in carotid stenosis. TDC

analysis can serve as an in-room peritherapeutic hemodynamic monitoring tool and does not

Fig 5. A 92-year-old female with 80% stenosis of left internal carotid artery received carotid stenting. (A) Pre-stenting MR perfusion

showed decreased cerebral blood flow in the right hemisphere compared to the left hemisphere. Twelve hours after the procedure, the

patient experienced headache and seizure. (B) Emergent MR perfusion after stenting showed 56% increased cerebral blood flow in the right

hemisphere compared to the left hemisphere. Based on clinical features and MR perfusion, this patient developed hyperperfusion

syndrome. (C) Post-stenting aMTTAP (red) was shorter than pre-stenting aMTTAP (blue) by 2.61 seconds, indicative of excessive increased

blood flow. (D) Post-stenting aMTTLat (red) showed the same trend of increased blood flow and was shorter than pre-stenting aMTTLat (blue)

by 3.78 seconds. Blood pressure was strictly controlled under 120 mm Hg and the symptoms gradually subsided in the following days.

https://doi.org/10.1371/journal.pone.0185330.g005
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require additional radiation or contrast, and it potentially facilitates one-stop shop imaging in

thrombectomy for acute infarcts.
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